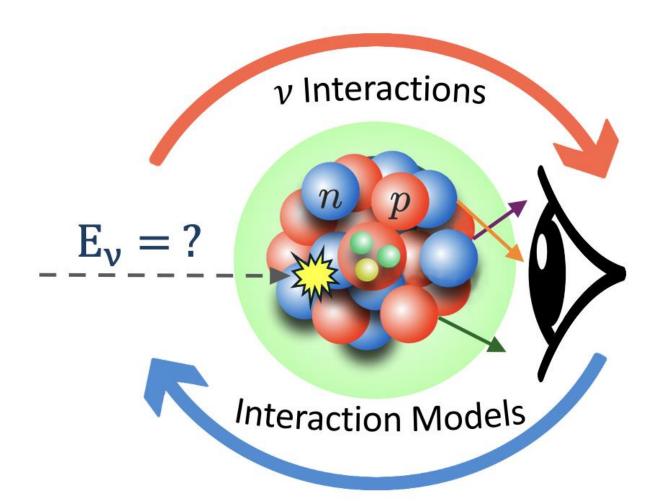
Imperial College London

Neutrino Cross-Section Theory:

Uncertainties and Implications for Oscillation Measurements

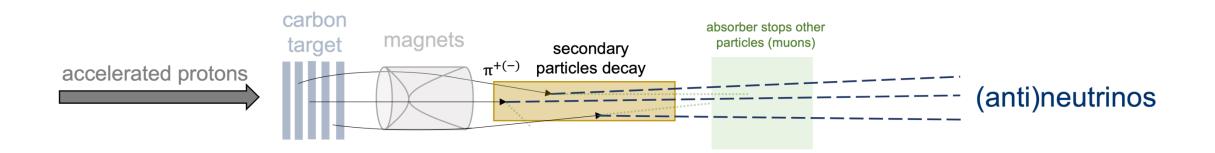
Minoo Kabirnezhad

m.kabirnezhad@imperial.ac.uk


Vietnam Flavour Physics Conference 2025

Aug. 21, 2025

Unveiling the neutrino



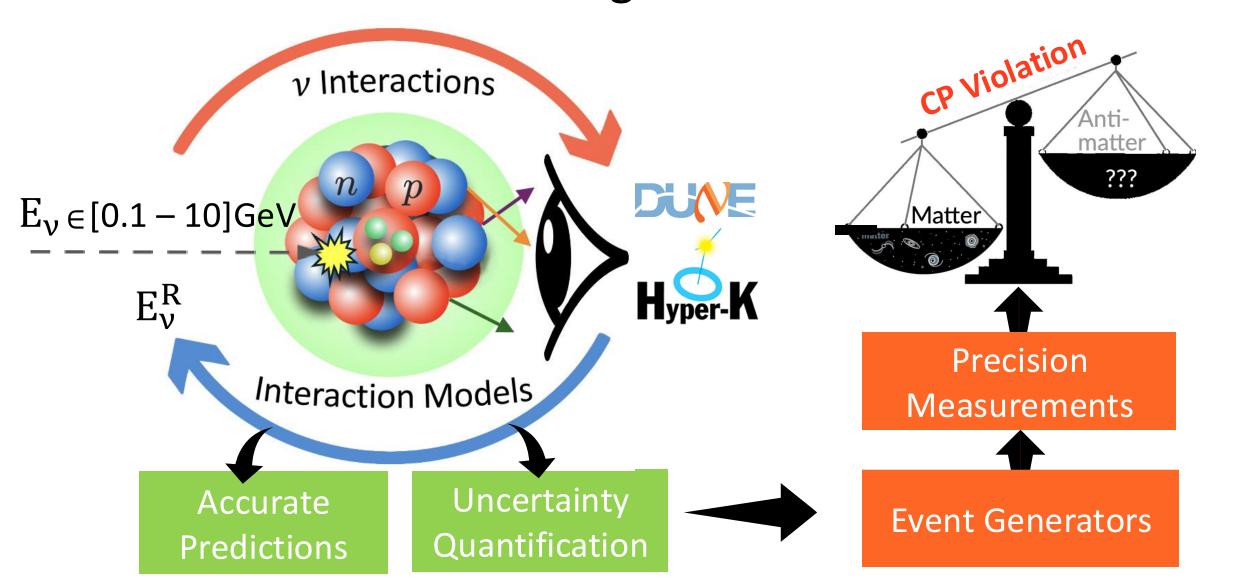
Accelerator-based neutrino experiments

• v_{μ} Beam Source: Produced from accelerated protons

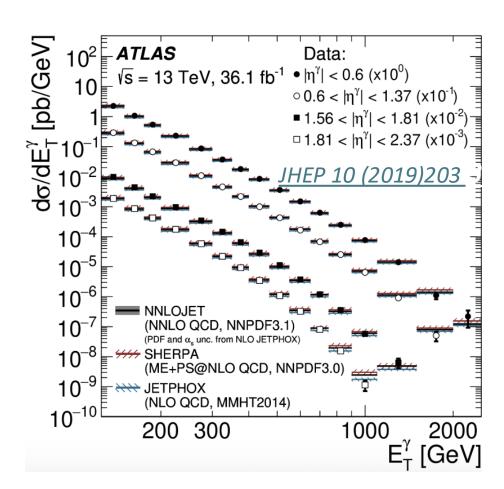
Accelerator-based neutrino experiments

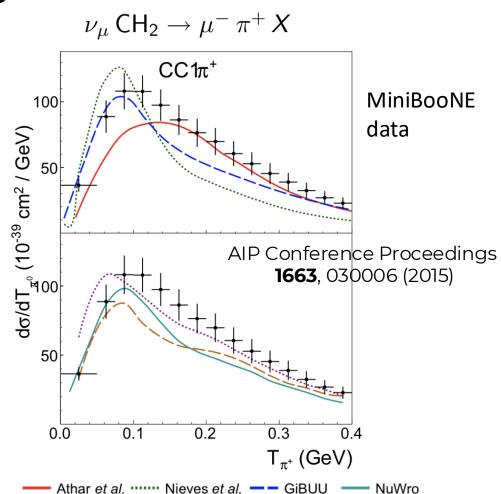
• v_u Beam Source: Produced from accelerated protons

• Energy Requirement: Must be in the few GeV range



Unveiling the Neutrino:


Customised Modelling for Future Discoveries



Cross-section uncertainties remain a major challenge

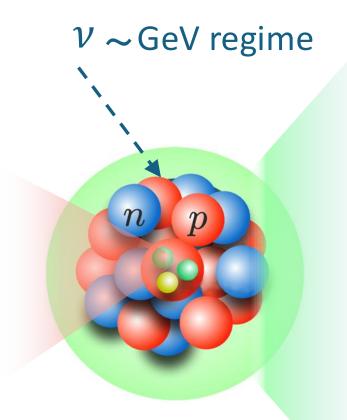
→ MB data

Minoo Kabirnezhad

— NEUT

····· GENIE

Phenomenological Form factors


 Several parameters to fit using symmetries and experimental data

Nucleon Structure

Lattice QCD

 Form-factors exist only for Quasi-elastic channels and depend on the Formfactor models

Effective approach

First-principle approach

Independent-Particle Models

- Assumptions required for a realistic simulation
- Including leading-order correlations

Nuclear Medium

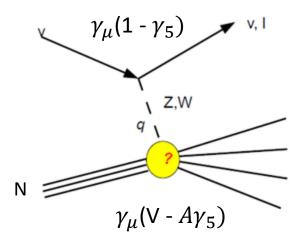
Quantum Simulation

 Solving many-particle quantum systems

Challenges in Modelling Neutrino Interactions at GeV Energies

- Low Event Rates: Historically discouraged precision calculations.
- Complex Scattering Problem: Slowed theoretical and experimental progress.
 - **Kinematic Coverage:** Neutrino beams (0.1–10 GeV) span a broad energy range, including a critical transition region, while available cross-section data remains sparse.
 - **Nuclear Effects:** Scattering occurs within complex multi-particle quantum systems, posing significant **computational challenges**.

Challenges in Modelling Neutrino Interactions at GeV Energies


- Low Event Rates: Historically discouraged precision calculations.
- Complex Scattering Problem: Slowed theoretical and experimental progress.
 - **Kinematic Coverage:** Neutrino beams (0.1–10 GeV) span a broad energy range, including a critical transition region, while available cross-section data remains sparse.
 - **Nuclear Effects:** Scattering occurs within complex multi-particle quantum systems, posing significant **computational challenges**.
- Uncertainty Quantification: Estimating model approximations as reliable inputs for precision measurements.

ν -nucleon interaction in the GeV regime

• Free Nucleons: Hydrogen target

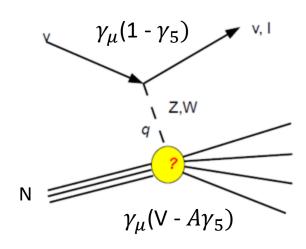
Bubble Chambers

- Targets: Hydrogen & deuterium
- Role: Pioneered neutrino interaction studies (1960s– 1980s)
- **Key Contribution:** Early cross-section measurements
- Now retired, often found in national lab car parks

The 15-foot Bubble Chamber FNAL

Big European Bubble Chamber (BEBC) CERN

ν -nucleon interaction in the GeV regime

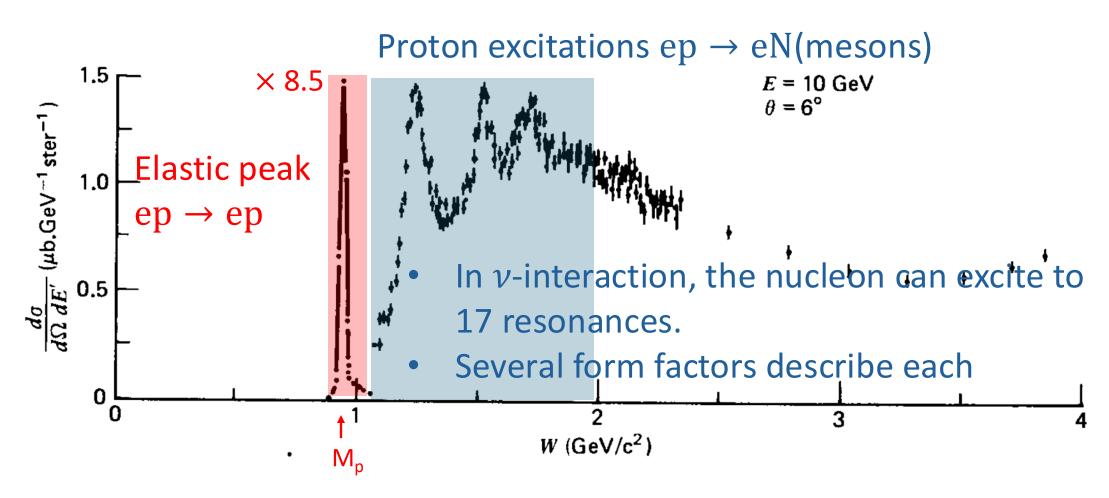

- Free Nucleons: Hydrogen target
- Interaction Types:
 - Elastic & Quasi-elastic:

 $vN \rightarrow l(lepton)N(Nucleon)$

• Inelastic: $vN \rightarrow lX$ (hadrons)

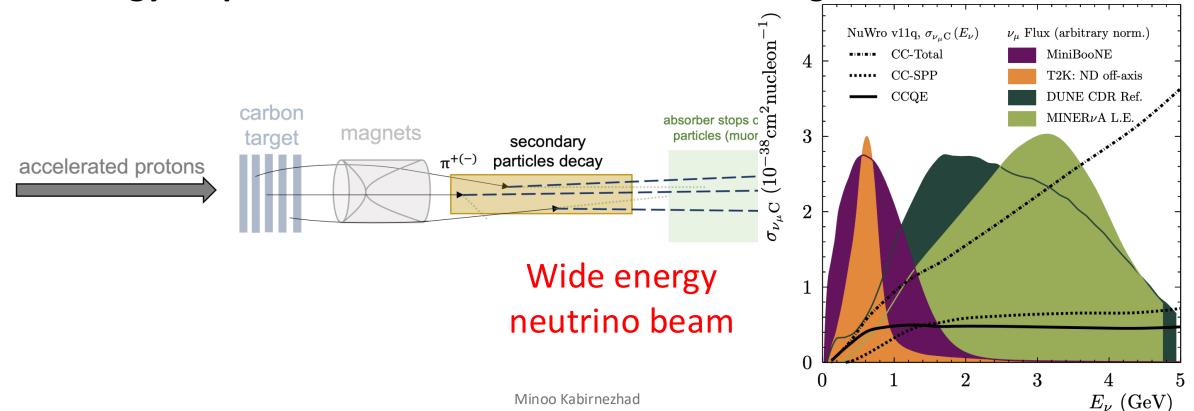
Data Availability:

- Neutrino cross-section data is scarce
- Electron scattering provides valuable insights



 V (Vector) & A (Axial-Vector) form factors describe how scattering is modified from a point-like nucleon

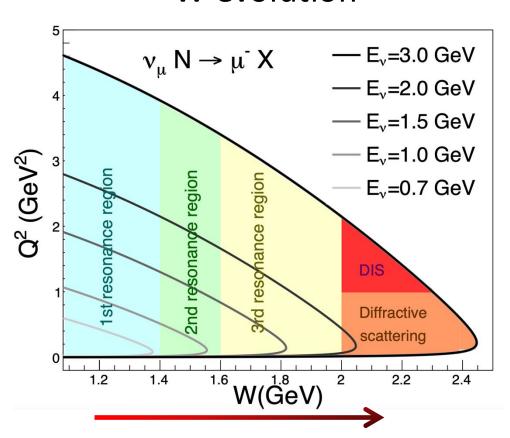
$ep \rightarrow eX$ cross-section

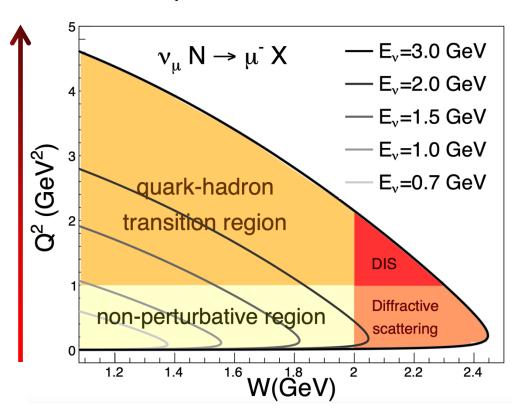


Accelerator-based neutrino experiments

• v_{μ} Beam Source: Produced from accelerated protons

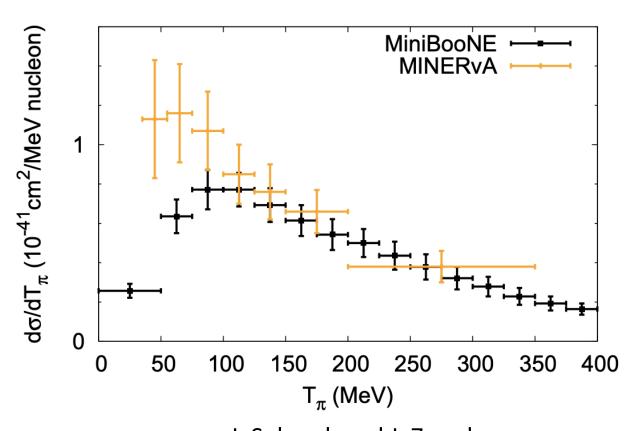
• Energy Requirement: Must be in the few GeV range



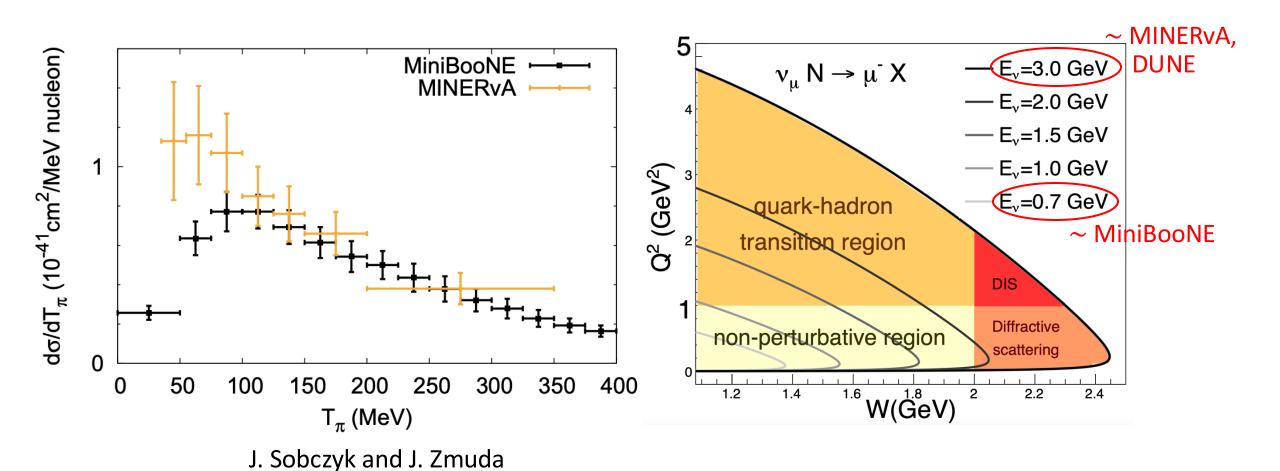


Transition region

W evolution


Q² evolution

Tensions between MiniBooNE and MINERVA

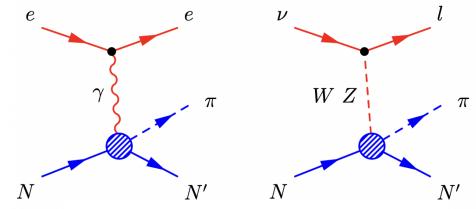

 Tensions between MiniBooNE and MINERvA for single pion production measurements on CH₂ and CH targets in the first resonance region.

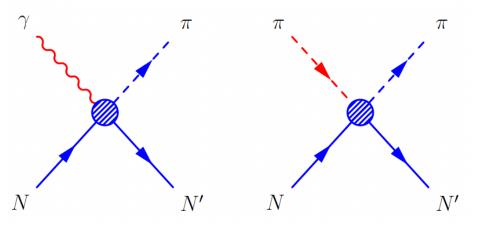
J. Sobczyk and J. Zmuda Phys. Rev. C **91** (2015)

Tensions between MiniBooNE and MINERVA

Phys. Rev. C **91** (2015)

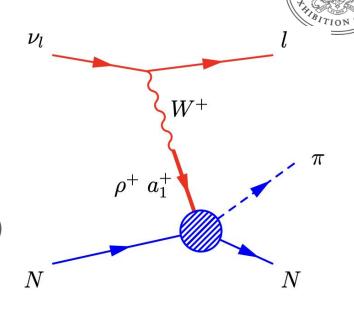
Challenges and Uncertainties in the complex GeV Region


- Multiple Processes: The GeV energy range involves a complex interplay of interaction mechanisms on the nucleon, requiring precise knowledge of form factors for each process.
- Quark-Hadron Transition: Begins as early as Q², requiring careful treatment.
- **Parametrisation**: Essential for incorporating unknown physics and handling interfering processes.
- Uncertainty Estimation: Accurate assessment of theoretical uncertainties is a crucial input for neutrino measurements.


Solution for single pion production: MK model

- The MK model comprehensively describes single-pion production in interactions involving photons, electrons, and neutrinos with nucleons.
- Phenomenological models in this region must account for numerous processes and parameters.
- A unified model is essential for interpreting all interactions and maximising data utilisation.

Similar hadronic currents



Form Factors in the model

 The Meson dominance model is rooted in the effective Lagrangian of quantum field theory.

- 1. J. J. Sakurai, Annals Phys. 11, 1 (1960)
- 2. M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961)

- This framework explains the interaction between neutrinos and nucleons through meson exchange.
- The number of parameters in several form factors is reduced by imposing all symmetries and unitarity.
- At large Q2, resonance form factors must align with the perturbative QCD constraints.

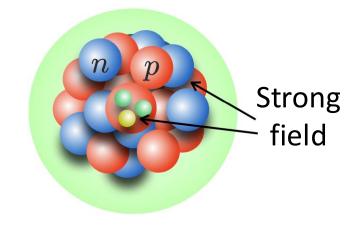
Data used in the Joint analysis

# data point	Photon, electron, pion, Neutrino Channels	Q ² Range (GeV/C) ²	W Range GeV	Form Factors
≈ 9800	$\gammap \to n + \pi^+$, $~\gamma p \to p + \pi^0$	0	1.08 - 2.0	Proton
≈ 31000	$ep \rightarrow en + \pi^+, ep \rightarrow ep + \pi^0$	0.16 - 6.0	1.08 - 2.0	Vec
≈ 2500	$\gamma n \rightarrow p + \pi^-$	0	1.08 - 2.0	Neutron §
≈ 700	NEW en \rightarrow ep $+ \pi^-$	0.4 - 1.0	1.08 - 1.8	
≈ 400	$\pi^+ p \rightarrow p + \pi^+$, $\pi^- p \rightarrow p + \pi^-$	0	1.08 - 2.0	
<100	$\nu N \rightarrow l^- N + \ \pi \ , \overline{\nu} N \rightarrow l^+ N + \pi$	Q ² >0 Integrated	1.08 – 2.0 Integrated	Axial-Vector

Intermediate Energy: Non-Perturbative QCD

QCD Breakdown at Low Q²:

• As the momentum transfer Q² decreases, the coupling strength of QCD increases, causing the perturbative expansion to fail.


Lattice QCD (LQCD):

- A numerical approach formulated with quark and gluon degrees of freedom to describe the non-perturbative regime.
- powerful computational tool for calculating weak matrix elements in neutrino physics.
- Complementary to Experiment: LQCD provides essential insights into axial form factors and other observables, particularly when experimental neutrino data is scarce.

Nuclear Structure in the GeV regime

- Nuclei are strongly interacting many-body quantum systems.
- Simulating strongly correlated quantum systems, such as argon targets in neutrino experiments, remains a challenge for classical computers.

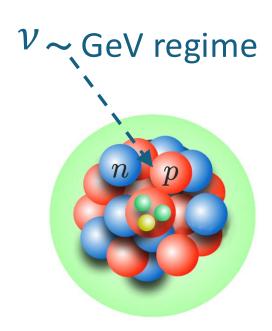
Picture from N. Rocco

- **Modelling assumptions** are crucial for describing medium-to-heavy nuclei in neutrino interactions.
- These modelling assumptions, along with how we study nuclear structure, vary depending on the energy regime under investigation

How We Study Nuclei Across Energy Scales

High Energy (TeV)

- **Perturbative domain:** The strong force can be treated using perturbative methods.
- Quantum Chromodynamics (QCD): Describes interactions between quarks via gluon exchange.

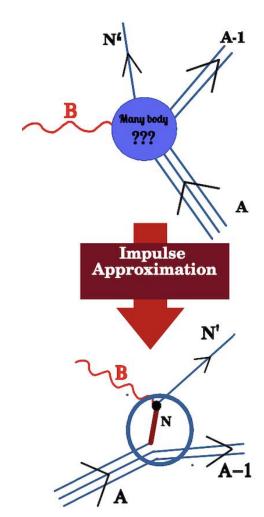

Low Energy (MeV)

- Non-perturbative domain: The strong force requires effective theoretical approaches.
- Nuclear physics: Describes interactions between protons and neutrons through pion exchange.
- Intermediate energy (GeV) ?

How We Study Nuclei Across Energy Scales

- High Energy (TeV): Perturbative QCD
- Low Energy (MeV): Nuclear Physics
- Intermediate energy (GeV)
 - Transition region: Neither fully perturbative nor fully non-perturbative.
 - Hadronisation & Resonances: Quark interactions give rise to bound states (hadrons) and excited nuclear resonances.
 - Final-State Interactions (FSI): Produced hadrons undergo re-scattering within the nuclear medium before detection.

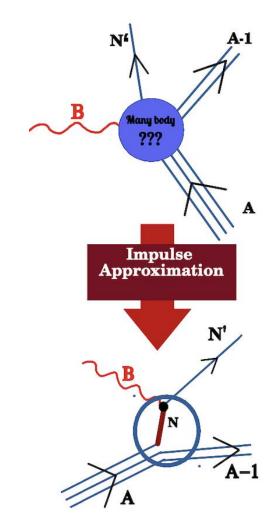
Intermediate Energy: Nuclear Physics


- Independent-Particle Models: Effective at hundreds of MeV but limited at higher energies.
 - Leading order: Nucleons behave independently.
 - Next-to-leading order: Includes nucleon-nucleon correlations.
 - Energy Dependence: The importance of nuclear correlations varies with energy.
- Long- to Short-Range Correlations:
- Includes multi-pion exchange or contributions from heavy mesons.
- Characteristic range:

Long-range:
$$\frac{1}{m_{\pi}} \sim 1.4 \ fm$$
 Short-range: $<\frac{1}{2m_{\pi}} \sim 0.7 \ \text{fm}$

ν -Nucleus scattering (Impulse approximation)

- The neutrino interacts with a single nucleon moving in an average potential created by surrounding nucleons.
- A bound nucleon is described by a wave function (Dirac spinor), which is a solution of the Schrödinger or Dirac equation.
- The nuclear many-body current reduces to a sum of one-body operators.


Picture from R. González Jiménez

Scattered Nucleon (Pion) Wavefunction

- The wavefunction of the scattered nucleon (or pion) is a solution to the Dirac or Schrödinger (Klein-Gordon) equation in the presence of a nuclear potential.
- The choice of nuclear potential significantly affects the scattered nucleon wavefunctions, influencing predictions.
- Factorisation Approximation: Outgoing hadrons are described by plane waves, reducing computational cost.

Picture from R. González Jiménez

Conclusion and prospect

- Understanding neutrino interactions is essential for precision measurements in current and future neutrino experiments.
- A major challenge arises from the limitations of classical computing and existing data in handling strongly correlated systems, such as argon nuclei in the GeV region.
- Advancing nuclear models requires the integration of cutting-edge computational techniques and a rigorous approach to uncertainty estimation.
- Progress in this field demands interdisciplinary collaboration across nuclear physics, quantum many-body theory, experimental techniques, and advanced computational and statistical methods.

Imperial College London

Backup

MK model

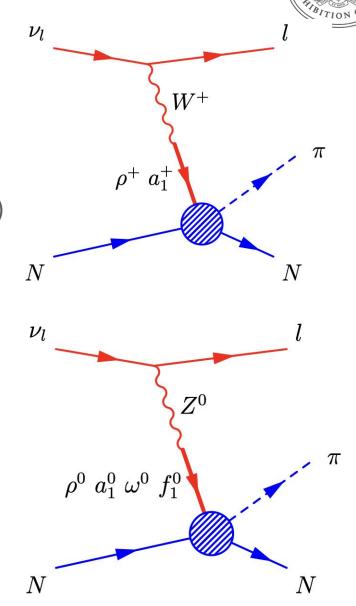
M. Kabirnezhad

Phys. Rev. D **97** (2018)

Phys. Rev. D **102** (2020)

Phys. Rev. C **107** (2023)

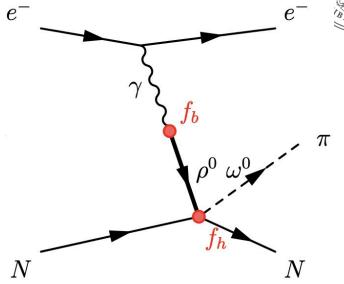
The MK model comprehensively describes single-pion production in interactions involving **photons**, **electrons**, **and neutrinos** with nucleons.


- Meson Dominance (MD) form factor: Maintains unitarity and integrates QCD principles for both resonant and non-resonant interactions.
- CVC and PCAC fulfilment: Ensures model consistency at low Q².
- Q² evolution: Utilises QCD calculations and quark-hadron duality.
- W evolution: Applies Regge trajectory and the Hybrid model.

R. González-Jiménez, et al Phys. Rev. D **95** (2017)

Meson Dominance (MD) model

- The MD model is rooted in the effective Lagrangian of quantum field theory.
 - 1. J. J. Sakurai, Annals Phys. 11, 1 (1960)
 - 2. M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961)
- It establishes connections between vector and axial currents and corresponding meson fields with analogous quantum properties.
- This framework explains the interaction between neutrinos and nucleons through meson exchange.


Meson Dominance (MD) model

 MD form factors can be expressed in terms of the meson masses and the coupling strengths, summing over all possible mesons:

$$F_{N}(Q^{2}) = \sum_{j=1}^{n} \frac{m_{j}^{2}}{m_{j}^{2} - Q^{2}} \left(\frac{f_{h}}{f_{b}}\right)$$

• Although they do not inherently comply to the unitarity condition (analytic model) or accurately predict behaviour at high Q², they can be **imposed**!

C. Adamuscin *et al*. Eur. Phys. J. C 28, 115 (2003)

k	ρ -group	$m_{(ho)k} [{ m GeV}]$	ω -group	$m_{(\omega)k}[{ m GeV}]$
1	$\rho(770)$	0.77526	$\omega(782)$	0.78265
2	$\rho(1450)$	1.465	$\omega(1420)$	1.410
3	$ \rho(1700) $	1.720	$\omega(1650)$	1.670
4	$ \rho(1900) $	1.885	$\omega(1960)$	1.960
5	$\rho(2150)$	2.150	$\omega(2205)$	2.205
k	a_1 -group	$m_{(a_1)k}[{ m GeV}]$	f_1 -group	$m_{(f_1)k}[{ m GeV}]$
1	$a_1(1260)$	1.230	$f_1(1285)$	1.2819
2	$a_1(1420)$	1.411	$f_1(1420)$	1.4263
3	$a_1(1640)$	1.655	$f_1(1510)$	1.518
4	$a_1(2095)$	2.096	$f_1(1970)$	1.1971

Asymptotic behaviour of form factor

- At large Q2, resonance form factors must align with the perturbative QCD constraints.
- For spin 3/2 resonance:

G. Vereshkov and N. Volchanskiy (PRD 2007)

$$F_{\alpha}(Q^2) \cong \left(\frac{4M_N^2}{Q^2}\right)^{p_{\alpha}} \frac{f_{\alpha}}{\ln^{n_{\alpha}} \left(\frac{Q^2}{\Lambda_{QCD}^2}\right)}, \qquad (\alpha = 1 - 3)$$

$$p_1 = 3, p_2 = p_3 = 4,$$

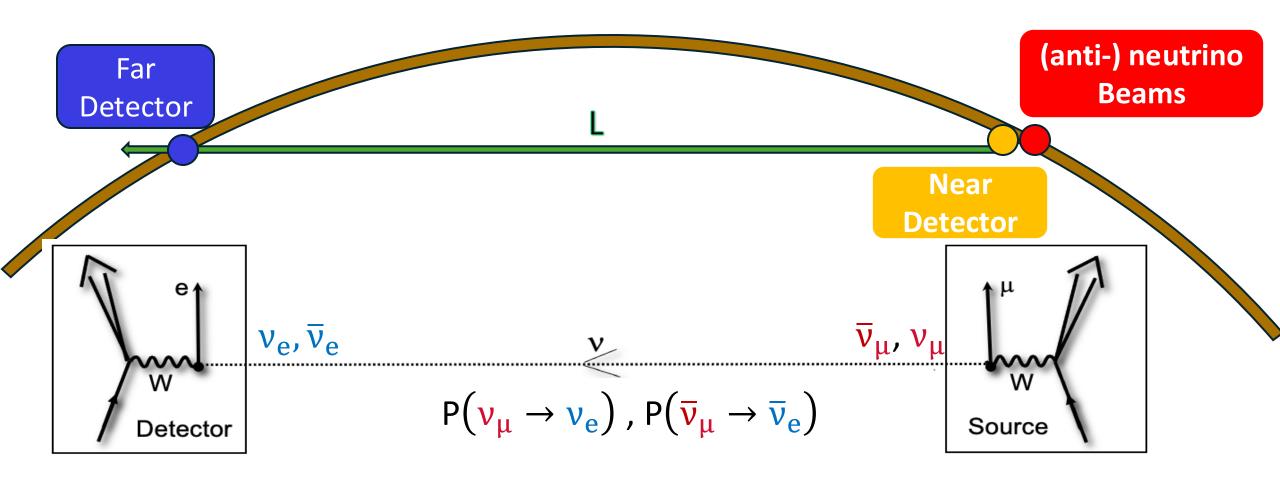
 $n_3 > n_1 > n_2, n_1 \cong 3$

MD form factors used in the model

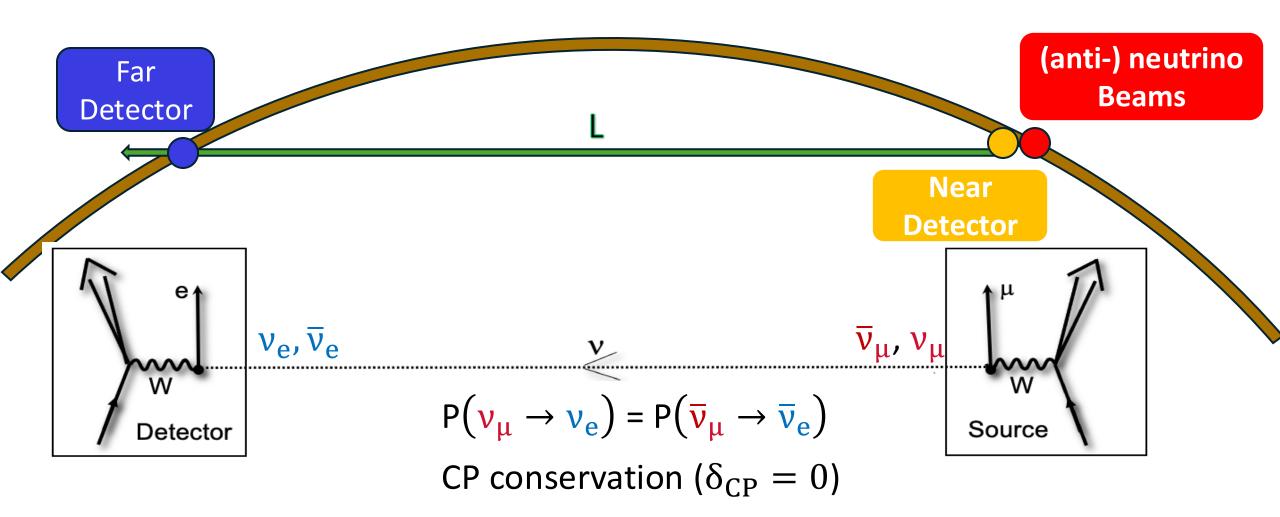
• For spin 3/2 resonance:

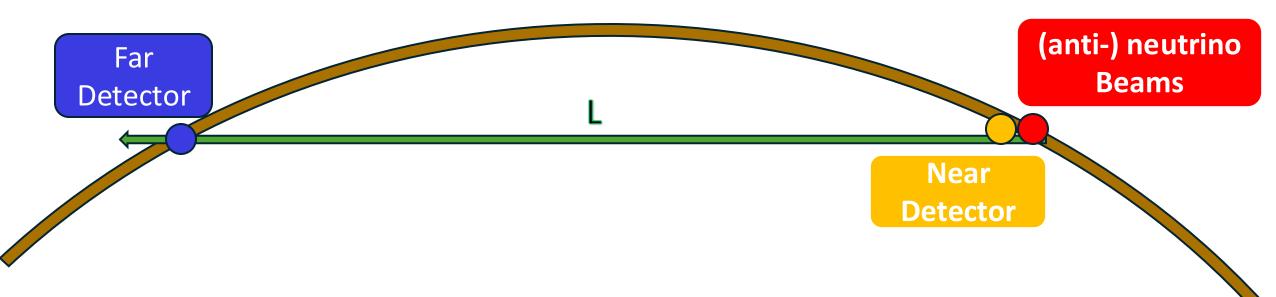
$$F_{\alpha}(Q^2) = \frac{f_{\alpha}}{L_{\alpha}(Q^2)} \sum_{k=1}^{K} \frac{a_{\alpha k} m_k^2}{m_k^2 + Q^2}, \qquad (\alpha = 1 - 3)$$

$$L_{\alpha}(Q^{2}) = \left[1 + g_{\alpha} \ln\left(1 + \frac{Q^{2}}{\Lambda_{QCD}^{2}}\right) + h_{\alpha} \ln^{2}\left(1 + \frac{Q^{2}}{\Lambda_{QCD}^{2}}\right)\right]^{n_{\alpha}} \quad n_{1} = 3, n_{2} = 2, n_{3} = 4$$


$$\Lambda_{QCD} \in [0.19 - 0.24] \text{ GeV}$$

• $a_{\alpha k}$ and $b_{\beta k}$ are constrained by unitarity conditions that also satisfy asymptotic QCD requirements.


Neutrino Oscillation experiments


Neutrino Oscillation experiments

Neutrino Oscillation experiments

- Early T2K results indicate potential CP violation, but higher precision measurements are required to confirm this.
- Cross-section uncertainties remain a major challenge, impacting the precision of oscillation parameter measurements.