

Charm Physics and Hadron Spectroscopy at Belle and Belle II

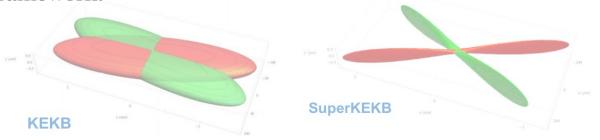
Vietnam Flavour Physics Conference 2025

Sourabh Chutia (IISER Mohali)

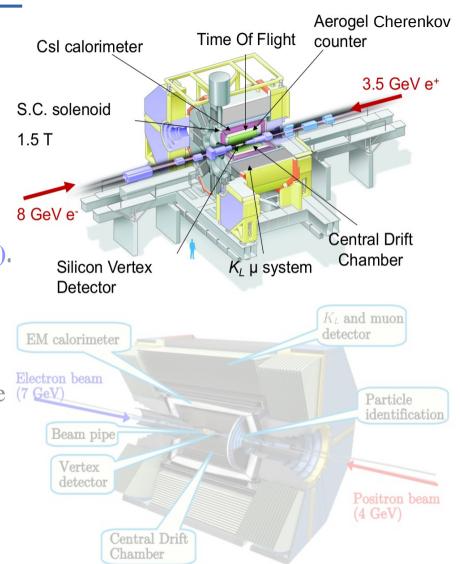
On Behalf of Belle and Belle II Collaboration

2025-08-20

The Belle \rightarrow Belle II experiments


Belle:

- > Operated from 1999-2010 at KEKb e^+e^- asymmetric collider.
- > 1 ab⁻¹ data sample, most of it at $\Upsilon(4S)$.
- \rightarrow Peak luminosity: 2.1×10^{-34} cm⁻²s⁻¹.

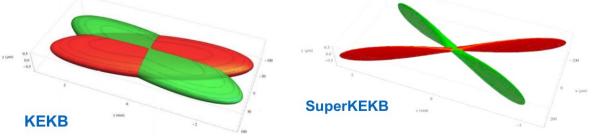

Belle II:

- Successor of Belle.
- > Improved tracking, vertexing, PID, neutral reconstruction.
- ► World record luminosity: 5.1×10^{-34} cm⁻²s⁻¹ (December 2024).
- > Target is to achieve 30x higher than Belle peak luminosity.
- Aims to accumulate 50 ab⁻¹ data to study rare decays and precision measurements.

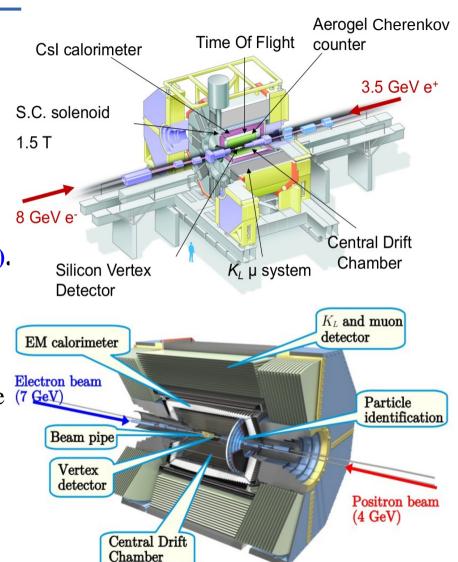
Both Belle and Belle II datasets are analyzable with Belle II Software Framework.

Shape of colliding beam at IP.

The Belle \rightarrow Belle II experiments


Belle:

- > Operated from 1999-2010 at KEKb e^+e^- asymmetric collider.
- > 1 ab⁻¹ data sample, most of it at $\Upsilon(4S)$.
- \rightarrow Peak luminosity: 2.1×10^{-34} cm⁻²s⁻¹.


Belle II:

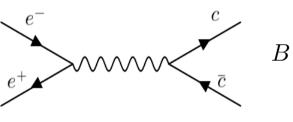
- Successor of Belle.
- Improved tracking, vertexing, PID, neutral reconstruction.
- ► World record luminosity: 5.1×10^{-34} cm⁻²s⁻¹ (December 2024).
- > Target is to achieve 30x higher than Belle peak luminosity.
- Aims to accumulate 50 ab⁻¹ data to study rare decays and precision measurements.

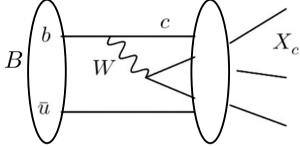
Both Belle and Belle II datasets are analyzable with Belle II Software (7 GeV) Framework.

Shape of colliding beam at IP.

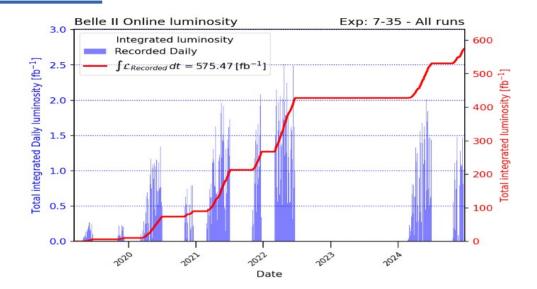
Outline

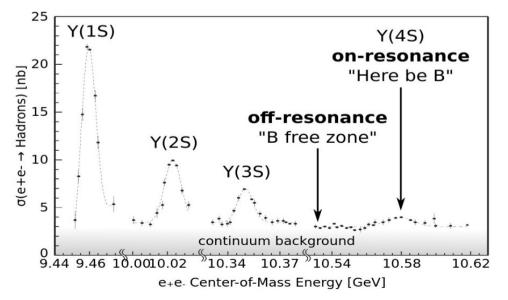
Charm physics:


- 1) Measurement of $D^0 \bar{D}^0$ -mixing parameters in $D^0 \to K_S^0 \pi^+ \pi^-$ decays at Belle and Belle II.
- 2) CP asymmetry measurement in
 - (a) $D^0 \rightarrow K_S^0 K_S^0$ decays using Belle and Belle II data.
 - (b) $D^+ \rightarrow \pi^+ \pi^0$ decays at Belle II.
- 3) Measurements of the branching fractions of Ξ^{+}_{c} decays at Belle and Belle II.


Hadron spectroscopy:

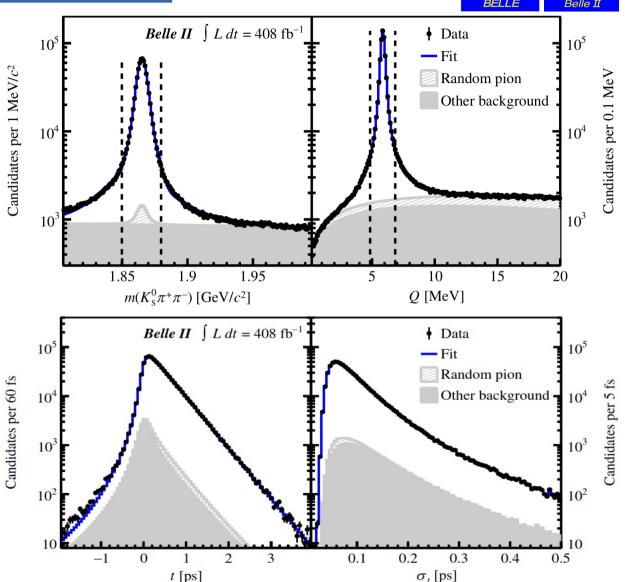
- 1) Evidence of $P_{c\bar{c}s}(4459)^0$ the in $\Upsilon(1S,2S)$ inclusive decays at Belle.
- 2) Study of $\Upsilon(10753)$ decays to $\pi^+\pi^-\Upsilon(nS)$ final states at Belle II.


Charm physics at Belle (II)


- Two production mechanism:
 - $\rightarrow e^+e^- \rightarrow c \, \overline{c}$ with large production cross section.
 - > Decay of B meson produced from $\Upsilon(4S)$.
- Clean environment.
- Large dataset.

	Process	σ (nb)	
	bb	1.1	
<	cc	1.3	
	Light quark qq	~2.1	
	$ au^+ au^-$	0.9	
	e⁺e⁻	~40	

$D^0{-}D^0$ mixing parameters in $D^0{ o}\,K^0_S\pi^+\pi^-$


World average:

$$x=rac{m_1-m_2}{\Gamma}=(4.07\pm0.44) imes10^{-3}$$
 $y=rac{\Gamma_1-\Gamma_2}{2\Gamma}=(6.45^{+24}_{-23}) imes10^{-3}$

- ➤ Split Dalitz plot in symmetric bin pairs, for model independent measurement.
- Separate signal and background using 2D fit to $m(K^0_s\pi^+\pi^-)$ and the energy released Q in D^{*+} decay.
- \triangleright Fit (t,σ_t) in Dalitz bins.
- ➤ Belle (951 fb⁻¹) + Belle II (408 fb⁻¹) data are used.

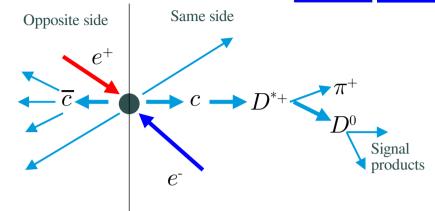
$$x = (4.0 \pm 1.7 \pm 0.4) \times 10^{-3}$$

$$y=(2.9\pm1.4\pm0.3)\times10^{-3}$$

CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ decays

- ➤ Proceeds through color- and Cabibbo-suppressed transition.
- ightharpoonup Involves $c
 ightharpoonup us \overline{s}$ and $c
 ightharpoonup ud \overline{d}$.
- Expected CP asymmetry of 1%.

World average:


$$A_{CP}(D^0 \to K_S^0 K_S^0) = (-1.9 \pm 1.0)\%$$
 limited by statistics.

➤ Belle (980 fb⁻¹) + Belle II (428 fb⁻¹) data are used.

Two independent measurements:

D^* tagged D^0

- \triangleright Use $D^{*+} \rightarrow \pi^+ D^0$ to tag flavor.
- ightharpoonup Calibrate detection asymmetries using $D^0
 ightharpoonup K^+K^-$.
- ightharpoonup Main background: $D^0
 ightharpoonup K_S^0 \pi^+ \pi^-$.
- ► 2D extended UML fit to $m(D^0\pi^+)$, and $S_{min}(K^0S) = log[min(L_1/\sigma_1, L_2/\sigma_2)]$ based of KS flight significance.

Charm-flavor-tag D^0

- Use information from the other tracks in the event to tag flavor.
- ightharpoonup Remove all events containing $D^{*+}
 ightharpoonup \pi^+ D^0(K^0_S K^0_S)$
- \triangleright Background from partially reconstructed D_s^+ decays in addition.
- \triangleright 2D extended UML fit to $m(K_S^0K_S^0)$ and qr, q is flavor of the signal candidate and r is the corresponding dilution factor.

CP asymmetry in $D^0 \rightarrow K_S^0 K_S^0$ decays

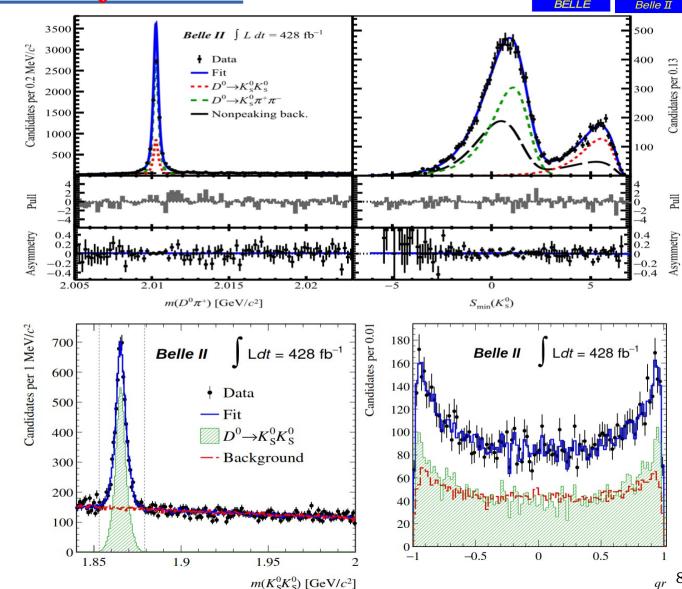
Phys. Rev. D 111, 012015 (2025)

D^* tagged D^0

$$A_{CP} = (-1.4 \pm 1.3(stat) \pm 0.1(syst))\%$$

Phys. Rev. D 112, 012017 (2025)

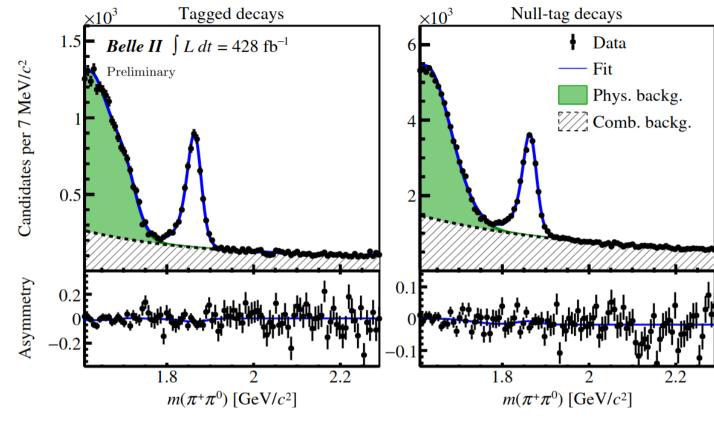
Charm-flavor-tag D^0


$$A_{CP} = (1.3 \pm 2.0(stat) \pm 0.2(syst))\%$$

Combination

$$A_{CP} = (-0.6 \pm 1.1(stat) \pm 0.1(syst))\%$$

World's most precise determination!


Agreement with CP asymmetry and results from other experiments.

CP asymmetry in $D^+ \rightarrow \pi^+ \pi^0$ decays

- $ightharpoonup \Delta I = 3/2$ transition, absence of second amplitude. No CP violation expected in standard model.
- Correct for the production and detection asymmetries using abundant Cabibbo favored control sample $D^+ \rightarrow \pi^+ K_S^0$.
- Separate samples to increase purity:
 - > Tagged decays originating form $D^{*+} \rightarrow D^+ \pi^0$
 - Null-tag decays.
- ➤ 30% improvement compared to previous Belle measurement due to better signal purity through improved event selection.
- Agrees with CP asymmetry and previous measurements.

arXiv:2506.07879

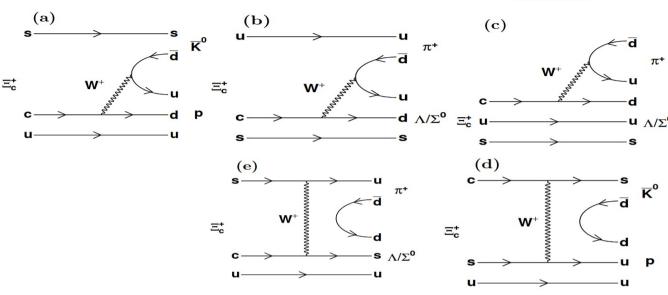
$$A_{CP}(D^+\!\!\to\!\pi^+\pi^0)\!\!=\!\!(-1.8\!\pm\!0.9(stat)\!\pm\!0.1(syst))\%$$

Branching Fractions of $\mathcal{\Xi}_c^+$ decays

Measurement for the first time:

- \triangleright Cabibbo-favored: $\Xi_c^+ \rightarrow \Sigma^+ K_S^0$
- Singly Cabibbo-suppressed: $\Xi_c^+ \to \Xi^0 K^+$, pK_s^0 , $\Lambda \pi^+$, $\Sigma^0 \pi^+$

Many theoretical predictions, need experimental measurement to constraint them.


➤ Belle (983 fb⁻¹) + Belle II (427 fb⁻¹) data are used.

arXiv:2503.17643

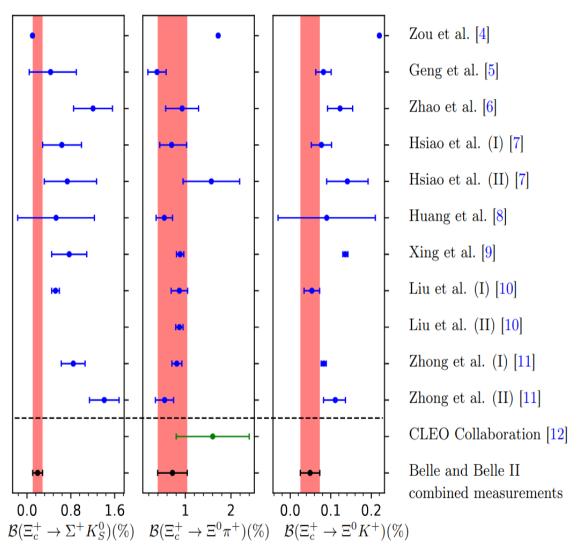
$$\mathcal{B}(\Xi_c^+ \to \Sigma^+ K_S^0) = (0.194 \pm 0.021 \pm 0.009 \pm 0.087)\%,$$

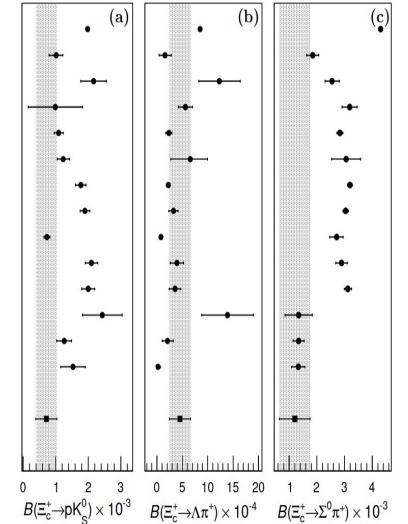
$$\mathcal{B}(\Xi_c^+ \to \Xi^0 \pi^+) = (0.719 \pm 0.014 \pm 0.024 \pm 0.322)\%,$$

$$\mathcal{B}(\Xi_c^+ \to \Xi^0 K^+) = (0.049 \pm 0.007 \pm 0.002 \pm 0.022)\%$$

stat. syst. BF ratio.

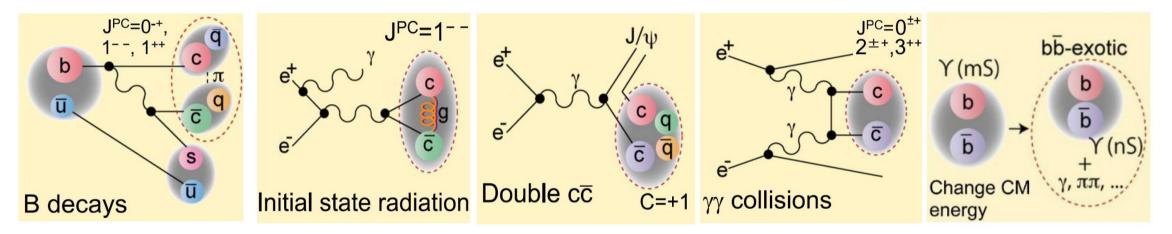
JHEP03(2025)061


$$\mathcal{B}(\Xi_c^+ \to pK_S^0) = (7.16 \pm 0.46 \pm 0.20 \pm 3.21) \times 10^{-4},$$


$$\mathcal{B}(\Xi_c^+ \to \Lambda \pi^+) = (4.52 \pm 0.41 \pm 0.26 \pm 2.03) \times 10^{-4},$$

$$\mathcal{B}(\Xi_c^+ \to \Sigma^0 \pi^+) = (1.20 \pm 0.08 \pm 0.07 \pm 0.54) \times 10^{-3}.$$
stat. syst. BFratio.

Branching Fractions of Ξ_c^+ decays

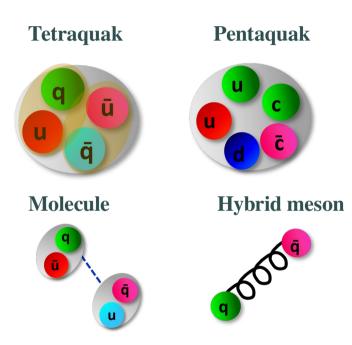


Zou *et.al* [12] Geng et.al [13] Geng et.al [14] Huang et.al [15] Zhong et.al (I) [16] Zhong et.al (II) [16] Xing *et.al* [17] Geng *et.al* [18] Liu [19] Zhong et.al (I) [20] Zhong et.al (II) [20] Zhao *et.al* [21] Hsiao et.al (I) [22] Hsiao et.al (II) [22] Belle and Belle II

Belle and Belle II combined measurement

Hadron spectroscopy at Belle (II)

➤ Multiple production mechanisms



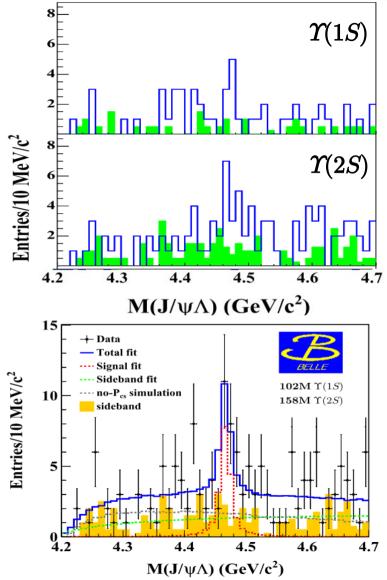
- Full event reconstruction, excellent capability of detection and reconstruction of neutrals.
- ➤ Wide range of physics goals with energy reach upto 11.24 GeV.

Search for $P_{c\bar{c}s}(4459)^0$ and $P_{c\bar{c}s}(4338)^0$ in $\Upsilon(1S,2S)$ inclusive decays

- ➤ Gell-Mann mentioned the possibility of four and five quark exotic states in his first paper of quark model.
- ➤ Pentaquark states seen by LHCb
 - Figure 2: Evidence of $P_{c\bar{c}s}(4459)^0$ with 3.1σ significance.
 - > Observation of $P_{c\bar{c}s}(4338)^0$ with 15σ significance.
 - ► Both in $P_{c\overline{c}s} \rightarrow J/\psi \Lambda$ decays.
 - > Nature of the states still largely unknown. Only reported by LHCb.
 - > Need more study to confirm existance and internal structure.
- $ightharpoonup \Upsilon(1S,2S)$ decays suitable for study exotic quark configutation.
- Largest data sample collected by Belle:
 - > 5.8 fb⁻¹ at $\Upsilon(1S)$ [102M]
 - > 24.5 fb⁻¹ at $\Upsilon(2S)$ [158M]

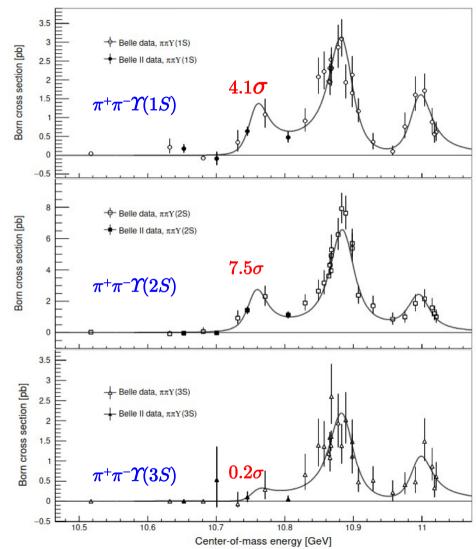
Search for $P_{c\bar{c}s}(4459)^0$ and $P_{c\bar{c}s}(4338)^0$ in $\Upsilon(1S,2S)$ inclusive decays

- Figure 2.2 Event accumulation seen near the mass of $P_{c\bar{c}s}(4459)^0$ in $M(J/\psi\Lambda)$ distribution, but none in $P_{c\bar{c}s}(4338)^0$.
- \triangleright Assuming it is the same particle, significance of 3.3σ .
 - First evidence in the decays of $\Upsilon(1S,2S)$.
 - Significantly different production mechanism than that of LHCb evidence found in $\Xi_{\overline{b}}$.


$$\mathcal{B}(\Upsilon(1S) \to P_{ccs}(4459)^{0}X) = (3.5 \pm 2.0 \pm 0.2) \times 10^{-6}$$

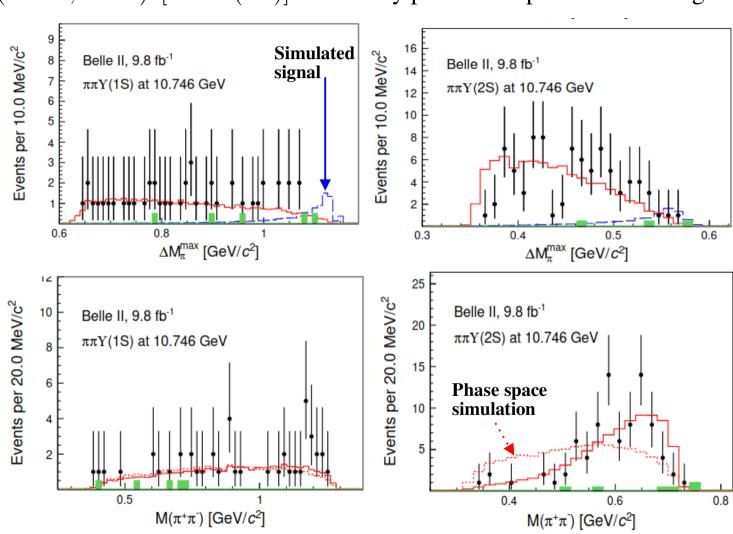
$$\mathcal{B}(\Upsilon(2S) \to P_{ccs}(4459)^{0}X) = (2.9 \pm 1.7 \pm 0.4) \times 10^{-6}$$

- Assuming it is not same, mass and width are found to be $M=(4471.7\pm4.8\pm0.6)~{\rm MeV/c^2}$ and $\Gamma=(22\pm13\pm3)~{\rm MeV}$.
- ightharpoonup No $P_{c\bar{c}s}(4338)^0$ signal. Upper limits at 90% CL:


$$\mathcal{B}(\Upsilon(1S) \rightarrow P_{c\overline{c}s}(4338)^{0}X) < 1.8 \times 10^{-6}$$

$$\mathcal{B}\left(\Upsilon(2S) \rightarrow P_{c\overline{c}s}(4338)^{0}X\right) < 1.6 \times 10^{-6}$$

- First observation of $\Upsilon(10753)$ by Belle in $e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS), (n=1,2,3)$.
- \triangleright Global significance is 5.2 σ .
- Several competing interpretations:
 - > Conventional bottomonium, hybrid or tetraquark.
 - Previous Belle studies consistent with 4S-3D mixing model.
- Belle II collected special sets of data (19.6 fb⁻¹) in November, 2021 for $\Upsilon(10753)$ studies.
- **Excellent confirmation.**
 - $M=(10756.6\pm2.7\pm0.9) \text{ MeV/c}^2$
 - $\Gamma = (29.0 \pm 8.8 \pm 1.2) \text{ MeV}$


Study of $\Upsilon(10753)$ decays to $\pi^+\pi^-\Upsilon(nS)$

 \triangleright Search for $f_0(980)[\rightarrow \pi^+\pi^-]$ and $Z_b(10610,10650)^{\pm}[\rightarrow \pi^{\pm}\Upsilon(nS)]$ which may provide deeper understanding.

$$\Delta M^{max}_{\pi} = max(M(\mu\mu\pi) - M(\mu\mu))$$

No evidence for decays proceeding through $\pi^{\mp} Z_{b^{\pm}}$ or $f_0(980)\Upsilon(nS)$ found.

Summary

- ➤ Belle II offers unique capabilities and advantages in study of charm physics and hadron spectroscopy.
- Today showed:
 - > Measurement of model independent D^0 - \bar{D}^0 mixing parameters.
 - \rightarrow A_{CP} measurement of in two different decay channels. World's best measurement on $K_S^0K_S^0$ final states.
 - > Evidence of $P_{c\bar{c}s}(4459)^0$ pentaquark state.
 - > Confirmation of $\Upsilon(10753)$ decays.
- ➤ More data is coming.
 - > Improved uncertainty and significance.
 - Crucial for constraining values.

Back Up

Mixing and asymmetry parameters

Mixing

$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle \qquad x = \frac{m_1 - m_2}{\Gamma} \qquad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

$$x = \frac{m_1 - m_2}{\Gamma}$$

$$y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

World average:

$$x=(4.07\pm0.44)\times10^{-3}, y=(6.45^{+24}_{-23})\times10^{3}$$

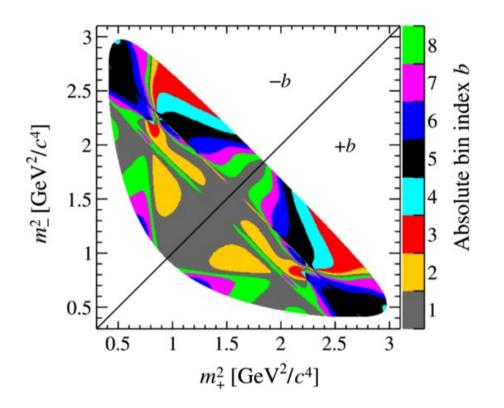
Might be enhanced by particles beyond standard model!

Detection asymmetry of π from D^+, D^{*+} decays due to detector.

CP asymmetry

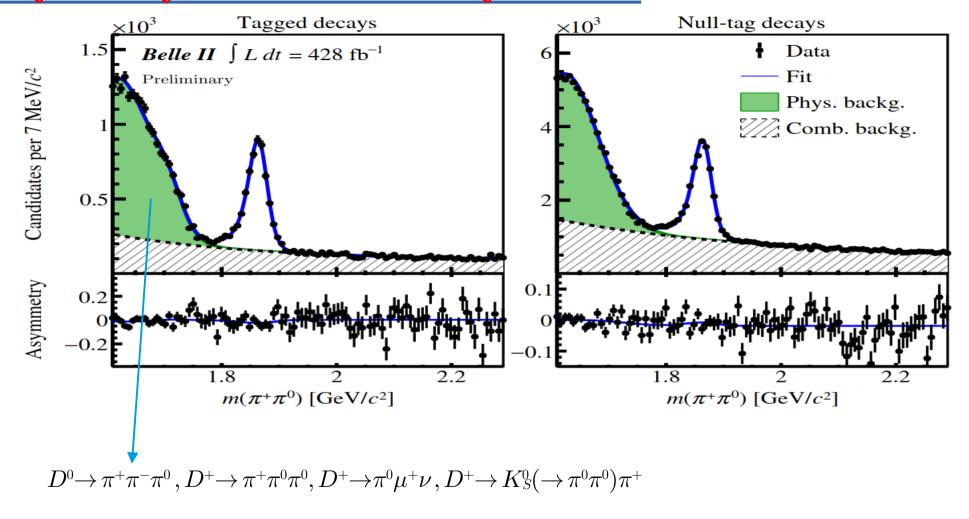
$$A^{f}_{CP} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})}$$

What we measure:


$$A_{raw}^{f} = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})} \simeq A_{CP}^{f} + A_{production}^{D} + A_{detection}^{\pi}$$

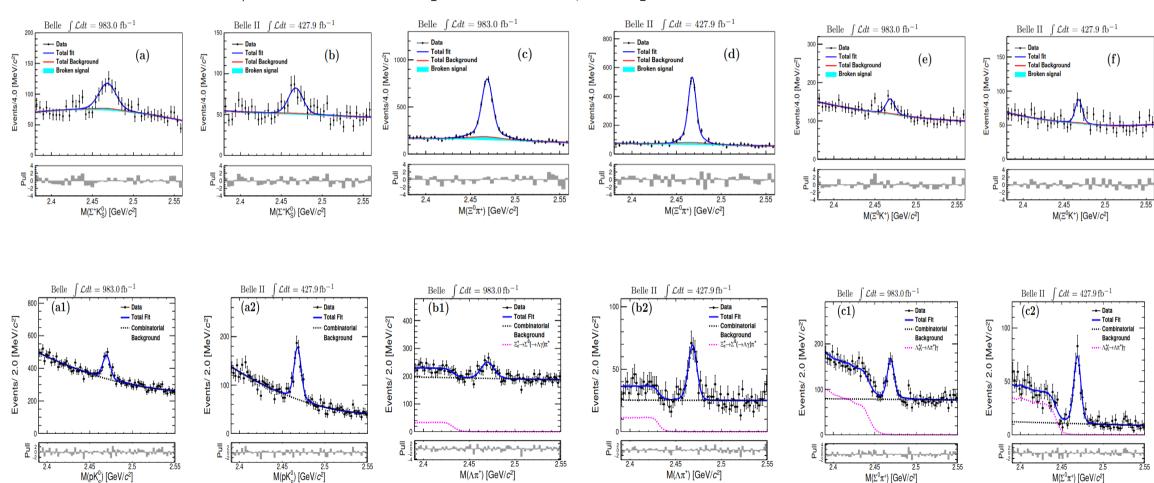
Forward backward asymmetry of D^+, D^{*+} production due to $\gamma^* - Z^0$ interference.

$D^0{-}D^0$ mixing parameters in $D^0{ o}\,K^0_S\pi^+\pi^-$



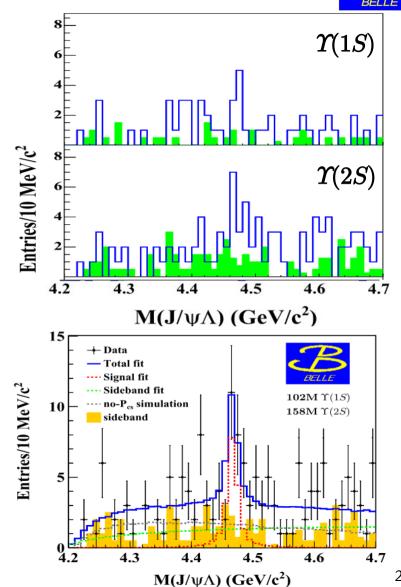
- \triangleright "iso $\Delta \delta$ " binning
- Hadronic parameters determined by BESIII https://journals.aps.org/prd/abstract/10.1103/PhysR evD.101.112002

CP asymmetry in $D^+ \rightarrow \pi^+ \pi^0$ decays



Branching Fractions of $\mathcal{\Xi}_c^+$ decays

Reconstruct: $\Sigma^0 \to \Lambda \gamma$, $\Xi^- \to \Lambda \pi^-$, $\Lambda \to p \pi^-$, $\Xi^0 \to \Lambda \pi^0$, $\Sigma^+ \to p \pi^0$



Search for $P_{c\bar{c}s}(4459)^0$ and $P_{c\bar{c}s}(4338)^0$ in $\Upsilon(1S,2S)$ inclusive decays

- Assuming it is not same, mass and width are found to be $M=(4471.7\pm4.8\pm0.6) \text{ MeV/c}^2 \text{ and } \Gamma=(22\pm13\pm3) \text{ MeV}.$
- LHCb found it

 $M = (4458.8 \pm 2.9^{+4.7}_{-1.1}) \text{MeV/c}^2 \text{ and } \Gamma = (17.3 \pm 6.5^{+8.0}_{-4.7}) \text{ MeV}$

