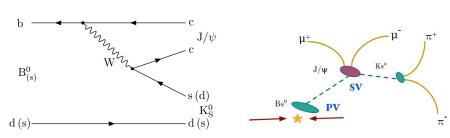


Highlights in heavy-flavour physics from the CMS experiment

Priyanka Sadangi, Kai Yi On behalf of CMS Collaboration

VFPC, 2025



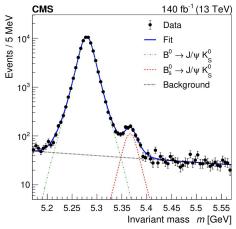
Measurement of $B_s^0 \rightarrow J/\Psi K_S^0$ effective lifetime

- \star Decay probability of any particle defined as, P α e^{-t/τ} τ = lifetime of the particle, t = decay time of the particle.
- \star An effective lifetime for a B_s^0 decay channel is obtained by fitting a single exponential function to decay time.
- ★ LHCb lifetime results: 1.75 ± 0.12 (stat) ± 0.07 (syst) ps

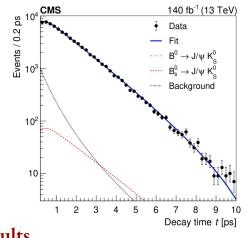
 Journal: Nuclear Physics, Section B 873 (2013)
- **★** SM expected results : 1.619 ± 0.019 ps

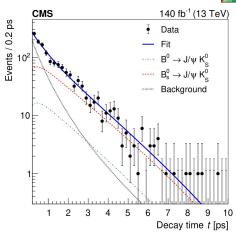
- Signal decay $B_s^0 \rightarrow J/\Psi K_s^0 (1.92 \pm 0.14 \times 10^{-5})$
- ★ Control channel $B^0 \rightarrow J/\Psi K_s^0$
- ★ Related through interchanging all d quarks with s quarks.

Decay time is defined as, $t = \frac{L_{xy} M_{B_s^0}}{p_T}$


M_B is the mass of the B candidate. (Reconstructed mass), Lxy is the length difference between the PV and SV in transverse plane.

The effective lifetime is obtained by performing 2D UML fit to the $J/\psi K_s^0$ invariant mass and the decay time.


Measurement of $B_s^0 \rightarrow J/\Psi K_S^0$ effective lifetime



	Invariant n	nass <i>m</i> [GeV]
Parameters	Values (ps)	*
B ⁰ lifetime	1.521 ± 0.007	*
B _s lifetime	1.59 ± 0.07	*
<i>*</i>		

Consistent with PDG (1.519 \pm 0.004 ps)

Results

SM expected results : 1.619 ± 0.019 ps

The measured effective lifetime from the simultaneous fit,

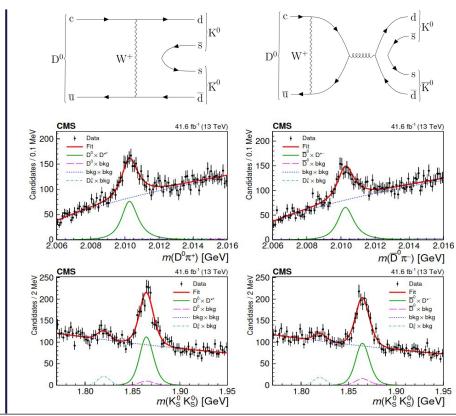
$$\tau B_s{}^0 \rightarrow J/\Psi K_s{}^0 = 1.59 \pm 0.07$$
 (stat) $\pm~0.03$ (syst) ps.

The result is in agreement with the standard model prediction and ~50% smaller

uncertainty compared to previous result.

Published - <u>JHEP10(2024)247</u>

CP violation measurement in $D^0 \rightarrow K_S^0 K_S^0$ decays


- ★ Up-quark CPV: largely unexplored, SM highly suppressed (GIM) [PRL 122 (2019) 211803]
- ★ $D^0 \rightarrow K_S^0 K_S^0$: CPV up to O(1%) possible \rightarrow sensitive to BSM [PRD 92 (2015) 054036]

$$A_{CP}(K_S^0 K_S^0) = \frac{\Gamma(D^0 \to K_S^0 K_S^0) - \Gamma(\overline{D}^0 \to K_S^0 K_S^0)}{\Gamma(D^0 \to K_S^0 K_S^0) + \Gamma(\overline{D}^0 \to K_S^0 K_S^0)}$$

$$A_{CP}(K_S^0K_S^0) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%,$$

- ★ Uncertainties: statistical, systematic, and from $A_{CP}(K_S^0\pi^+\pi^-)$ measurement.
- ★ Consistent with no CPV within 2.0 σ ; agrees with LHCb $(-3.1\pm1.3)\%$ (2.7σ) and Belle $(0.0\pm1.5)\%$ (1.8σ) .
- ★ First CMS search for CP violation in the charm sector.

Published in - Eur.Phys.J.C 84 (2024) 12, 1264

Measurement of CP-violating parameters in $B_s^{\ 0} \to J/\psi \varphi$

- ★ B_s⁰ meson decays probe time-dependent CP violation from the interference between direct decay and flavor mixing.
- Precise Standard Model (SM) prediction: $\phi_s \approx -2\beta_s \approx -37 \pm 1 \text{ mrad, derived from CKM matrix fits ([CKMfitter, UTfit])}$
- Sensitive probe for New Physics (NP): Any deviation may indicate contributions from beyond-SM particles in B_s^0 mixing loops.

$$\begin{array}{c}
B_{S}^{0} & \text{CPV}_{\text{decay}} \\
\hline
 & J/\psi \, \phi(1020) \\
\hline
 & \overline{B}_{S}^{0} & \text{CPV}_{\text{decay}}
\end{array}$$

$$\Gamma\left(B_{S}^{0} \xrightarrow{\overline{B}_{S}^{0}} \to f\right)(t) \stackrel{?}{\neq} \Gamma\left(\overline{B}_{S}^{0} \xrightarrow{\omega \to B_{S}^{0}}) \to f\right)(t)$$

Previous ϕ_s Measurements

- ★ CMS 8 TeV data: $\phi_s = -75\pm97$ mrad consistent with SM expectation ([PLB 757 (2016) 97]).
- ★ Global fits: SM expectations have ~20x smaller uncertainties than current experimental measurements, highlighting the need for more precision.

Motivation for This Analysis

- ★ Largest tagged signal sample to date: Equivalent to ~27,500 B_s⁰ \rightarrow J/ ψ φ events from 13 TeV data (96.5 fb⁻¹).
- ★ Novel ML-based tagging: Uses both same- and opposite-side tagging (OS and SS) for significantly improved tagging power.

Objective: Achieve improved precision on ϕ_s and search for NP-induced CP violation

VFPC, 2025 Page 5

Measurement of CP-violating parameters in $B_s^0 \rightarrow J/\psi \phi$

The physics parameters are extracted with unbinned multidimensional extended maximum-likelihood (UML) fit

- $\circ \quad \textit{Physics parameters: } \varphi_{\text{s}}, \, |\lambda|, \, \Delta\Gamma_{\text{s}}, \, \Gamma_{\text{s}}, \, \Delta m_{\text{s}}, \, |A_{0}|^{2}, \, |A_{\perp}|^{2}, \, |A_{\text{S}}|^{2}, \, \delta_{\parallel}, \, \delta_{\perp}, \, \delta_{\text{S}\perp}$
- Observables: m_{Bs} , t, σ_{t} , $\cos \theta_{T}$, $\cos \psi_{T}$, ϕ_{T} , ω_{tag}

Fit model

$$\frac{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag},m\mid\alpha)}{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag},m\mid\alpha)} = \frac{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag},m\mid\alpha)}{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag},m\mid\alpha)} = \frac{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag},\omega_{tag},m\mid\alpha)}{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag},\omega_{tag},m\mid\alpha)} = \frac{P(t,\sigma_{t},\Theta,\xi_{tag},\omega_{tag$$

Fit results

Parameter	Fit value	Stat. unc.	Syst. unc
$\phi_{\rm s}$ [mrad]	-73	± 23	± 7
$\Delta\Gamma_{\rm s}$ [ps ⁻¹]	0.0761	± 0.0043	± 0.0019
$\Gamma_{\rm s}$ [ps ⁻¹]	0.6613	± 0.0015	± 0.0028
$\Delta m_{\rm s} [\hbar {\rm ps}^{-1}]$	17.757	± 0.035	± 0.017
$ \lambda $	1.011	± 0.014	± 0.012
$ A_0 ^2$	0.5300	$^{+}$ 0.0016 $^{-}$ 0.0014	± 0.0044
$ A_{\perp} ^2$	0.2409	± 0.0021	± 0.0030
$ A_{\rm S} ^2$	0.0067	± 0.0033	± 0.0009
δ_{\parallel} [rad]	3.145	± 0.089	± 0.025
δ_{\perp} [rad]	2.931	± 0.089	± 0.050
$\delta_{\rm S\perp}$ [rad]	0.48	± 0.15	± 0.05

Measured CP phase: $\phi_s = -73 \pm 23_{(stat)} \pm 7_{(syst)}$ mrad

Analytical decay rate

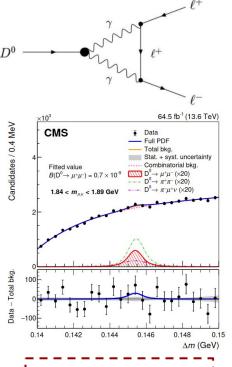
Time resolution (extracted from prompt background)

Angular efficiency (extracted from MC)

- ★ Combined with Run 1: $\phi_s = -74 \pm 23$ mrad
- \star Evidence of CP violation at 3.2 σ .
- ★ Compatibility: Consistent with SM, constraints space for new physics models.
- ★ First CMS measurement at 13 TeV using combined flavor tagging.
 - Strengthens world average precision on ϕ_s .
 - Paves way for Run 3 and HL-LHC improvements.

Submitted to - PRL

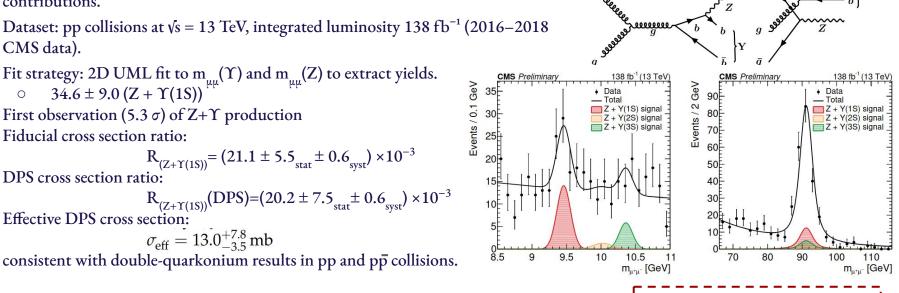
Search for the rare decay $D^0 \rightarrow \mu^+ \mu^-$


- * Rare decays of hadrons is one of the most promising place to look for new physics beyond SM.
- **FCNC** processes, forbidden at tree level, as they are highly sensitive to new physics effects.
- ★ $D^0 \rightarrow \mu^+ \mu^-$ is one such process (very clean) and the goal is to measure its branching fraction.
- ★ SM Prediction: BF(D⁰ → $\mu^{+}\mu^{-}$) ~3 × 10⁻¹³ <u>PRD.66.014009</u>
- ★ Most stringent experimental search BF < 3.5×10^{-9} at 95% CL from LHCb, PRL.131.041804
- ★ CMS searches for this using 64.5 fb⁻¹ data during 2022-2023.
- \star search for $D^0 \to \mu^+ \mu^-$ in cascade $D^{*+} \to D^0 \pi^+$
 - Background control: extra soft pion suppresses background by orders of magnitude.
- ★ Signal extraction: 2D unbinned fit to $m(D^0 \to \mu^+ \mu^-)$ and $\Delta m \equiv m(D^{*+}) m(D^0)$.
- Normalization: use $D^0 \to \pi^+\pi^-$ (kinematically similar) to cancel efficiencies and reduce systematics.
- ★ No significant excess over background expectation is found

$$\mathcal{B}(\mathrm{D}^0 o \mu^+ \mu^-) = \mathcal{B}(\mathrm{D}^0 o \pi^+ \pi^-) \frac{N_{\mathrm{D}^0 o \mu^+ \mu^-}}{N_{\mathrm{D}^0 o \pi^+ \pi^-}} \frac{\varepsilon_{\mathrm{D}^0 o \pi^+ \pi^-}}{\varepsilon_{\mathrm{D}^0 o \mu^+ \mu^-}}$$

$${\cal B}({\rm D}^0 o \mu^+ \mu^-) <$$
 2.1 (2.4) $imes$ 10⁻⁹ at 90 (95)% CL

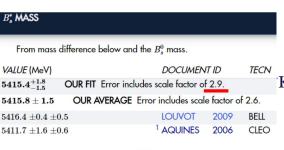
Significant improvement compared to previous result.

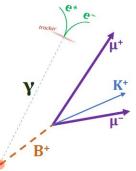

Search for the production of an upsilon (nS) meson in association with a Z boson

\star	Associated production of a heavy quarkonium (Υ) and an electroweak boson (Z)
	provides a unique test of perturbative QCD and quarkonium production models.
—	Sensitive to both Single Powton Scattering (SDS) and Double Porton Scattering (DDS)

- Sensitive to both Single Parton Scattering (SPS) and Double Parton Scattering (DPS) contributions.
- CMS data).
- Fit strategy: 2D UML fit to $m_{\mu\mu}(\Upsilon)$ and $m_{\mu\mu}(Z)$ to extract yields. $\circ 34.6 \pm 9.0 (Z + \Upsilon(1S))$
- First observation (5.3 σ) of Z+ Υ production
- Fiducial cross section ratio:
- $R_{(Z+\Upsilon(1S))} = (21.1 \pm 5.5_{stat} \pm 0.6_{syst}) \times 10^{-3}$
- DPS cross section ratio:
- $R_{(Z+\Upsilon(1S))}(DPS)=(20.2 \pm 7.5_{stat} \pm 0.6_{svst}) \times 10^{-3}$ Effective DPS cross section: $\sigma_{\rm eff} = 13.0^{+7.8}_{-3.5} \, {\rm mb}$
 - consistent with double-quarkonium results in pp and pp collisions.

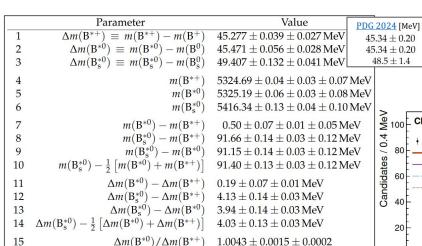
First differential σ_{eff} measurement in bins of $\Upsilon(1S)$ p_T and Z boson p_T , probing parton spatial distributions in the proton. [Plots in backup]


Will be Submitted to - PRL



First exclusive reconstruction of the B*+, B*0, and Bs*0 mesons and precise measurement of their masses

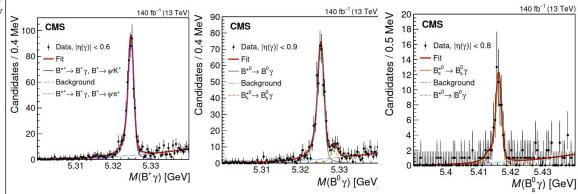
- ★ Hyperfine splittings (mass differences between excited and ground-state B mesons) are key benchmarks for testing heavy-quark dynamics and QCD models.
- ★ Previous approaches: (a) LEP: Averaged flavor-blind transitions. (b) LHCb, CLEO, Belle: Indirect inference of mass differences
- with limited precision.
- ★ $m(B^{*+})-m(B^{+})$: LHCb measured from difference between $B_{s^2}^*(5840)^0 \rightarrow B^{*+}K^-$ and $(5840)^0 \rightarrow B^+K^-$ peak positions.
- \star m(B*+)-m(B*0): CMS measured from difference between B_{s1}(5830)⁰ \to B*0K_S⁰ and peak positions CMS.
- At B-factories previous measurements via $\Upsilon(5S)$ decays: $\Upsilon(5S) \to B_s^0 \overline{B}_s^0, \Upsilon(5S) \to B_s^{*0} \overline{B}_s^0, \Upsilon(5S) \to B_s^{*0} \overline{B}_s^{*0}, \Upsilon(5S) \to B_s^{*0} \overline{B}_s^{*0}$
- Results were not in good agreement (PDG scale factor: 2.9).
- A C 1 1 1 1 1 C p+ 1p0
- \star Central value larger than for B⁺ and B⁰ mesons.
- ★ CMS Analysis Strategy: Trigger: Use all available triggers no trigger requirement.
- Reconstruction: $B^+ \rightarrow \psi K^+$, $B^0 \rightarrow \psi K^* (892)^0 [K^+ \pi^-]$, $B_s^0 \rightarrow \psi \phi [K^+ K^-]$, J/ψ or $\psi(2S) \rightarrow \mu^+ \mu^-$
- ★ Photon conversion:
 - O Detect $\gamma \rightarrow e^+e^-$, Refit e^+e^- tracks with m=0 constraint, Fit By vertex, then refit to PV for improved mass resolution.



First exclusive reconstruction of the B*+, B*0, and Bs*0 mesons and precise measurement of their masses

 $1.0912 \pm 0.0031 \pm 0.0007$

 $1.0866 \pm 0.0031 \pm 0.0007$


 $1.0889 \pm 0.0030 \pm 0.0007$

 $\Delta m(B_s^{*0})/\Delta m(B^{*+})$

 $\Delta m(B_s^{*0})/\Delta m(B^{*0})$

 $2\Delta m(B_s^{*0})/[\Delta m(B^{*+}) + \Delta m(B^{*0})]$

Simultaneous fit in the 7 categories with different η regions. The mass distributions of the $B^+\gamma$, $B^0\gamma$, and $B_s^0\gamma$ candidates for the 3 categories with the best invariant mass resolution, the rest 4 in <u>backup</u>.

- ★ 3 states reconstructed fully exclusively for the 1st time.
- ★ Precision order of magnitude better than PDG.
- ★ Systematics much smaller than stat. uncertainty.

Submitted to - PRL

16

Summary

- ★ The CMS Heavy-Flavor Physics group has delivered several important recent results across CP violation studies, rare decay searches, quarkonium production, and heavy-meson spectroscopy, continually pushing for better precision and broader coverage in the sector.
- ★ This presentation showcases a selection of recent and impactful results from the CMS Heavy-Flavor Physics program.
- ★ Overall Impact:

 CMS's precision tracking, muon identification, and flexible triggering allow it to deliver flavor physics results competitive with dedicated experiments, making it a central player in the global heavy-flavor program.

Stay tuned with CMS for new results!

Backup

CP violation measurement in $D^0 \rightarrow K_S^{\ 0}K_S^{\ 0}$ decays

CP Asymmetry Extraction

- Method: 2D maximum-likelihood fit on $m(D^{*+})$ and $m(D^{0})$
- Simultaneous fit to D*+ and D*- samples; yields free
- Selections: $m(\pi^+\pi^-)$ within PDG ± 20 MeV
 - $om(K_cK_c)$ in [1.7, 2.0] GeV
 - Displacement >9 σ (xyz), >2 σ (xy)
- Bkg suppression: fit alternative topologies, vertex prob. cuts

Search for the production of an upsilon (nS) meson in association with a Z boson

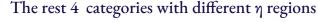
$$Z \rightarrow \mu^{+}\mu^{-} + Y(1S) \rightarrow \mu^{+}\mu^{-} \qquad Z \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}$$
All muons
$$|\eta| \le 2.4$$

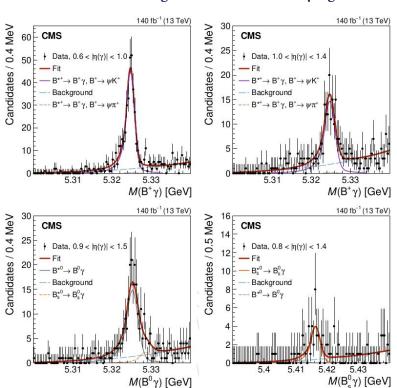
$$p_{T} [GeV] \qquad 30, > 15 > 3,3 \qquad > 20, > 10, > 5,5$$

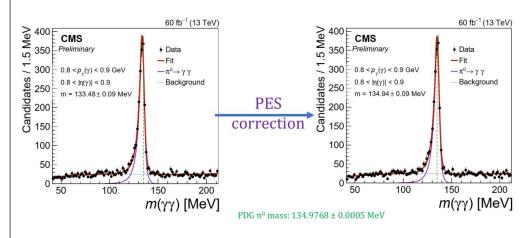
$$\frac{\sigma(\text{pp} \to \text{Z} + \text{Y}(1\text{S})) \times \mathcal{B}(\text{Z} \to \mu^{+}\mu^{-}) \times \mathcal{B}(\text{Y}(1\text{S}) \to \mu^{+}\mu^{-})}{\sigma(\text{pp} \to \text{Z}) \times \mathcal{B}(\text{Z} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-})} = \left(\frac{N_{\text{Z}+\text{Y}(1\text{S})}^{\text{SPS}}}{\varepsilon_{\text{Z}+\text{Y}(1\text{S})}^{\text{SPS}}} + \frac{N_{\text{Z}+\text{Y}(1\text{S})}^{\text{DPS}}}{\varepsilon_{\text{Z}+\text{Y}(1\text{S})}^{\text{DPS}}}\right) \frac{\epsilon_{\text{Z}\to\mu^{+}\mu^{-}\mu^{+}\mu^{-}}}{N_{\text{Z}\to\mu^{+}\mu^{-}\mu^{+}\mu^{-}}} = [21.1 \pm 5.5 \, (\text{stat}) \pm 0.6 \, (\text{syst})] \times 10^{-3}$$

Cross section ratio for DPS component $[20.2 \pm 7.5 \, (\text{stat}) \pm 0.6 \, (\text{syst})] \times 10^{-3}$

$$\sigma_{eff} = \frac{\sigma(Y(1S))}{\mathcal{R}_{Z+Y(1S)}^{DPS}} \frac{\mathcal{B}(Z \to \mu^+\mu^-) \mathcal{B}(Y(1S) \to \mu^+\mu^-)}{\mathcal{B}(Z \to \mu^+\mu^-\mu^+\mu^-)} \underbrace{A_{Z+Y(1S)}}_{A_Z} \\ = 13.0^{+7.8}_{-3.5} \, mb$$


$$= 13.0^{+7.8}_{-3.5} \, mb$$


$$coms \textit{Preliminary} & 138 \, fb^- (13 \, TeV) \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive } \sigma_{eff} \\ + \sigma_{eff} \textit{ measured per bin lnclusive }$$


First exclusive reconstruction of the B*+, B*0, and Bs*0 mesons and precise measurement of their masses

Photon energy scale calibration with π^0

Photon energy from conversions is underestimated out of the box, developed a dedicated correction