

CP violation in B decays at BelleII

Ming-Chuan Chang (Jeri) on behalf of Belle/Belle II

Aug 18, 2025

Vietnam Flavour Physics Conference 2025 18–22 Aug 2025

CKM Unitarity triangle

ullet New results by Belle II Constraints on angle : $\phi_2(lpha)$

$$B^0 o
ho^+
ho^-$$

PRD 111, 092001 (2025)

• Measurement of : $\phi_1(\beta)$

$$B^0 o J/\psi\pi^0$$

PRD 111, 012011 (2025)

CPV observed in this mode for the first time.

$$B^0 o \pi^0 \pi^0$$

PRD 111, L071102 (2025)

Belle II Collaboration Map

world record (Dec.27, 2024)

$$L_{peak} = 5.1 imes 10^{34} cm^{-2} s^{-1}$$

$$L_{int-BelleII} = 573 fb^{-1}$$

Belle II Detector

Newly designed sub-detectors set to improve detection performance.

Physics
target of
Belle II:
Rare B, tau,
charm
physics,
Dark matter
search, and
CP Violation.

Strategy for CP measurements

$$A_{CP} = rac{\Gamma(ar{B}^0
ightarrow f_{CP}) - \Gamma(B^0
ightarrow f_{CP})}{\Gamma(ar{B}^0
ightarrow f_{CP}) + \Gamma(B^0
ightarrow f_{CP})}$$

 $\Delta z \sim 140 \mu m$

Flavour Tagger

- New tool for Flavour Tagger
 - GFlaT (Graph Flavour Tagger) is a graph neural network (GNN)based algorithm
 - \circ enhance flavour tagging of neutral B mesons produced in $\Upsilon(4S)$ decays.
- 37% effective tagging efficiency.
- $egin{aligned} ullet & q = +1, B^0 ext{ tag} ext{side} \ & q = -1, ar{B}^0 ext{ tag} ext{side} \end{aligned}$
- $r \in [0,1]$ quality of flavor assignments

PRD 110, 012001 (2024)

$$B^0 o
ho^+
ho^-$$

- Constraints of ϕ_2 need isospin analysis due to small contribution from the loop amplitude $(b \to d)$ Two step measurement:
 - 1. Fit to extract branching fraction (BF) and measure longitudinal polarization.

$$Br(B^0 o
ho^+
ho^-)=(2.89\pm^{0.23}_{0.22}\pm^{0.29}_{0.27}) imes 10^{-5} \ f_L=0.921\pm^{0.024}_{0.025}\pm^{0.017}_{0.015} \ rac{LP_{sig}=436.3\pm^{34.2}_{33.5}\ ext{candidates}}{candidates} \ TP_{sig}=65.4\pm^{24.3}_{22.6}\ ext{candidates}$$

PRD 111, 092001 (2025)

a transformed output of the TabNet classifier (deep learning architecture)

$$B^0 o
ho^+
ho^-$$

PRD 111, 092001 (2025)

2. Time-dependent CP fit to extract CP parameters.

Fit in Δt with $q=\pm 1$ 7 bins of tagquality(r)

$$S = -0.26 \pm 0.19 \pm 0.08$$
 $C = -0.02 \pm 0.12 \pm {0.06 \atop 0.05}$

$$\begin{split} \mathcal{P}(\Delta t, \bar{t}, q) &= \frac{1}{4\tau_{B^0}} \exp\left(\frac{-2\bar{t}}{\tau_{B^0}}\right) \{1 - q\Delta w_r + qa_{\varepsilon, r}^{\text{tag}}(1 - 2w_r) \\ &+ [q(1 - 2w_r) + a_{\varepsilon, r}^{\text{tag}}(1 - q\Delta w_r)] \\ &\times [S\sin(\Delta m_d \Delta t) - C\cos(\Delta m_d \Delta t)] \}, \end{split}$$

$$B^0 o
ho^+
ho^-$$

Isospin analysis to extract ϕ_2 constraints.

- Plus external parameters from Belle, Babar, and LHCb for $B^0 o
 ho^0
 ho^0,$ $B^+ o
 ho^+
 ho^0 ext{ and } B^0 o
 ho^+
 ho^-$
- Solution compatible with SM:

$$\phi_2 = (92.6 \pm ^{4.5}_{4.7})^{\circ} \ \Delta \phi_2 = (2.4 \pm ^{3.8}_{3.7})^{\circ}$$

PRD 111, 092001 (2025)

$$B^0 o \pi^0 \pi^0$$

PRD 111, L071102 (2025)

probability for wrongly flavour tagging boosted-decision-tree classifier

- ullet Uncertainty on ϕ_2 from $B o\pi\pi$ BF and CP asymmetry.
- is dominated by $~B o\pi^0\pi^0$
- ullet Reconstruction challenge: 2 $\pi^0 o \gamma \gamma$ decays, 4-photon final state.
- Currently only possible in Belle II.
- ullet Measurement of the BF and time-integrated CP-asymmetry, A_{CP}
- ullet Validated through $B^+ o K^+\pi^0$ and ${
 m B}^0 o (ar{
 m D}^0 o {
 m K}^+\pi^-\pi^0)\pi^0$

$B^0 o \pi^0 \pi^0$

PRD 111, L071102 (2025)

- Selection to suppress high combinatorial background present.
- Split in q=±1, simultaneous fit in four observables, time integrated

$$Br(B^0 o\pi^0\pi^0)=(1.25\pm0.20\pm0.11) imes10^{-6} \ A_{CP}(B^0 o\pi^0\pi^0)=(0.03\pm0.30\pm0.04)$$

 125 ± 20 candidates

- Reduced fractional statistic and systematic uncertainties for BF and CP asymmetry with respect to the previous measurement.
- Isospin analysis with new results:
 - ullet Fractional precision of ϕ_2 increased up to 30% with the addition of this result.

PRD 111, L071102 (2025)

- ightarrow
 ho
 ho Blue = new
 - Red = old

$$B^0 o J/\psi\pi^0$$

- Color suppressed $b
 ightarrow car{c}d ext{ transition}(\phi_1)$
- ullet BF and CP asymmetries can constrain penguin contributions in $B^0 o J/\psi K^0$
- ullet Uses $J/\psi o \ell^+\ell^-(\ell=e,\mu)$
- Two step measurement:
- ullet Yields from fit to $\Delta E ext{ and } ext{m}(\ell^+\ell^-)$

$$392 \pm 24$$
 candidates

$$Br(B^0 o J/\psi\pi^0) = (2.00\pm 0.12\pm 0.09) imes 10^{-5}$$

PRD 111, 012011 (2025)

$$B^0 o J/\psi\pi^0$$

2- Fit Δt in signal enhanced region.
 With q=±1 and 7 bins of tag-quality (r)

$$\begin{split} \mathcal{P}(\Delta t, q) &= \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \{1 + q[S_{CP}\sin(\Delta m_d \Delta t) \\ &- C_{CP}\cos(\Delta m_d \Delta t)]\}, \end{split}$$

PRD 111, 012011 (2025)

$$B^0 o J/\psi\pi^0$$

 Most precise, and first observation of mixing-induced CP asymmetry in this mode.

$$C_{CP} = 0.13 \pm 0.12 \pm 0.03$$

$$S_{CP} = -0.88 \pm 0.17 \pm 0.03$$

PRD 111, 012011 (2025)

Distributions and fit projections of Δt for background-subtracted

$$\phi_2(lpha): B^0 o
ho^+
ho^-, \ B^0 o \pi^0\pi^0$$

Summary

$$\phi_1(eta):B^0 o J/\psi\pi^0$$

New measurements in 2025 by the Belle II collaboration in CP violation.

$$Br(B^0 o
ho^+
ho^-)=(2.89\pm^{0.23}_{0.22}\pm^{0.29}_{0.27}) imes 10^{-5} \ f_L=0.921\pm^{0.024}_{0.025}\pm^{0.017}_{0.015} \ LP_{sig}=436.3\pm^{34.2}_{33.5} ext{ candidates} \ TP_{sig}=65.4\pm^{24.3}_{22.6} ext{ candidates}$$

$$Br(B^0 o\pi^0\pi^0) = (1.25\pm0.20\pm0.11) imes 10^{-6} \ A_{CP}(B^0 o\pi^0\pi^0) = (0.03\pm0.30\pm0.04) \ A_{CP} = -C_{CP}$$

$$egin{align} C_{CP} &= -0.02 \pm 0.12 \pm ^{0.06}_{0.05} \ S_{CP} &= -0.26 \pm 0.19 \pm 0.08 \ \phi_2 &= \left(92.6 \pm ^{4.5}_{4.7}
ight)^{\circ} \ \Delta \phi_2 &= \left(2.4 \pm ^{3.8}_{3.7}
ight)^{\circ} \ \end{array}$$

$$Br(B^0 o J/\psi\pi^0) = (2.00\pm0.12\pm0.09) imes 10^{-5}$$
 $C_{CP} = 0.13\pm0.12\pm0.03$

 392 ± 24 candidates

$$S_{CP} = -0.88 \pm 0.17 \pm 0.03$$

References

- CKM Matrix https://pdg.lbl.gov/2021/reviews/rpp2020-rev-ckm-matrix.pdf
- New graph-neural-network flavor tagger for Belle II
 PRD 110, 012001 (2024)
- The CP violation parameter C is also defined as A = -C.