CP violation in b-hadron decays at LHCb

Mary Richardson-Slipper on behalf of the LHCb collaboration

Rencontres du Vietnam, Quy Nhon, 18th August 2025

Outline

- Introduction
 - *CP* violation in *b*-hadron decays
 - The LHCb experiment
- *B* decays to open charm
 - $B^0 \to D^+D^- \text{ and } B_s^0 \to D_s^+D_s^-$
 - Model-independent measurement of γ
- Charmless $B \rightarrow VV$ decays
 - $B_{(s)}^0 \to \phi \phi$
 - $B^+ \rightarrow \rho K^{*+}$
- *CP* violation in *b*-baryon decays
 - $\Lambda_b^0 \to pK^-\pi^+\pi^-$
 - $\Lambda_b^0(\Xi_b^0) \to pK_S^0h^-$

CP violation in the SM: the CKM matrix

- Quark flavour mixing determined by CKM matrix – connects mass and flavour eigenstates
- *CP*-violation in SM complex phase in CKM
- Unitarity of CKM matrix ⇒ unitarity relations

$$\sum_{k} V_{ik} V_{jk}^* = 0$$

• Form **triangles** in the complex plane

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Measuring CP violation

"indirect"

<u>Direct *CP* violation</u>

$$\Delta_{f} = |\Delta_{i}|e^{i(\delta_{i}+P_{i})}$$

$$+ |\Delta_{2}|e^{i(\delta_{2}+P_{2})}...$$

$$\bar{A}_{\bar{f}} = |A_1| e^{i(\delta_1 - \varphi_1)}$$
+ $|A_2| e^{i(\delta_2 - \varphi_2)}$

Requires multiple contributing amplitudes with different strong and weak phases

Mixing-induced *CP* violation

Measuring the CKM parameters $B_s^0 \rightarrow J/y$

 $B_s^0 \to J/\psi \eta'$ and $B_s^0 \to J/\psi \pi^+ \pi^-$

The LHCb experiment – Run 1 and Run 2

Alves, A., & others (2008). The LHCb Detector at the LHC. JINST, 3, S08005.

B decays to open charm

Measurement of *CP* violation in $B^0 \to D^+D^-$ and $B^0_s \to D^+_sD^-_s$

- Time-dependent flavourtagged analysis
- Relate to CKM angles β and β_s where $\phi_s = -2\beta_s$

$$\frac{\mathrm{d}\Gamma(t,d)}{\mathrm{d}t} \propto e^{-t/\tau_{B_{(s)}^0}} \left(\cosh\frac{\Delta\Gamma_q t}{2} + D_f \sinh\frac{\Delta\Gamma_q t}{2} + dC_f \cos\Delta m_q t - dS_f \sin\Delta m_q t \right)$$

$$D_f = -\frac{2|\lambda_f|\cos\phi_q}{1+|\lambda_f|^2}, \ C_f = \frac{1-|\lambda_f|^2}{1+|\lambda_f|^2}, \ S_f = -\frac{2|\lambda_f|\sin\phi_q}{1+|\lambda_f|^2},$$
$$\lambda_f = \frac{q}{n}\frac{\bar{A}_f}{A_f} \text{ and } \phi_q = -\arg\lambda_f,$$

Extract $S_{D^+D^-}$, $C_{D^+D^-}$, ϕ_s and $|\lambda_{D_s^+D_s^-}|$

Measurement of CP violation in $B^0 \to D^+D^-$ and $B_s^0 \to D_s^+D_s^-$

 Unbinned maximum likelihood fit to signalweighted decay time distributions

$$S_{D^+D^-} = -0.552 \pm 0.100 \,(\text{stat}) \pm 0.010 \,(\text{syst}),$$

 $C_{D^+D^-} = 0.128 \pm 0.103 \,(\text{stat}) \pm 0.010 \,(\text{syst}),$

$$\phi_s = -0.055 \pm 0.090 \,(\text{stat}) \pm 0.021 \,(\text{syst}) \,\text{rad},$$

$$|\lambda_{D_s^+ D_s^-}| = 1.054 \pm 0.099 \,(\text{stat}) \pm 0.020 \,(\text{syst}),$$

• *CP* symmetry excluded by more than 6σ in $B^0 \rightarrow D^+D^-$

Model-independent measurement of CKM angle γ

- Using decays $B^{\pm} \to [K^+K^-\pi^+\pi^-]_D h^{\pm}$ and $B^{\pm} \to [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$
 - $h = K, \pi$
- Binned in phase space strong phases taken from BESIII measurements

$$N_{+i}^{+} = h_{B^{+}}^{DK} \Big(F_{-i} + ((x_{+}^{DK})^{2} + (y_{+}^{DK})^{2}) F_{i} + 2\sqrt{F_{-i}F_{i}} (x_{+}^{DK}c_{i} + y_{+}^{DK}s_{i}) \Big),$$

$$N_{-i}^{-} = h_{B^{-}}^{DK} \Big(F_{-i} + ((x_{-}^{DK})^{2} + (y_{-}^{DK})^{2}) F_{i} + 2\sqrt{F_{-i}F_{i}} (x_{-}^{DK}c_{i} + y_{-}^{DK}s_{i}) \Big),$$

Model-independent measurement of CKM angle γ

- Extract physics parameters from fit to each *D* decay and simultaneously for both modes
- Combination with phasespace integrated measurements
- First standalone model-independent measurement of γ in the $B^\pm \to Dh^\pm$ decay with these D-meson final states

$$\gamma = (52.6^{+8.5}_{-6.4})^{\circ},$$

$$\delta_B^{DK} = (112.6^{+6.1}_{-7.8})^{\circ},$$

$$r_B^{DK} = 0.102^{+0.014}_{-0.017},$$

$$\delta_B^{D\pi} = (262^{+40}_{-52})^{\circ},$$

$$r_B^{D\pi} = 0.0043^{+0.0033}_{-0.0043},$$

Charmless $B \rightarrow VV$ decays

Charmless $B \rightarrow VV$ decays particularly interesting

- Decays of $B_{(s)}^0 \to V_1 V_2$ with $V_{1,2}$ in $\{\phi, K^*, \rho\}$
- Three contributing amplitudes mixture of *CP* states
 - A_{\parallel} , A_{0} , A_{\perp} CP even odd
- Polarization puzzle expect longitudinal polarization, A_0 , to dominate due to helicity suppression
 - Holds for decays at tree-level but not penguin-dominated
- Indirect *CP* violation in penguin $B \rightarrow VV$ susceptible to new physics entering in loops

Measurement of $\phi_s^{s\bar{s}s}$ with B_s^0

- A golden mode of LHCb experimentally clean
- Probe of *CP* violation in penguin-dominated decays
- *CP* violation in mixing and decay predicted to cancel in the SM

$$\phi_s^{S\bar{S}S} = \phi^M - \phi^D \approx 0$$

Upper limit: 0.02 rad.^[1]

• Significant deviation from zero is clear signature of new physics

[1] Matthaeus Bartsch, Gerhard Buchalla, & Christina Kraus. (2008). B -> V L V L Decays at Next-to-Leading Order in QCD.

Measurement of $\phi_s^{S\bar{S}S}$ with $B_s^0 \to \phi \phi$

- Value of ϕ_s^{sss} extracted from 4D fit to decay time and three helicity angle distributions
- Fit results using full Run 2 dataset with 15.8k events:

$$\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ rad}$$

Most precise measurement of timedependent CP asymmetry in penguin dominated B decays to date and consistent with the SM prediction

LHCb-PAPER-2025-018, submitted to JHEP

Search for $B^0 \to \phi \phi$

- Complementary study
- $\bar{b}d \rightarrow s\bar{s}$ annihilation: loop, Cabibbo and OZI suppressed
- Branching fraction may be enhanced in many scenarios: new physics, ω ϕ mixing...
- Predictions at $\sim 10^{-8}$ level vary by order of magnitude
- Leading-order non-factorizable contributions to $B^0 \to \phi \phi$ are higher-order corrections to $B^0_s \to \phi \phi$

non-factorizable

Bar-Shalom, S., Eilam, G., & Yang, Y.-D. (2003). $B \to \phi \pi$ and $B^0 \to \phi \phi$ the standard model and new bounds on *R*-parity violation. Physical Review D, 67(1). https://doi.org/10.1103/physrevd.67.014007

New limit set on branching fraction

- BF from fit to invariant mass, relative to $B_s^0 \to \phi \phi$
- Set a new limit on the branching fraction at 90% confidence level

$$\mathcal{B}(B^0 \to \phi\phi) < 1.3 \times 10^{-8}$$

 factor of two better than previous limit

Amplitude analysis of $B^+ \to \rho K^{*+}$

•
$$B^+ \to \rho K^{*+}$$

$$\downarrow \qquad (\to K_S \pi^+)$$

$$\downarrow \rightarrow (\to \pi^+ \pi^-)$$

- Extract
 - longitudinal fraction, f_L
 - CP asymmetry, \mathcal{A}_{CP}
 - Triple product asymmetries
- 5-dimensional fit to $m(K_S\pi^+)$, $m(\pi^+\pi^-)$, and helicity angles $\cos\theta_{K_S\pi^+}$, $\cos\pi^+\pi^-$ and ϕ

Select signal candidates from simultaneous fit to $m(K_S\pi\pi\pi)$ within 2.5σ of B^{\pm} mass

$$N_{B^+} = 2208 \pm 53$$
 , $N_{B^-} = 2333 \pm 55$

$B^+ \to \rho K^{*+}$ results

- Theory
- BaBar
- This work
- Charge-averaged longitudinal fraction

$$f_L \equiv \frac{|A_0|^2 + |A_0|^2}{\sum_{\lambda} (|A_{\lambda}|^2 + |\overline{A_{\lambda}}|^2)} \lambda \inf\{0, \|\bot\}$$

$$= 0.720 \pm 0.028 \pm 0.009$$

• Direct *CP* asymmetry

$$\mathcal{A}_{CP} \equiv \frac{\sum_{\lambda} (|\overline{A_{\lambda}}|^{2} - |A_{\lambda}|^{2})}{\sum_{\lambda} (|\overline{A_{\lambda}}|^{2} + |A_{\lambda}|^{2})} \lambda \inf \{0, \parallel \bot \}$$

$$= 0.507 \pm 0.062 \pm 0.017$$

 9σ with likelihood-ratio test!

LHCb-PAPER-2025-026 in preparation

CP violation in baryon decays

LHCb makes the headlines with first observation of *CP* violation in baryon

decays

A new piece in the matterantimatter puzzle

The LHCb experiment at CERN has revealed a fundamental asymmetry in the behaviour of particles called baryons

Measure of direct *CP* asymmetry in $\Lambda_b^0 \to pK^-\pi^+\pi^-$

Direct *CP* asymmetry in $\Lambda_b^0 \to pK^-\pi^+\pi^-$

- Fit the $pK^-\pi^+\pi^-$ invariant mass distribution for the yields
- Global *CP* asymmetry is measured

$$\mathcal{A}_{CP} = (2.45 \pm 0.46 \pm 0.10)\%$$

- differs from zero by 5.2σ
- Across phase space, largest CP asymmetry in $\Lambda_b^0 \to R(p\pi^+\pi^-)K^-$
 - more than 6σ

$$N_{\Lambda_h^0} = (4.184 \pm 0.025) \times 10^4$$

$$N_{\overline{\Lambda_b^0}} = (3.885 \pm 0.023) \times 10^4$$

Measurement of $\Lambda_b^0(\Xi_b^0) \to pK_S^0h^-$

- Four modes:
 - $\Lambda_b^0 \to p K_S^0 \pi^-$
 - $\Lambda_b^0 \to p K_S^0 K^-$ Observed for
 - $\Xi_h^0 \to p K_S^0 K^-$ the first time!
 - $\Xi_b^0 \to p K_S^0 \pi^-$ Upper limit set
- $\Lambda_b^0 \to p K_S^0 \pi^-$ proceeds through $\Lambda_b^0 \to p K^*(892)^- (\to K_S^0 \pi^-)$

• Methods such as QCD factorisation predict large *CP* asymmetries for $\Lambda_b^0 \to p K^*(892)^- (\mathcal{A}_{CP} \sim 20\text{-}30\%)$

• Perturbative QCD and final-state rescattering predict cancellation from partial waves ($\mathcal{A}_{CP} \sim -5 - 2\%$)

Measurement of $\Lambda_b^0(\Xi_b^0) \to pK_S^0h^-$

• Measurement of branching fractions – fit to $pK_S^0h^-$ invariant mass distributions

Decay	Yield	Significance			
$\Lambda_b^0 \to p K_{\rm S}^0 \pi^-$	4740 ± 90	-			
$\Lambda_b^0 \to p K_{\rm S}^0 K^-$	127 ± 17	8.1σ			
$\Xi_b^0 \to p K_{ m S}^0 \pi^-$	70 ± 40	1.0σ			
$\Xi_b^0 \to p K_{\rm S}^0 K^-$	88 ± 13	8.0σ			
$\Lambda_b^0 \to \Lambda_c^+ (\to p K_{\rm S}^0) \pi^-$	34680 ± 200	-			
Result $[\times 10^{-6}]$					
$\mathcal{B}(\Lambda_b^0 \to p K_{\rm S}^0 \pi^-)$ 10.	$0.62 \pm 0.21 \pm 0.16$	± 0.98			
(0 1 5)	$.61 \pm 0.08 \pm 0.06$	± 0.06			
$\mathcal{B}(\Xi_b^0 \to p K_{ m S}^0 \pi^-)$	< 2.8 (3.2) at 90	0(95)% CL			
$\mathcal{B}(\Xi_b^0 \to p K_{\rm S}^0 K^-)$ 3.	$.9 \pm 0.6 \pm 0.5$	$\pm 0.4 \pm 1.4$			

 $\Lambda_h^0(\Xi_h^0) \to p K_S^0 \pi^-$

$$\Lambda_b^0(\Xi_b^0) \to p K_S^0 K^-$$

(stat.) \pm (syst.) \pm (normalization) \pm (b-quark fragmentation fractions)

Measurement of $\Lambda_b^0(\Xi_b^0) \to pK_S^0h^-$

• No significant *CP* asymmetry in any channel

	Result [%]		
$\mathcal{A}^{CP} \left(\Lambda_b^0 \to p K_{\rm S}^0 \pi^- \right)$	$3.4 \pm 1.9 \pm 0.9$		
$\mathcal{A}^{CP} \left(\Lambda_b^0 \to p K_S^0 K^- \right)$	$2 \pm 13 \pm 9$		
$\mathcal{A}^{CP} \ (\Xi_b^0 \to p K_S^0 K^-)$	$22 \pm 15 \pm 11$		

• Dalitz region of $\Lambda_b^0 \to p K_S^0 \pi^$ shows vanishing CPasymmetry of $\Lambda_b^0 \to p K^*(892)^-$

Thank you for your attention!

- LHCb has many results on *CP* violation with new results from Run 1 and Run 2 still coming out
- LHCb provides observation of *CP* violation in baryon decays for the first time new avenue to constrain CKM
- We are taking our largest datasets yet with LHCb Run 3 – stay tuned for LHCb Run 3 results

Collecting our largest dataset yet!

Back-up material

$B_s^0 \to D_s^{\mp} K^{\pm} \text{ decay rate}$

$$\frac{\mathrm{d}\Gamma_{B_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_s t}{2}\right) + C_f \cos\left(\Delta m_s t\right) - S_f \sin\left(\Delta m_s t\right) \right],$$

$$\frac{\mathrm{d}\Gamma_{\bar{B}_s^0 \to f}(t)}{\mathrm{d}t} = \frac{1}{2} |A_f|^2 \left| \frac{p}{q} \right|^2 (1 + |\lambda_f|^2) e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_s t}{2}\right) - C_f \cos\left(\Delta m_s t\right) + S_f \sin\left(\Delta m_s t\right) \right],$$

$$C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} = -C_{\bar{f}} = -\frac{1 - |\lambda_{\bar{f}}|^{2}}{1 + |\lambda_{\bar{f}}|^{2}} ,$$

$$A_{f}^{\Delta\Gamma} = \frac{-2\mathcal{R}e(\lambda_{f})}{1 + |\lambda_{f}|^{2}} , \quad A_{\bar{f}}^{\Delta\Gamma} = \frac{-2\mathcal{R}e(\lambda_{\bar{f}})}{1 + |\lambda_{\bar{f}}|^{2}} ,$$

$$S_{f} = \frac{2\mathcal{I}m(\lambda_{f})}{1 + |\lambda_{f}|^{2}} , \quad S_{\bar{f}} = \frac{2\mathcal{I}m(\lambda_{\bar{f}})}{1 + |\lambda_{\bar{f}}|^{2}} .$$

$$C_{f} = \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}} ,$$

$$A_{f}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} , \quad A_{\bar{f}}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} ,$$

$$S_{f} = \frac{2r_{D_{s}K}\sin(\delta - (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} , \quad S_{\bar{f}} = \frac{-2r_{D_{s}K}\sin(\delta + (\gamma - 2\beta_{s}))}{1 + r_{D_{s}K}^{2}} .$$

$B_s^0 \to \phi \phi$ differential decay rate

$$\frac{\mathrm{d}^4\Gamma(t,\vec{\Omega})}{\mathrm{d}t\mathrm{d}\vec{\Omega}} \propto \sum_{k=1}^6 h_k(t) f_k(\vec{\Omega})$$

$$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{\Delta \Gamma_s}{2}t\right) + b_k \sinh\left(\frac{\Delta \Gamma_s}{2}t\right) + Qc_k \cos(\Delta m_s t) + Qd_k \sin(\Delta m_s t) \right]$$

i	N_i	a_i	b_i	c_i	d_i	f_i
1	$ A_0 ^2$	$1 + \lambda_0 ^2$	$-2 \lambda_0 \cos(\phi)$	$1 - \lambda_0 ^2$	$2 \lambda_0 \sin(\phi)$	$4\cos^2\theta_1\cos^2\theta_2$
2	$ A_{\parallel} ^2$	$1+ \lambda_{\parallel} ^2$	$-2 \lambda_{\parallel} \cos(\phi_{s,\parallel})$	$1- \lambda_{\parallel} ^2$	$2 \lambda_{\parallel} \sin(\phi_{s,\parallel})$	$\sin^2\theta_1\sin^2\theta_2(1+\cos2\Phi)$
3	$ A_{\perp} ^2$	$1+ \lambda_{\perp} ^2$	$2 \lambda_{\perp} \cos(\phi_{s,\perp})$	$1- \lambda_{\perp} ^2$	$-2 \lambda_{\parallel} \sin(\phi_{s,\perp})$	$\sin^2\theta_1\sin^2\theta_2(1-\cos2\Phi)$
4	$\frac{ A_{\parallel} A_{\perp} }{2}$	$\sin(\delta_{\parallel} - \delta_{\perp}) - \lambda_{\parallel} \lambda_{\perp} \cdot$	$- \lambda_{\parallel} \sin(\delta_{\parallel}-\delta_{\perp}-\phi_{s,\parallel})$	$\sin(\delta_{\parallel} - \delta_{\perp}) + \lambda_{\parallel} \lambda_{\perp} \cdot$	$ \lambda_{\parallel} \cos(\delta_{\parallel}-\delta_{\perp}-\phi_{s,\parallel})$	$-2\sin^2\theta_1\sin^2\theta_2\sin2\Phi$
	2	$\sin(\delta_{\parallel} - \delta_{\perp} - \phi_{s,\parallel} + \phi_{s,\perp})$	$+ \lambda_{\perp} \sin(\delta_{\parallel}-\delta_{\perp}+\phi_{s,\perp})$	$\sin(\delta_{\parallel} - \delta_{\perp} - \phi_{s,\parallel} + \phi_{s,\perp})$	$+ \lambda_{\perp} \cos(\delta_{\parallel}-\delta_{\perp}+\phi_{s,\perp})$	2511 01511 0251124
5	$\frac{ A_{\parallel} A_0 }{2}$	$\cos(\delta_{\parallel} - \delta_0) + \lambda_{\parallel} \lambda_0 \cdot$	$- \lambda_{\parallel} \cos(\delta_{\parallel}-\delta_0-\phi_{s,\parallel})$	$\cos(\delta_{\parallel} - \delta_0) - \lambda_{\parallel} \lambda_0 $	$- \lambda_{\parallel} \sin(\delta_{\parallel}-\delta_0-\phi_{s,\parallel})$	$\sqrt{2}\sin 2\theta_1\sin 2\theta_2\cos \Phi$
	2	$\cos(\delta_{\parallel} - \delta_0 - \phi_{s,\parallel} + \phi)$	$+ \lambda_0 \cos(\delta_{\parallel}-\delta_0+\phi)$	$\sin(\delta_{\parallel} - \delta_0 - \phi_{s,\parallel} + \phi)$	$+ \lambda_0 \sin(\delta_{\parallel}-\delta_0+\phi)$	V 2 5111 201 5111 202 COS ¥
6	$\frac{ A_0 A_\perp }{2}$	$\sin(\delta_0 - \delta_\perp) - \lambda_0 \lambda_\perp $	$- \lambda_0 \sin(\delta_0-\delta_\perp-\phi)$	$\sin(\delta_0 - \delta_\perp) + \lambda_0 \lambda_\perp $	$ \lambda_0 \cos(\delta_0-\delta_\perp-\phi)$	$-\sqrt{2}\sin 2\theta_1\sin 2\theta_2\sin \Phi$
	2	$\sin(\delta_0 - \delta_\perp - \phi + \phi_{s,\perp})$	$+ \lambda_{\perp} \sin(\delta_0-\delta_{\perp}+\phi_{s,\perp})$	$\sin(\delta_0 - \delta_{\perp} - \phi + \phi_{s,\perp})$	$+ \lambda_{\perp} \cos(\delta_0-\delta_{\perp}+\phi_{s,\perp})$	V 2 5111 201 5111 202 5111 ¥

LHCb-PAPER-2025-026 in preparation

$$B^+ \to \rho K^{*+} 5D \text{ fit}$$

• Consider several resonances

$$B^{+} \to (\pi^{+}\pi^{-})(K_{S}\pi^{+}) \quad B^{+} \to (\pi^{+}\pi^{-}\pi^{+})(K_{S})$$

$$\rho(770)^{0} K^{*}(892)^{+} \qquad a_{1}(1260) K_{S}$$

$$\omega(782) \qquad (K\pi)_{S} \qquad a_{1}(164)$$

$$f_{0}(500)$$

$$f_{0}(980)$$

$$f_{0}(1370)$$

Measurement of *CP* violation in $B_s^0 \to D_s^{\mp} K^{\pm}$

- *CP* violation parameters are function of CKM angles β_s and γ
- Sensitivity to γ is achieved since interfering amplitudes have similar magnitudes $r_{D_sK} \sim \mathcal{O}(\lambda^3)$ •

$$\frac{\mathrm{d}\Gamma_{B_s^0\to f}(t)}{\mathrm{d}t} = \frac{1}{2}|A_f|^2(1+|\lambda_f|^2)e^{-\Gamma_s t}\left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_s t}{2}\right) + C_f\cos\left(\Delta m_s t\right) - S_f\sin\left(\Delta m_s t\right)\right],$$

$$\frac{\mathrm{d}\Gamma_{\bar{B}_s^0\to f}(t)}{\mathrm{d}t} = \frac{1}{2}|A_f|^2\left|\frac{p}{q}\right|^2(1+|\lambda_f|^2)e^{-\Gamma_s t}\left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + A_f^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_s t}{2}\right) - C_f\cos\left(\Delta m_s t\right) + S_f\sin\left(\Delta m_s t\right)\right],$$

$$CP \text{ violation parameters relate to } \gamma \text{ and } \beta_s$$

Measurement of *CP* violation in $B_s^0 \to D_s^{\pm} K^{\pm}$

$$C_f = 0.791 \pm 0.061 \pm 0.022$$
,
 $A_f^{\Delta\Gamma} = -0.051 \pm 0.134 \pm 0.058$,
 $A_{\bar{f}}^{\Delta\Gamma} = -0.303 \pm 0.125 \pm 0.055$,
 $S_f = -0.571 \pm 0.084 \pm 0.023$,
 $S_{\bar{f}} = -0.503 \pm 0.084 \pm 0.025$,

- Unbinned maximum likelihood fit to signal-weighted decay time distribution
- 8.6σ from *CP* symmetry
- Combination with Run 1 and taking β_s from LHCb $B_s^0 \rightarrow J/\psi \phi$

$$\gamma = (81^{+12}_{-11})^{\circ},$$

$$\delta = (347.6 \pm 6.3)^{\circ},$$

$$r_{D_sK} = 0.318^{+0.034}_{-0.033}.$$