# Observation of a family of all-charm tetraquarks

Kai Yi
Nanjing Normal University



# Overview—Three new results based on the following CMS Physics Analysis Summary

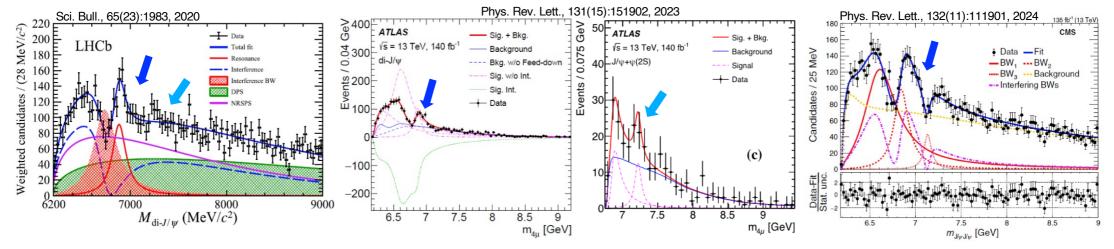
 $\Rightarrow J/\psi J/\psi$  updated result:

 $J/\psi J/\psi$  spectroscopy in the four-muon final state using Run 3 data

 $\Rightarrow J/\psi\psi(2S)$  result:

Search for X(6900) in the  $\psi(2S)J/\psi$  channel at CMS

**Spin-parity measurement:** 

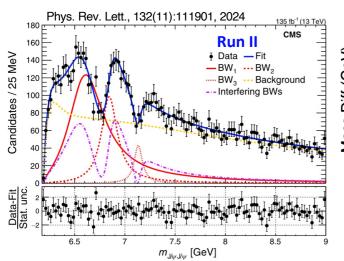

Spin-parity analysis of the  $J/\psi J/\psi$  structure in the four-muon invariant mass spectrum

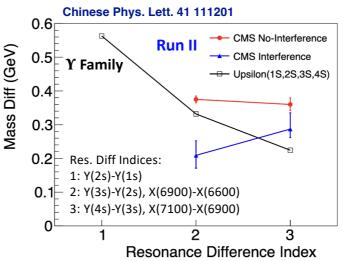
1) and 2) are the first two LHC analyses using 2024 data

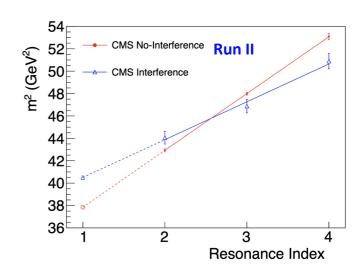
# Outline

- **□** Motivation
- $\Box J/\psi J/\psi$  updated result
- $\Box J/\psi\psi(2S)$  result
- **□** Spin-parity measurement
- **□** Summary

# Status





- $\triangleright$  ALL exp observe X(6900) + additional structure
  - Only CMS claimed X(6600) & X(7100)
  - Different modeling of "hump" @6.6 GeV
  - Hint @ 7.2 GeV: LHCb not considered; ATLAS  $3\sigma$  (local) hint in  $J/\psi\psi(2S)$
- ➤ All exp use interference, but in diff ways
  - LHCb: extra BW interfere with SPS, X(6900) NOT interfering!
  - ATLAS: interference among three resonances, two for the threshold hump, one for X(6900).
  - CMS: multi-resonance interference
- > All exp see a threshold excess, NOT explained! Classified as background


DOI: 10.1103/PhysRevD.111.034038

A number of unresolved questions!

## Status



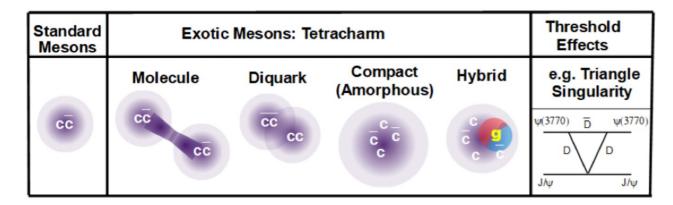




#### Run 2 result:

- X(7100): 4.7 $\sigma$
- Interference  $< 4\sigma$

#### With 3.6X statistics:


- $\square$  Significance of *ALL states* over  $5\sigma$ ?
- $\square$  Significance of *interference* over  $5\sigma$ ?

Cornell Model:  $V(r) = -\frac{4}{3} \frac{\alpha_s}{r} + \sigma r + ...$ 

- $\triangleright$  Interference imply same  $J^{PC}$  quantum numbers
- > > 200 MeV mass splittings ==> Radial excitations?
- > A family of all-charm tetraquarks?

A FAMILY of all-charm tetraquark states with same  $J^{PC}$ ?

#### Status



Lattice QCD: 2411.11533 [hep-lat]

Found repulsive between two charmoniums

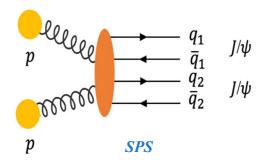
- Models of potential quark configurations for  $J/\psi J/\psi$  mesons.
  - Meson-meson "molecule"  $(c\bar{c}-c\bar{c})$
  - Pair of diquarks  $(cc-\bar{c}\bar{c})$
  - Hybrid with a valence gluon
  - Peaks as artifact of dicharmonia production thresholds
  - •

Family of all-charm tetraquarks with same  $J^{PC}$  offers new perspectives on interpretation for **exotics** 

# Outline

- **■** Motivation
- $\Box J/\psi J/\psi$  updated result
- $\Box J/\psi\psi(2S)$  result
- **□** Spin-parity measurement
- **□** Summary

# Datasets, MC, trigger, and event selection


#### **❖** Data samples [315 fb<sup>-1</sup>]

• Run II: 135 fb-1 data taken in 2016, 2017 and 2018.

• Run III: 180 fb-1 data taken in 2022, 2023 and 2024.

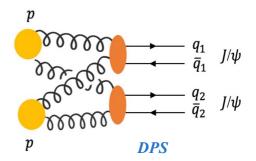
#### **Signal and Background simulated events:**

- Signal  $X \to J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$  by JHUGen
- NRSPS and Feeddown by Pythia8
- **DPS** event-mixing
- **Feeddown**:  $X(6900) \rightarrow J/\psi \psi(2S) \rightarrow J/\psi J/\psi + anything$

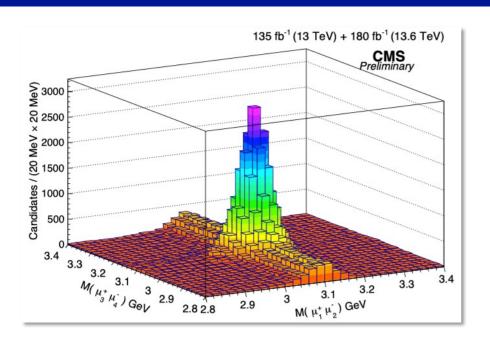


#### **❖** Trigger of Run III

HLT\_Dimuon0\_Jpsi3p5\_Muon2


• Level 1 requirements: 3 muons

HLT\_DoubleMu4\_3\_LowMass [new trigger for Run III]


• Level 1 requirements: 2 muons

#### **\*** Event selection

Follow Run II cuts + A new trigger for Run III



# $J/\psi J/\psi$ yield: Two-dimensional fit



□ Luminosity

Run II 135 fb<sup>-1</sup>

Run III 180 fb<sup>-1</sup>

□  $J/\psi J/\psi$  yield

Run II ~12622 ± 165

Run III ~31802 ± 476

□  $J/\psi J/\psi$  yield per unit luminosity

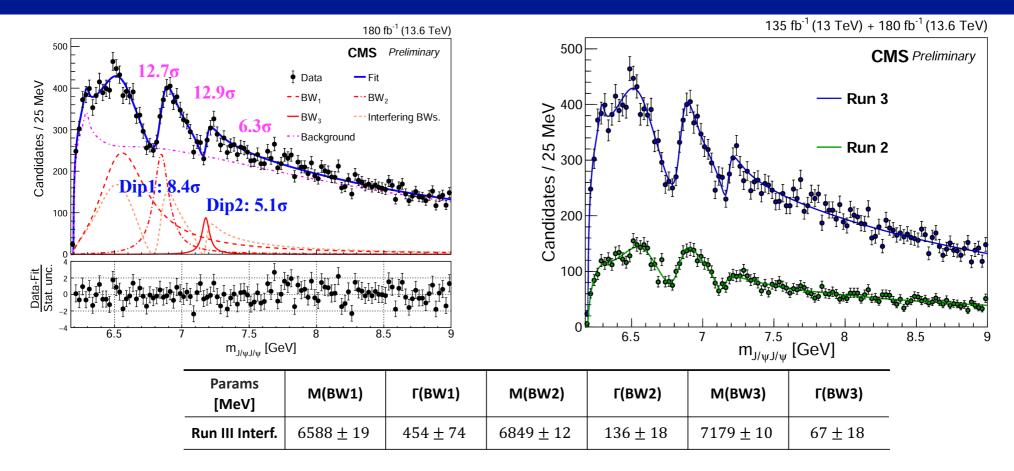
Run II ~93 events / fb<sup>-1</sup>

Run III ~177 events / fb<sup>-1</sup>

- $\triangleright$  Run II+III  $J/\psi J/\psi$  yield is 3.6X of Run II
- ➤ Run II+III *luminosity* is 2.3X of Run II

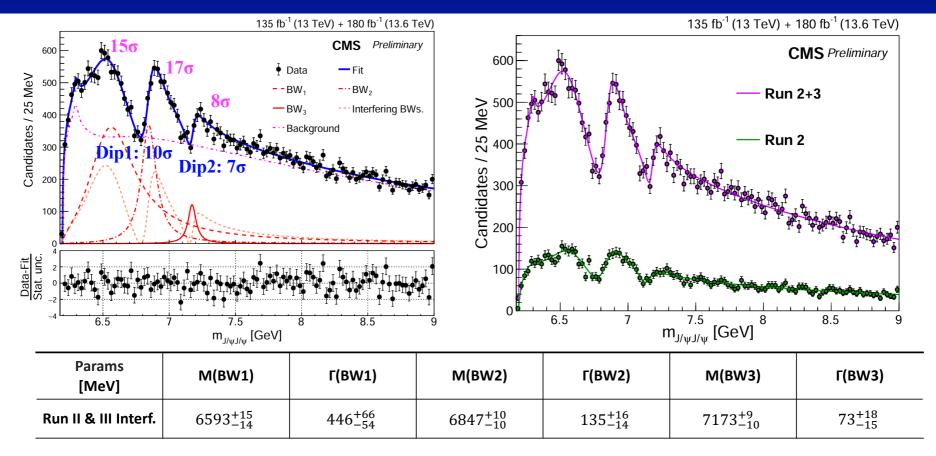
# Signal and Background models

- Signal shape: Relativistic Breit-Wigner
- Background component: NRSPS+NRDPS+Comb+Feeddown+BW0


$$BW(m; m_0, \Gamma_0) = rac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)},$$
 
$$\Gamma(m) = \Gamma_0 \left(rac{q}{q_0}
ight)^{2L+1} rac{m_0}{m} \left(B'_L(q, q_0, d)
ight)^2,$$

#### **!** Interference model:

Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW123 Interf. Term


$$\begin{aligned} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \ and \ interf} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{DPS} \cdot f_{DPS}(m) \\ &+ N_{Feeddown} \cdot f_{Feeddown}(m) + N_{Comb} \cdot f_{Comb}(m), \end{aligned}$$

# Run III interference fit result



- ✓ Confirm Run II results with Run III data only ---with better precision!
- ✓ All states and dips above  $5\sigma$ ! ---already achieve our goals!

# Run II & III interference fit result



- ✓ All states and dips well above  $5\sigma$ !
- ✓ Quantum interference among structures validated! Strongly imply that they have same JPC

# Run II & III interference fit result

| Dominant sources        | $\Delta m_{\mathrm{BW}_1}$ | $\Delta\Gamma_{\mathrm{BW}_1}$ | $\Delta m_{\mathrm{BW}_2}$ | $\Delta\Gamma_{\mathrm{BW}_2}$ | $\Delta m_{\mathrm{BW_3}}$ | $\Delta\Gamma_{\mathrm{BW_3}}$ |
|-------------------------|----------------------------|--------------------------------|----------------------------|--------------------------------|----------------------------|--------------------------------|
| Signal shape            | 25                         | 52                             | 2                          | 11                             | 3                          | 5                              |
| NRSPS shape             | 3                          | 7                              | <1                         | 1                              | <1                         | 5                              |
| DPS shape               | <1                         | 5                              | <1                         | <1                             | <1                         | 1                              |
| Combinatorial bkg shape | <1                         | 22                             | <1                         | 2                              | <1                         | 4                              |
| Feeddown                | <1                         | 1                              | <1                         | <1                             | <1                         | <1                             |
| Mass resolution         | 4                          | 58                             | 15                         | 7                              | 12                         | 5                              |
| Efficiency              | <1                         | 4                              | <1                         | <1                             | <1                         | <1                             |
| Without BW <sub>0</sub> | <1                         | 29                             | 2                          | 3                              | 2                          | 1                              |
| Total uncertainty       | 25                         | 87                             | 15                         | 14                             | 13                         | 10                             |

| Params                      | M(BW1)                  | Γ(BW1)                   | M(BW2)               | Γ(BW2)                 | M(BW3)                 | Γ(BW3)                |
|-----------------------------|-------------------------|--------------------------|----------------------|------------------------|------------------------|-----------------------|
| Run II&III Interf.<br>[MeV] | $6593^{+15}_{-14}\pm25$ | $446^{+66}_{-54} \pm 87$ | $6847 \pm 10 \pm 15$ | $135^{+16}_{-14}\pm14$ | $7173^{+9}_{-10}\pm13$ | $73^{+18}_{-15}\pm10$ |
| Run II Interf.<br>[MeV]     | 6638+43+16              | 440+230+110              | 6847+44+48           | 191+66+25              | 7134+48+41             | 97+40+29              |

#### ❖ VS. Run II result

- ✓ Statistical uncertainty reduced by a factor of 3
- ✓ Systematic uncertainty reduced by about a factor of 2

# Outline

- **■** Motivation
- $\Box J/\psi J/\psi$  updated result
- $\Box J/\psi\psi(2S)$  result
- **□** Spin-parity measurement
- **□** Summary

# $J/\psi\psi(2S)$ Run II & III interference fit result

#### **A background suppression** with FOM value:

S: number of X(6900) in signal MC B: number of background in data

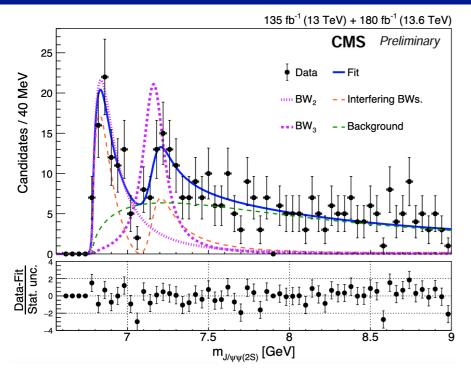
$$S/(463/13+4\sqrt{B}+5\sqrt{25+8\sqrt{B}+4B})$$

 $\rightarrow$   $J/\psi\psi(2S)$  yield: Run II ~109 ± 14

Run III  $\sim$ 281 ± 22  $\sim$ 2.6 X of Run II

Run II+III ~386 + 26

# $\begin{aligned} p_{T}(J/\psi) > 11.0 \text{ GeV} \\ p_{T}(\psi(2S)) > 13.5 \text{ GeV} \\ p_{T}(\mu_{\text{in}}\,\psi(2S)) > 2.5 \text{ GeV} \\ \mu_{\text{in}}\,\psi(2S) \text{ ID: Loose muon} \end{aligned}$ Mass window for $J/\psi$ and $\psi(2S)$ : 2.5 $\sigma$ window


#### **\*** Interference model:

Signal-hypothesis: NRSPS+NRDPS+Comb +BW23 Interf. Term

Consider resolution and efficiency

$$Pdf(m) = N_{X-\text{interf}} \cdot \left| \sum_{k} \left( r_k \cdot \exp(i\phi_k) \cdot BW(m, M_k, \Gamma_k) \right) \right|^2 \otimes R(M_j) \cdot \epsilon(M_j) + N_{SPS} \cdot f_{SPS}(m) + N_{DPS} \cdot f_{DPS}(m) + N_{\text{Combinatorial}} \cdot f_{\text{Combinatorial}}(m),$$

# Explore $J/\psi\psi(2S)$ channel with Run II and Run III data



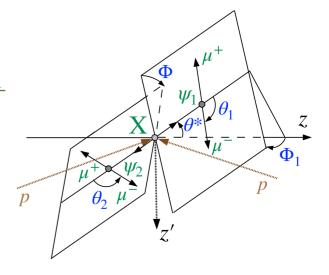
- $\triangleright$  Significance of  $X(6900) = 7.9\sigma$
- $\triangleright$  Significance of  $X(7100) = 4.0\sigma$

ATLAS only claim X(6900) 4.7 $\sigma$  in  $J/\psi\psi(2S)$  channel

| Dominant sources               | $M_{X(6900)}$ | $\Gamma_{X(6900)}$ | $M_{X(7100)}$  | $\Gamma_{X(7100)}$ |
|--------------------------------|---------------|--------------------|----------------|--------------------|
| Signal shape                   | ±29           | ±79                | ±22            | ±131               |
| NRSPS shape                    | $\pm 14$      | $\pm 54$           | $\pm 14$       | ±29                |
| Combinatorial background shape | $\pm 15$      | $\pm 51$           | $\pm 15$       | ±20                |
| Mass resolution                | ±5            | $\pm 7$            | $\pm 5$        | ±9                 |
| Efficiency                     | ±7            | $\pm 27$           | $\pm 7$        | ±10                |
| Add X(6600) peak               | $\pm 104$     | $\pm 14$           | $\pm 61$       | ±31                |
| Fitter bias                    | +9<br>-11     | $^{+43}_{-37}$     | $^{+29}_{-14}$ | $^{0}_{-80}$       |
| Total                          | +110          | +120               | +74            | +140               |
| Iotal                          | -110          | -120               | -70            | -160               |

| Params | <i>J/ψψ</i> (2S) [MeV]      | <i>J/ψJ/ψ</i> [MeV]    |
|--------|-----------------------------|------------------------|
| M(BW2) | $6876^{+46+110}_{-29-110}$  | $6847 \pm 10 \pm 15$   |
| Γ(BW2) | $253^{+290+120}_{-100-120}$ | $135^{+16}_{-14}\pm14$ |
| M(BW3) | $7169^{+26+74}_{-52-70}$    | $7173^{+9}_{-10}\pm13$ |
| Г(ВW3) | $154^{+110+140}_{-82-160}$  | $73^{+18}_{-15}\pm 10$ |

- ✓ Confirmed in a different channel!
- **✓ Consistent** with  $J/\psi J/\psi$  result!


# Outline

- **□** Motivation
- $\Box J/\psi J/\psi$  updated result
- $\Box J/\psi\psi(2S)$  result
- **□** Spin-parity measurement
- **□** Summary

# Concept of Analysis: All Input

#### ☐ Framework

- $m_{4\mu}$  spectrum  $X \to 4\mu$  identical to Phys. Rev. Lett. 132 (2024) 111901
- $p_T$  and  $p_Z$  of  $X \to 4\mu$  match MC to data
- Polarization of *X* assume unpolarized



#### Production angles [for data test]

- $\vartheta^*$ : angle between beam line and  $J/\psi$  momentum in X rest frame
- $\Phi_1$ : azimuthal angle between production plane and decay plane in X rest frame

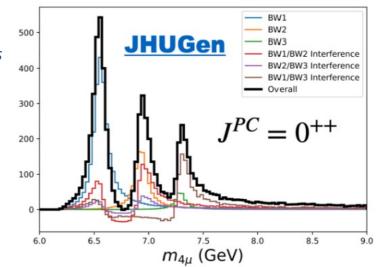
# Decay angles [for data analysis]

- $\Phi$ : azimuthal angle between two  $l^+l^-$  decay planes defined in X rest frame
- $\vartheta_1$ : helicity angle between opposite of  $J/\psi_2$  momentum and l momentum defined in  $J/\psi_1$  rest frame
- $\vartheta_2$ : helicity angle between opposite of  $J/\psi_1$  momentum and l momentum defined in  $J/\psi_2$  rest frame

# Simplification in Angular Analysis

 $\clubsuit$  After symmetries conditions, 8 models of  $J_x^P$  to test:

$$0^-, 0_m^+, 0_h^+, 1^-, 1^+, 2_m^-, 2_h^-, 2_m^+$$


m: minimal dimension operatorsh: higher-dimension operators

• Full model possible, but complex

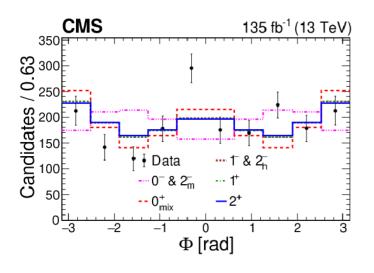
$$\mathcal{P}(\Phi, \vartheta_1, \vartheta_2; m_{4\mu})$$

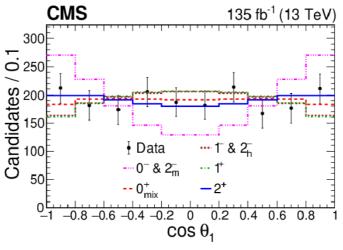
Same properties of 3 resonances:

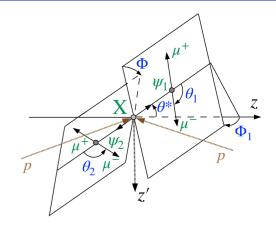
$$\begin{split} \mathcal{P} \big( m_{4\mu}, \overrightarrow{\Omega} \big) &= \mathcal{P} \big( m_{4\mu} \big) \cdot T \big( \overrightarrow{\Omega} \bigm| m_{4\mu} \big) \qquad \overrightarrow{\Omega} = (\Phi, \cos\theta_1, \cos\theta_2) \\ & \quad \textit{empirical} \qquad \textit{angular} \end{split}$$

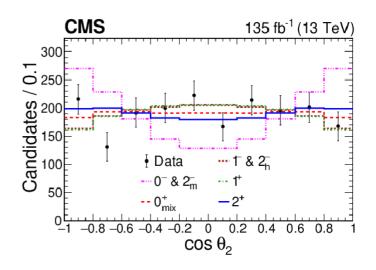


• Pairwise test of  $J_x^P$  hypotheses i and j


1 optimal observable 
$$\mathcal{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_i(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathcal{P}_i(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathcal{P}_j(\overrightarrow{\Omega} \mid m_{4\mu})}$$


**MELA** Higgs discovery and spin-parity

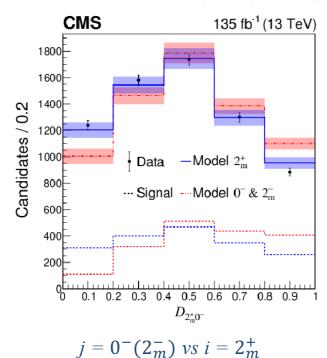

• Final 2D model:


$$\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij}) = \mathcal{P}_k(m_{4\mu}) \cdot T_{ijk}(\mathcal{D}_{ij} \mid m_{4\mu})$$

- Decay angles background-subtracted
  - 1D projections
  - Limited information
    - see 0<sup>-</sup> not align
    - hard distinguish  $1^{\mp}$

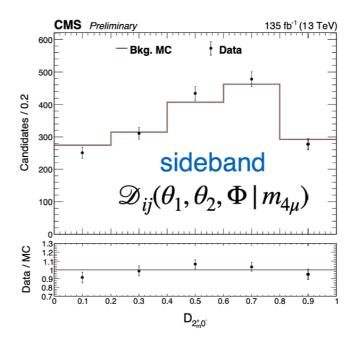


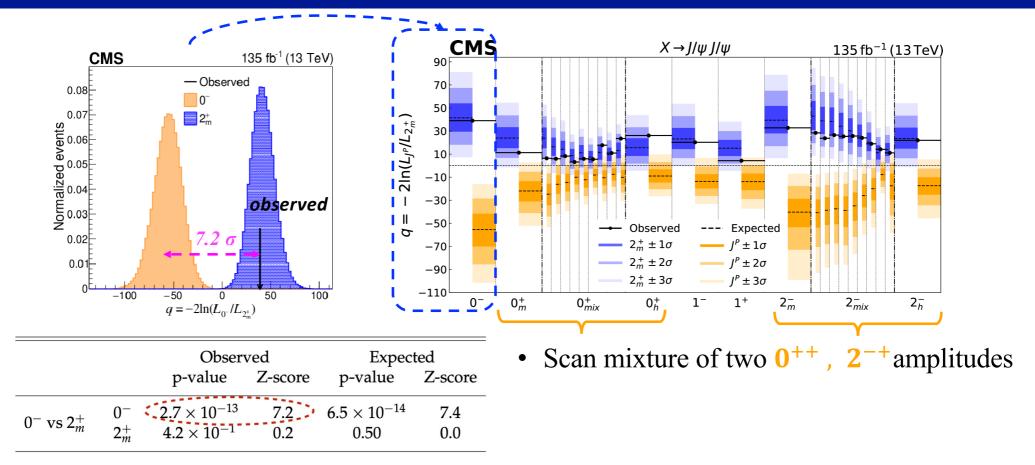






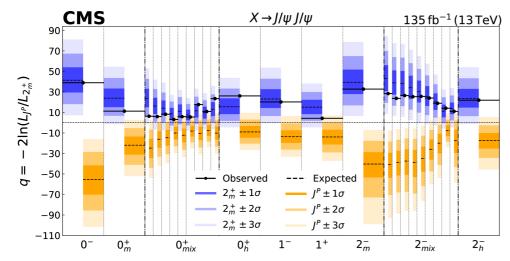

# Optimal Observable


1D projection of data


$$\mathcal{D}_{ij}(\overrightarrow{\Omega} \mid m_{4\mu}) = \frac{\mathcal{P}_i(\overrightarrow{\Omega} \mid m_{4\mu})}{\mathcal{P}_i(\overrightarrow{\Omega} \mid m_{4\mu}) + \mathcal{P}_j(\overrightarrow{\Omega} \mid m_{4\mu})}$$



Background 1D projection


Control Background MC using Data sideband





✓ Data are consistent with  $2^{++}$  model, inconsistent with others

- **\Leftrightarrow** Combine 2D fit  $\mathcal{P}_{ijk}(m_{4\mu}, \mathcal{D}_{ij})$ 
  - $PC = + + \text{very certain}, P \neq -1 \text{ very certain} => L \neq 1$
  - $J \neq 1$  at 99% CL
  - $J \neq 0$  at 95% CL
  - J > 2 unlikely, require  $L \ge 2$ , L = 0 most likely
- $> J^P = 2_m^+$  model survives



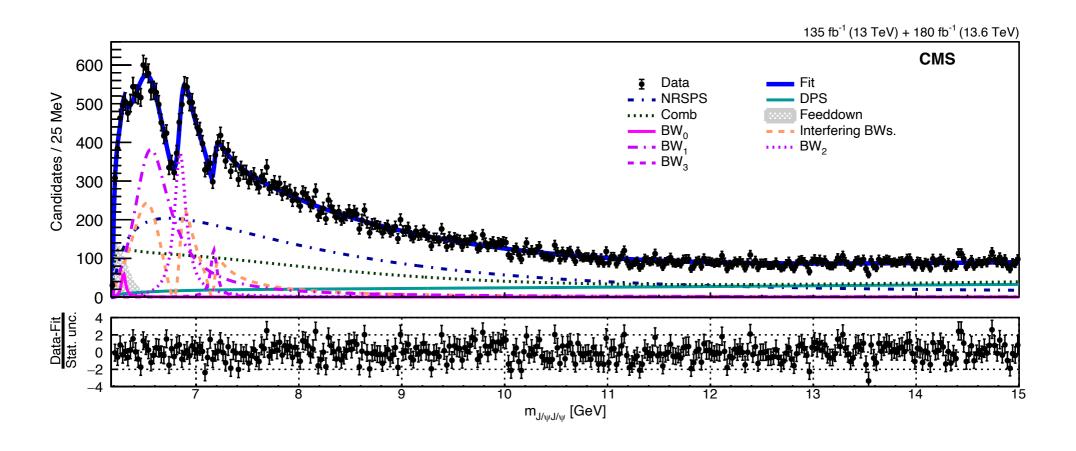
| $J_{\mathrm{X}}^{P}$ | p-value               | Z-score          |        | e         |
|----------------------|-----------------------|------------------|--------|-----------|
|                      |                       | re               | ject J | P<br>X    |
| 0-                   | $2.7 \times 10^{-13}$ |                  | 7.2    | <br> <br> |
| $0_m^+$              | $4.3\times10^{-5}$    | ij               | 3.9    |           |
| $0^+_{ m mix}$       | $1.4\times10^{-2}$    | - i              | 2.2    | mix       |
| $0_h^+$              | $3.1\times10^{-9}$    |                  | 5.8    |           |
| 1-                   | $8.0\times10^{-8}$    | i                | 5.2    |           |
| 1+                   | $4.7 \times 10^{-3}$  | <br>             | 2.6    |           |
| $2_m^-$              | $4.1 \times 10^{-12}$ | İ                | 6.8    | <br> <br> |
| $2^{-}_{\text{mix}}$ | $6.5 \times 10^{-4}$  | - <del>-</del> - | 3.2    | mix       |
| $2_h^-$              | $2.2 \times 10^{-8}$  |                  | 5.5    |           |

# Outline

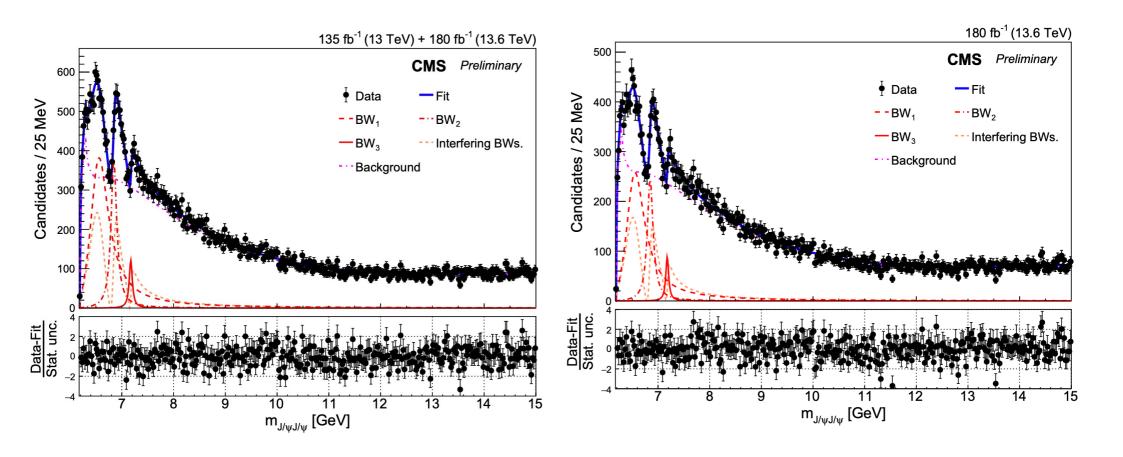
- **□** Motivation
- $\Box J/\psi J/\psi$  updated result
- $\Box J/\psi\psi(2S)$  result
- **□** Spin-parity measurement
- **□** Summary

# Summary

- ❖ X(6600), X(6900), X(7100) established with significances >  $5\sigma$ 
  - Confirm X(6900), X(7100) in  $J/\psi\psi(2S)$  channel
  - Precision improved by factor of 3
  - Having multiple states
    - ==> Comparisons possible
- Quantum interference among structures validated with significances  $> 5\sigma$ 
  - ==> States have common J<sup>PC</sup>
- ❖ Consistent with 2<sup>++</sup> model
  - $J \neq 1$  at 99% CL  $J \neq 0$  at 95% CL
- ❖ Large mass splittings, more precisely
  - ==> radial family of states


CMS is painting a coherent picture of  $J/\psi J/\psi$  structures




# BACKUP

# **BACK UP**

# BACKUP



# $\overline{J/\psi J/\psi}$ : 6-15 GeV fits



# $J/\psi J/\psi$ : Event selection for Run III data

#### Follow PRL cuts + A new trigger for Run III

#### ☐ Single muon:

- Soft muon ID
- $|\eta(\mu)| \le 2.4$

#### $\Box$ Single $J/\psi$ :

- $2.95 < M(J/\psi) < 3.25 \text{ GeV}$
- $prob_{vtx}(J/\psi) > 0.1\%$   $M(\mu^+\mu^-)$  constrained to  $M(J/\psi)$
- Final mass window cut for  $J/\psi$  candidate:

$$|M(\mu^+\mu^-) - M(J/\psi)| < 3\rho\sigma$$

#### ☐ Four muons:

- $4\mu$  charge should be zero
- $prob_{ntx}(4\mu) > 0.5\%$
- $prob_{vtx}(J/\psi J/\psi) > 0.1\%$

#### ☐ Multiple candidates treatment:

#### ☐ Trigger related (OR logic):

- HLT Dimuon0 Jpsi3p5 Muon2
  - Level 1 requirements: 3 muons
  - $2.95 < M(\mu^+\mu^-) < 3.25 \text{ GeV}$
  - $p_T(\mu) > 3.5 \, GeV$
- HLT DoubleMu4 3 LowMass [new trigger for Run III]
  - Level 1 requirements: 2 muons
  - $0.2 < M(\mu^+\mu^-) < 8.5 \text{ GeV}$
  - one muon  $p_T(\mu) > 4$  GeV and the other  $p_T(\mu) > 3$  GeV
- $p_T(\mu^+\mu^-) > 4.9 \; GeV$

#### **Baseline mass variable**

- invariant mass of two constrained J/ψ candidates

• Select best combination from one  $4\mu$  candidate based on min.

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

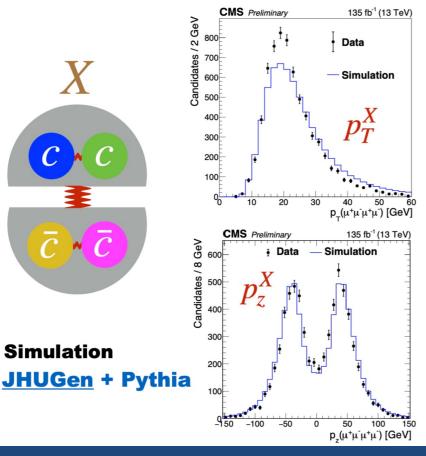
• Keep duplicate combination if pairs have non-overlapping muons

# Signal and Background models

- Signal shape: Relativistic Breit-Wigner
- Background component: NRSPS+NRDPS+Comb+Feeddown+BW0

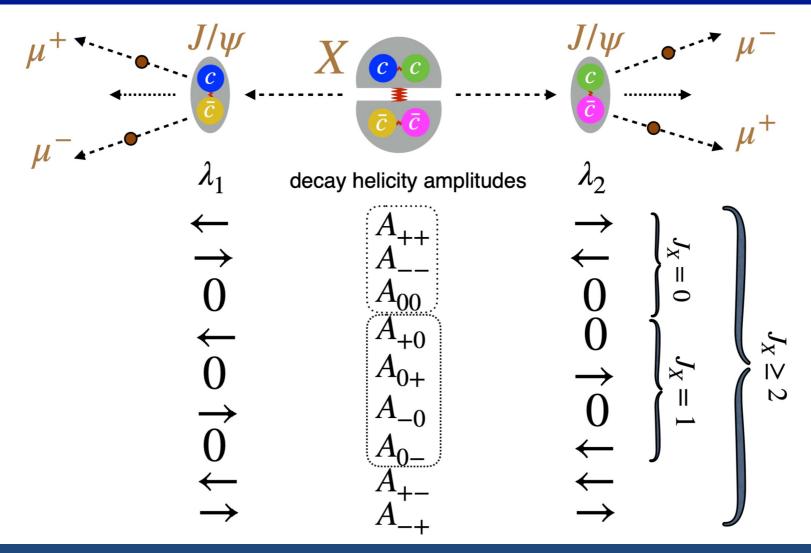
$$BW(m; m_0, \Gamma_0) = rac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)},$$
  $\Gamma(m) = \Gamma_0 \left(rac{q}{q_0}
ight)^{2L+1} rac{m_0}{m} \left(B'_L(q, q_0, d)
ight)^2,$ 

- **❖** Non-interference model:
  - Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW1+BW2+BW3


$$Pdf(m) = \sum_{i} N_{X_i} \cdot |BW(m, M_i, \Gamma_i)|^2 \otimes R(M_i) + N_{NRSPS} \cdot f_{NRSPS}(m)$$
$$+N_{NRDPS} \cdot f_{NRDPS}(m) + N_{Comb} \cdot f_{Comb}(m) + N_{Feedown} \cdot f_{Feeddown}(m)$$

- **!** Interference model:
  - Signal-hypothesis: NRSPS+NRDPS+Comb+Feeddown+BW0+BW123 Interf. Term

$$\begin{aligned} Pdf(m) &= N_{X_0} \cdot |BW_0|^2 \otimes R(M_0) \\ &+ N_{X \ and \ interf} \cdot |r_1 \cdot \exp(i\phi_1) \cdot BW_1 + BW_2 + r_3 \cdot \exp(i\phi_3) \cdot BW_3|^2 \\ &+ N_{NRSPS} \cdot f_{NRSPS}(m) + N_{DPS} \cdot f_{DPS}(m) \\ &+ N_{Feeddown} \cdot f_{Feeddown}(m) + N_{Comb} \cdot f_{Comb}(m), \end{aligned}$$


# Spin-parity: MC Tune

- We do not know the production mechanism
  - empirical model to reproduce  $p_T^X$  and  $p_Z^X$  in data



- tune **Pythia** to match  $p_T^X$  in sideband and signal region
- fine-tune re-weighting  $p_T^X$
- residual  $p_T^X$  and  $p_z^X$  consistency tests coverage in systematics
- essential to model detector acceptance

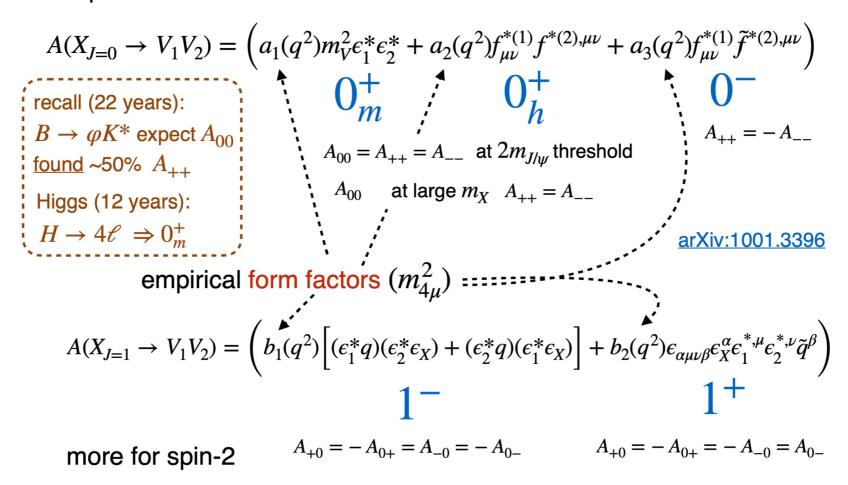
# Spin-parity: $J/\psi$ polarizations



# Spin-parity: $J/\psi$ polarizations

#### Symmetries:

- angular momentum:  $|\lambda_1 \lambda_2| \le J$
- identical  $J/\psi$  bosons  $A_{\lambda_1\lambda_2}=(-1)^JA_{\lambda_2\lambda_1}$
- P & C conserved in QCD: C = +1  $A_{\lambda_1\lambda_2} = P(-1)^J A_{-\lambda_1-\lambda_2}$


# $\begin{array}{c} J_{X} = 0 \\ J_{X} = 0 \end{array}$ $\begin{array}{c} A_{++} \\ A_{00} \\ A_{0+} \\ A_{0-} \\ A_{0-} \\ A_{-+} \\ A_{-+} \\ A_{-+} \\ \end{array}$

# Test 8+ $J_X^P$ models:

note 4 d.o.f. for  $2^{++}$ , test one model

# Spin-parity: Lorentz-Invariant Amplitude

Expect three X resonances to have the same tensor structure:



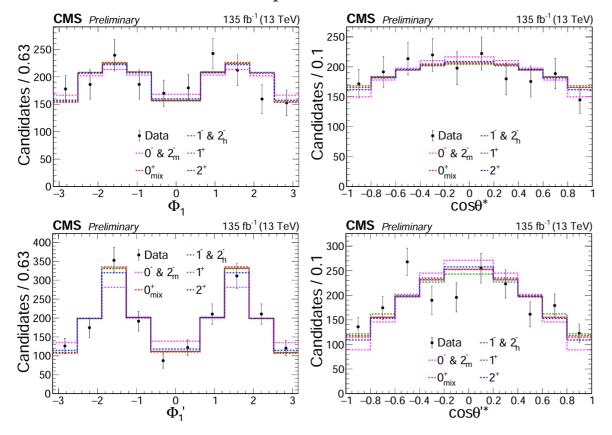
# Spin-parity: Lorentz-Invariant Amplitude

• Expect three X resonances to have the same tensor structure:

$$A(X_{J=2} \to V_{1}V_{2}) = 2c_{1}(q^{2})t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2c_{2}(q^{2})t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu,\beta} \\ + c_{3}(q^{2})\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + c_{4}(q^{2})\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \\ + m_{V}^{2}\left(2c_{5}(q^{2})t_{\mu\nu}\epsilon_{1}^{*\mu}\epsilon_{2}^{*\nu} + 2c_{6}(q^{2})\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(\epsilon_{1}^{*\nu}\epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha}\epsilon_{2}^{*\nu}) + c_{7}(q^{2})\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon_{1}^{*\epsilon}\epsilon_{2}^{*}\right) \\ 2\frac{1}{m}(A_{++} = -A_{--}) \qquad (A_{+0} = A_{0+} = -A_{-0} = -A_{0-})$$

 $2_m^+$  — minimal representative model including all amplitudes:

4 d.o.f. 
$$A_{00}, A_{++} = A_{--}, A_{+0} = A_{0+} = A_{-0} = A_{0}, A_{+-} = A_{-+}$$
 for  $2^{++}$  21% 9% 47% 23% (or  $J \geq 2$ )


basis of  $2^{++}$  could be equivalent to  $2_m^+$ ,  $0_m^+$ ,  $0_h^+$ ,  $1^+$ 

if data consistent with  $2_m^+ \Rightarrow$  unambiguously  $2^{++}$  (or  $J \ge 2$ )

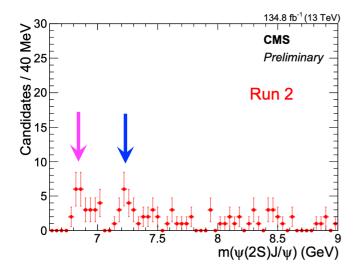
# Production angles

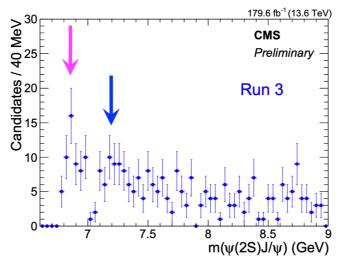
## Production angles background-subtracted

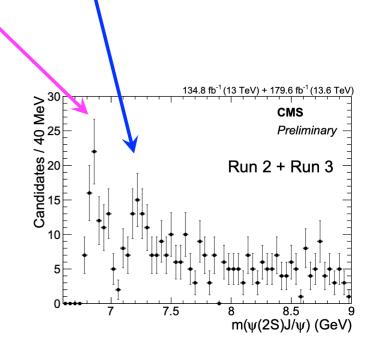
- Not used in analysis, for consistency check
- Data consistent with unpolarized






with respect the beam axis


with respect the boost axis


# Explore $J/\psi\psi(2S)$ channel with Run II and Run III data

- X(6900) @ Threshold obvious
- X(7100) is visible
- According to  $J/\psi J/\psi$  channel, should be an X(6900) and an X(7100)

Signal dominated by Run III





