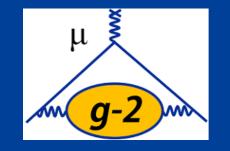
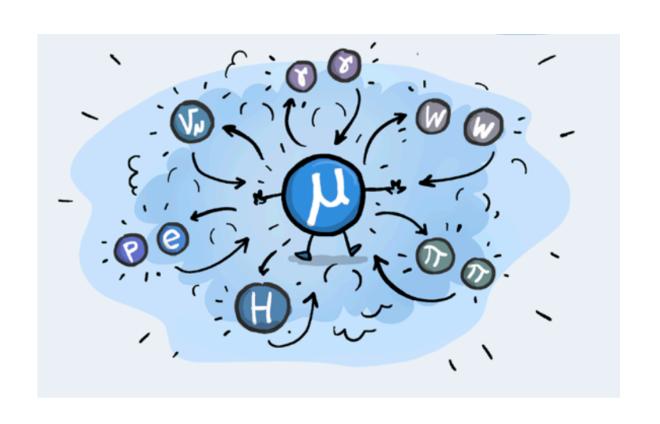

Final Result From The Fermilab Muon g-2 Experiment

Siew Yan Hoh (何守仁)
On behalf of the
Muon g-2 Collaboration



Vietnam Flavour Physics Conference 2025 ICISE, Quy Nhon, Vietnam

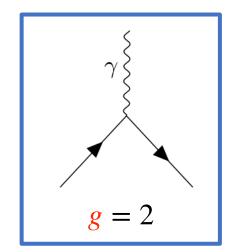
17th - 23rd August 2025

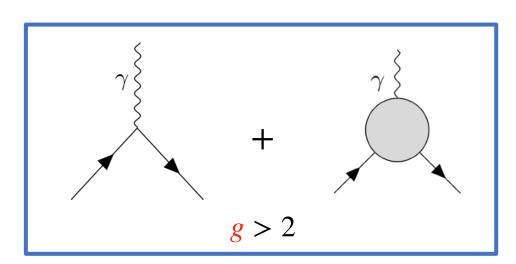


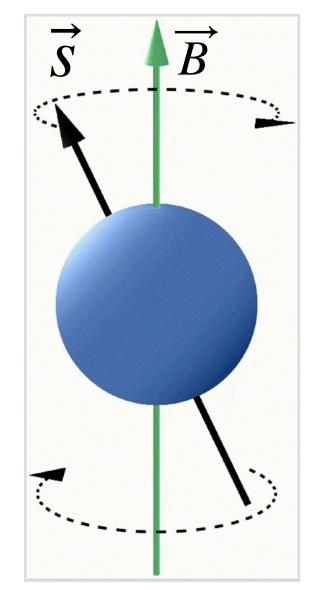
Outline

- Magnetic Dipole Moment
- Muon as a probe
- Fermilab Muon g-2 Experiment
- Measurements:
 - Spin precession
 - Magnetic field
- Corrections and systematics
- Final results
- Conclusion and outlook

Magnetic Moment

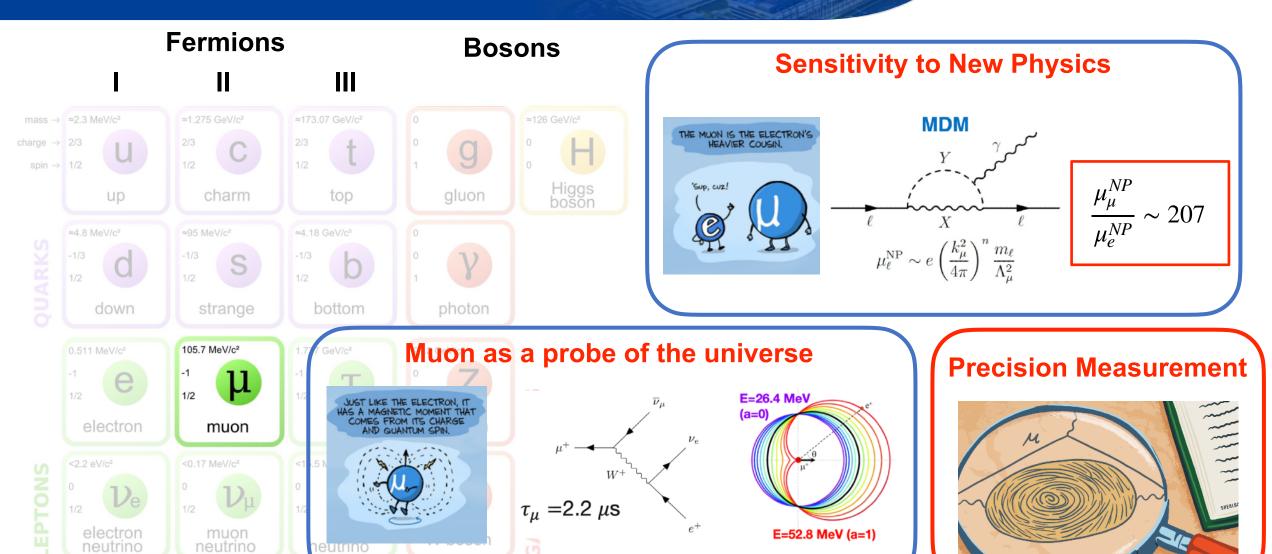

1. The magnetic moment of a lepton is connected to the spin via the **g-factor**.


$$\overrightarrow{\mu} = g \frac{e}{2m} \overrightarrow{s}$$


2. The value of **g-factor** can be measured from a lepton in the magnetic field, via the **spin precession frequency**:

$$\omega_s = \frac{g}{2} \frac{e}{m} B$$

3. Studying the **g-factor** helps us test the SM and understand the quantum effects (calculated up to 5-loops, with **precision up to 500 ppb**):

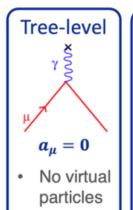


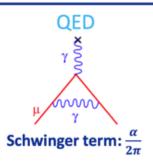
The Oddball of SM

arXiv:1801.05670

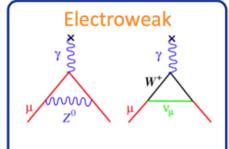
Testing SM with Muon g-2

1. Anomalous Magnetic Moment of muon, a_{μ} is used to measure and predict g-factor:

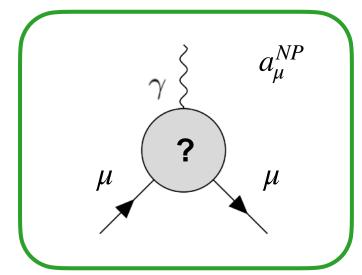

$$\mathbf{g}_{\mu} = 2 + 2\left(\frac{\alpha}{2\pi} + \mathcal{O}(\alpha^2)\right) \qquad \rightarrow \qquad a_{\mu} = \frac{\mathbf{g}_{\mu} - 2}{2} \neq 0$$


$$a_{\mu} = \frac{g_{\mu} - 2}{2} \neq 0$$

Disagreement in SM prediction and measurement signals New Physics!!

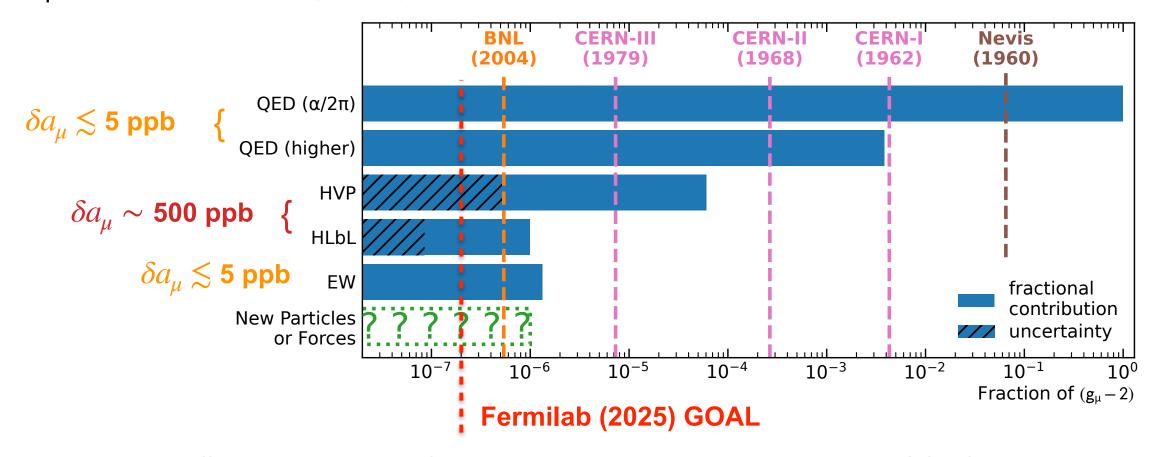

2. The a_{μ} of SM is contributed by the following components:

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{HVP} + a_{\mu}^{HLbL} \approx 0.0012$$


- Leptons, photons
- Dominant contribution
- Terms to $O(\alpha^5)$

- W, Z, Higgs bosons
- Contributions $\sim m_{\mu}^2/M_W^2$

- Quarks, gluons
- Most difficult to calculate



See Massimo's talk

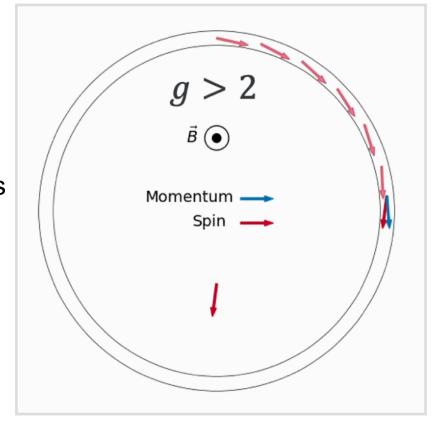
SM Prediction of Anomaly

The **Muon g-2 Theory Initiative** provide a consensus SM prediction for a_{μ} , to be compared with experiment. https://muon-gm2-theory.illinois.edu/

- The hadronic effects are estimated from Data-driven dispersive and Lattice QCD (major uncertainties)
- The Fermilab experimental precision is improving over time, goal is to achieve 140 ppb!

Principle of g-2 Measurement

1. **Injects polarized muons** into a storage ring, circulated the ring at **cyclotron frequency** in a uniform magnetic field **B**:

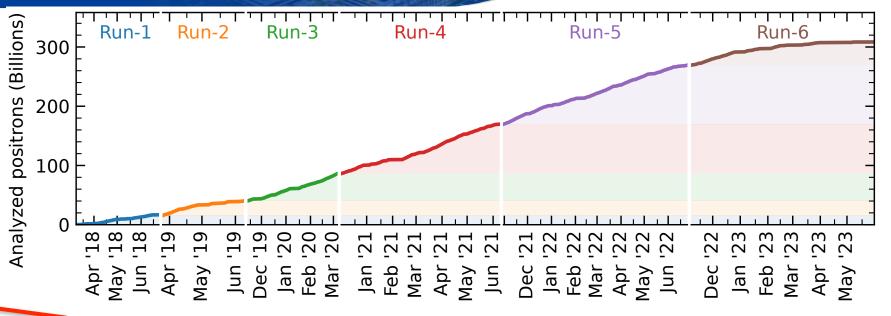

$$\omega_c = \frac{e}{m_u c} \mathbf{B}$$

2. While muons are stored, its **spin precesses slightly faster** than its momentum, this precession rate, aka **anomalous precession frequency**:

$$\omega_a = \omega_s - \omega_c$$

3. Muon anomaly can be extracted by measuring B, and ω_a from the decayed positrons:

$$\omega_a = \frac{a_{\mu}}{m_{\mu}c} \frac{e}{B}$$

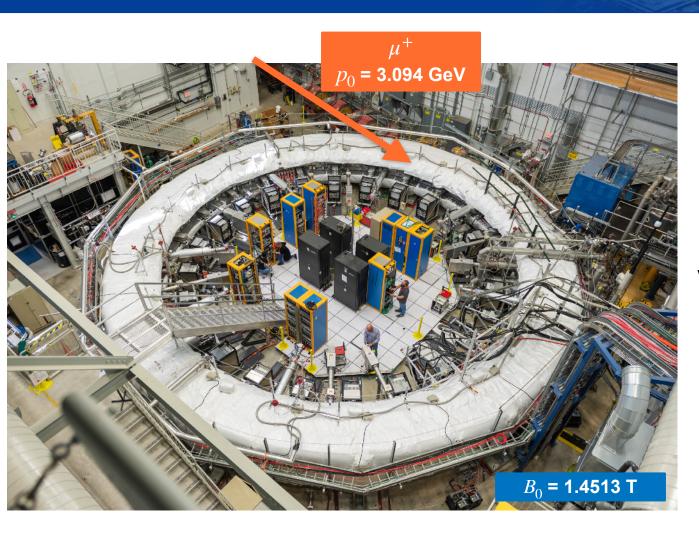


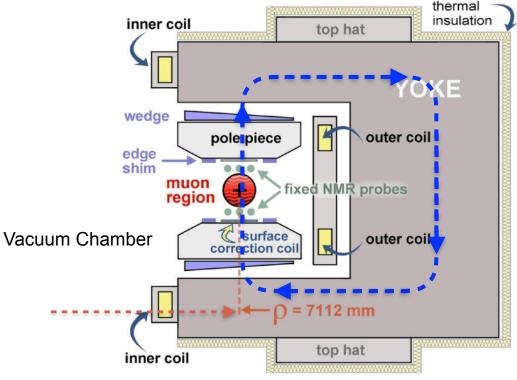
The Goal: Measures ω_a and B as precise as possible!

Fermilab Muon g-2 Experiment

- Data collected over 6 years +, resulted in 6 Run
- Muon g-2 result was announced using

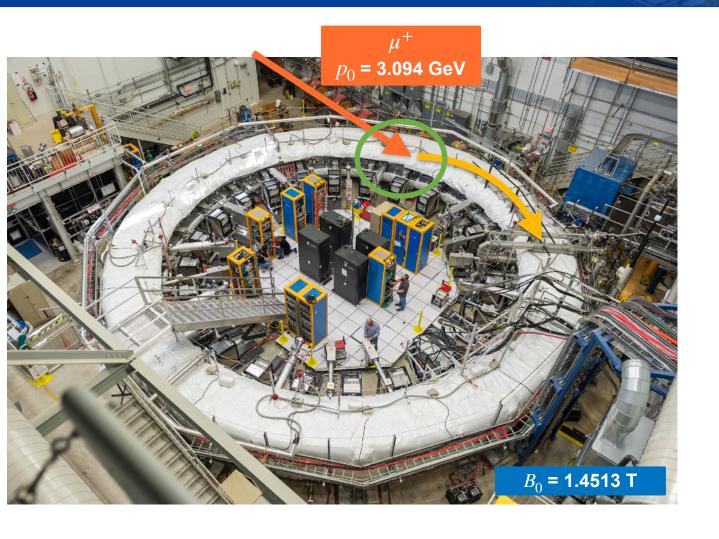
• April 2021 : Run-1 PRL 126, 141801 (2021)


• August 2023 : Run-2/3 PRL 131, 161802 (2023)


• June 2025 : Run-4/5/6 arXiv:2506.03069 PRL (2025) Accepted

• The final dataset has **2.6 times** more data than previous datasets.

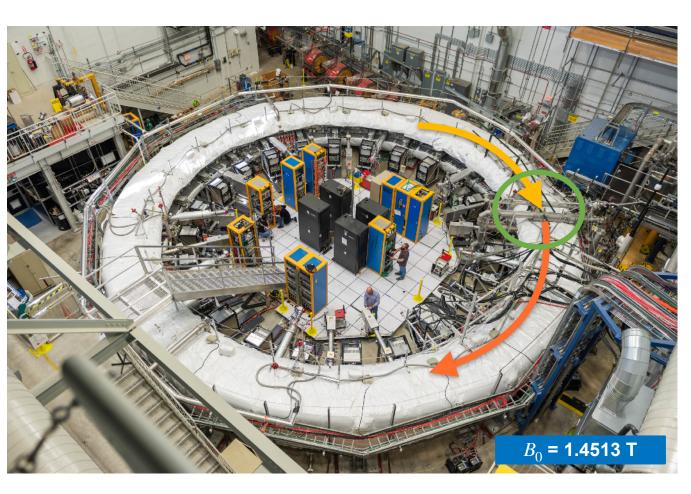
Muon Storage: Dipole Magnet

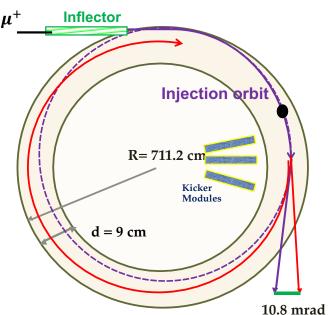


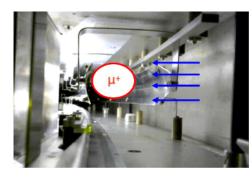
- **Dipole magnet** provides vertical and uniform magnetic field for radial confinement.
- C-shaped yoke to allow decay positrons inward towards the center of the ring.

Field uniformity is important!

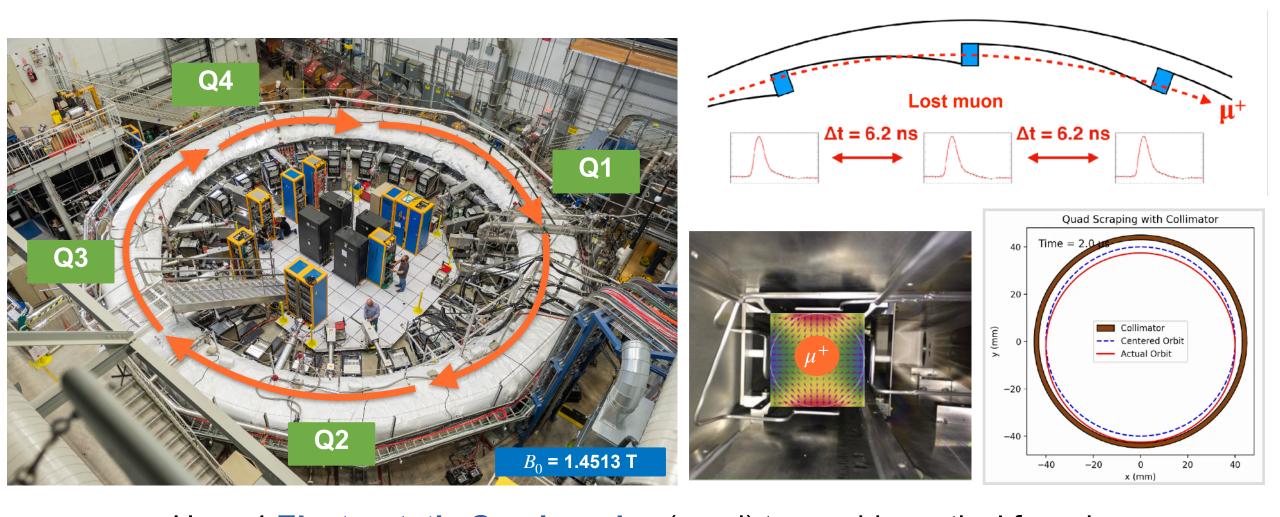
Muon Storage: Inflector





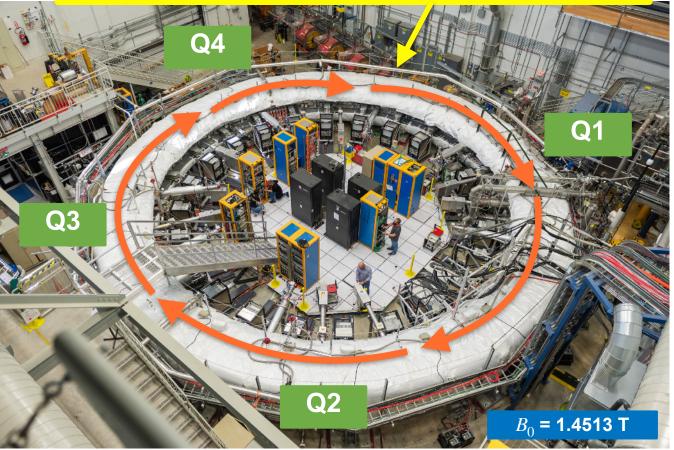

- Inflector magnet provide field free region (cancel B_0) in the magnet gap, for muon to enter the ring.
- The superconducting magnet is located at
 r = 77 mm outside of central closed orbit.

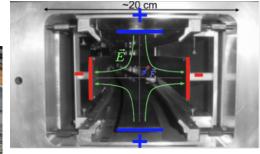
Muon Storage: Kicker



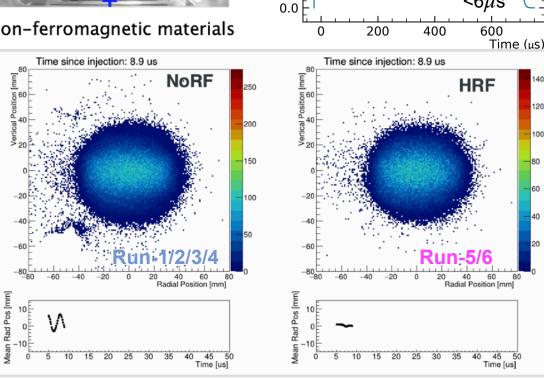
• **Kicker magnet** provides 10.8 mrad pulse kick (<149 ns), to offset the injected muons, centering the muons into ideal orbit.

Muon Storage: ESQ




- Uses 4 Electrostatic Quadrupoles (quad) to provide vertical focusing.
- Scraping beam to reduce muon lost rate (edge muon)

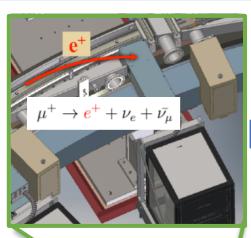
Muon Storage: RF-Matching

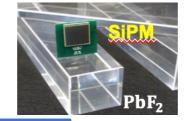


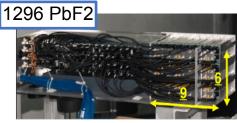
Mismatch between incoming beam phase space and storage acceptance, causes Coherent Betatron Oscillation (CBO)

non-ferromagnetic materials

15.0

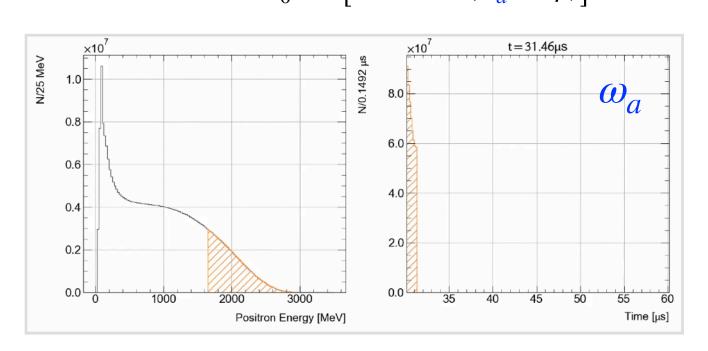

10.0

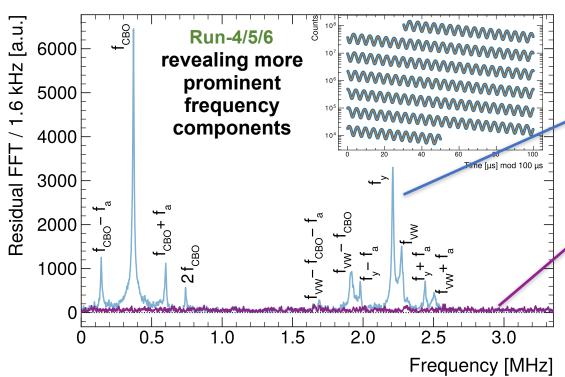

5.0


- The **RF voltage** was superimposed to the quad voltage (Run5/6).
- Introduce small modulation (~1kV) to ESQ voltage, to resonantly dampen CBO.

Muon Decay Measurement: Calorimeters






- Parity violation causes **high-energy** e^+ counts **oscillate** as spin point **towards** and **away** from the calorimeters.
- The ω_a can be readily extracted by fit to the high-energy e^+ arrival time: $N = N_0 e^{t/\tau_\mu} \left[1 + A \cos(\omega_a t + \phi) \right]$

Spin Precession Frequency

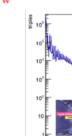
Simplest form with only decay and g-2 oscillation

$$N = N_0 e^{t/\tau_{\mu}} \left[1 + A \cos(\omega_a t + \phi) \right]$$

Full form with beam (muon lost, CBO) and detector effects

$$\begin{split} N_0 \, e^{-\frac{t}{\gamma\tau}} \left(1 \, + \, A \cdot A_{BO}(t) \cos(\omega_a \, t + \, \phi \cdot \phi_{BO}(t) \,) \, \cdot \, N_{\text{CBO}}(t) \cdot \, N_{\text{VW}}(t) \cdot \, N_y(t) \cdot \, N_{2\text{CBO}}(t) \cdot \, J(t) \\ A_{\text{BO}}(t) &= 1 + A_A \cos(\omega_{\text{CBO}}(t) + \phi_A) e^{-\frac{t}{\tau_{\text{CBO}}}} \\ \phi_{\text{BO}}(t) &= 1 + A_\phi \cos(\omega_{\text{CBO}}(t) + \phi_\phi) e^{-\frac{t}{\tau_{\text{CBO}}}} \\ N_{\text{CBO}}(t) &= 1 + A_{\text{CBO}} \cos(\omega_{\text{CBO}}(t) + \phi_{\text{CBO}}) e^{-\frac{t}{\tau_{\text{CBO}}}} \end{split}$$

$$N_{\text{2CBO}}(t) = 1 + \frac{A_{\text{2CBO}}\cos(2\omega_{\text{CBO}}(t) + \phi_{\text{2CBO}})e^{-\frac{t}{2\tau_{\text{CBO}}}}$$

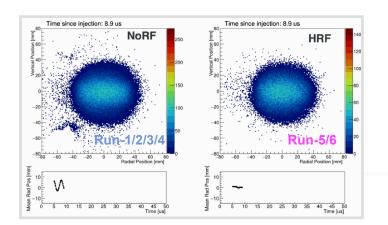

$$N_{\text{VW}}(t) = 1 + A_{\text{VW}}\cos(\omega_{\text{VW}}(t)t + \phi_{\text{VW}})e^{-\frac{t}{\tau_{\text{VW}}}}$$

$$N_y(t) = 1 + A_y \cos(\omega_y(t)t + \phi_y)e^{-\frac{t}{\tau_y}}$$
$$J(t) = 1 - k_{LM} \int_t^t \Lambda(t)dt$$

$$\omega_{\text{CBO}}(t) = \omega_0 t + A e^{-\frac{t}{\tau_A}} + B e^{-\frac{t}{\tau_B}}$$

$$\omega_y(t) = \frac{\mathbf{F}}{\omega_{\mathrm{CBO}(t)}} \sqrt{2\omega_c/\mathbf{F}}\omega_{\mathrm{CBO}}(t) - 1$$

$$\omega_{
m VW}(t) = \omega_c - 2\omega_y(t)$$

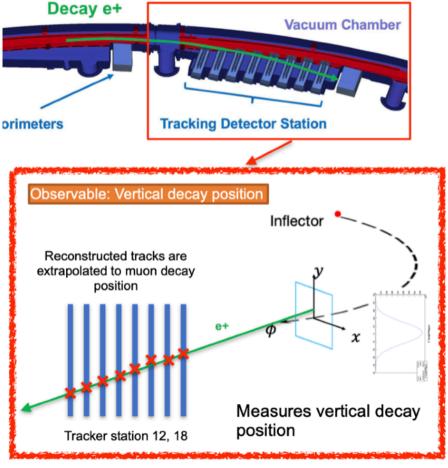


• The CBO effects account for:

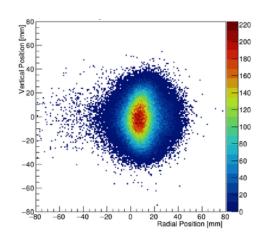
• noRF: ~ 800 ppb!

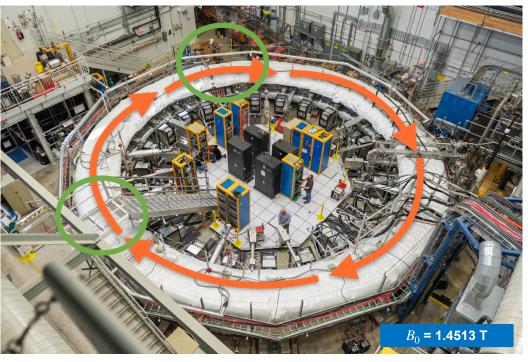
• With RF : ~ 90 ppb

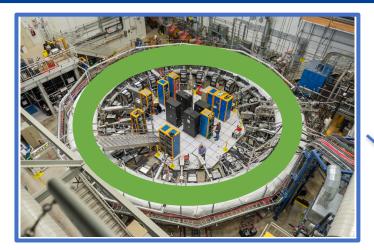
Effects were modeled with 40+ additional parameters in the final fit!

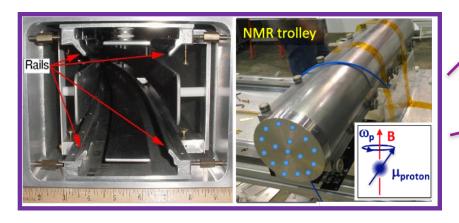


Red: free parameter Blue: fixed parameter

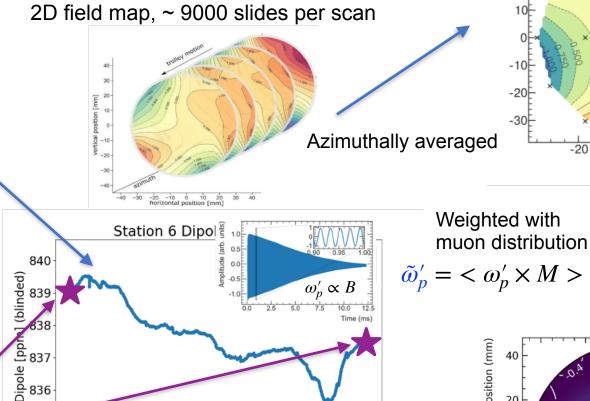

Lost muon spectrum


Muon Profile Reconstruction: Straw Trackers

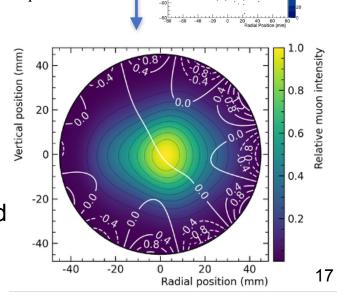



- Reconstructing muon beam profile from the positron trajectories:
 - Used for Beam Dynamics corrections.
 - Used to weight the measured magnetic field.

• Tracker station (x2) used, 8 modules per station (128 straws).


B Field Measurement: NMR Probe

378 Fixed Nuclear Magnetic Resonance (NMR) Probe to monitor field. (w/o Beam time).



17 **Mobile NMR Probe** circles around the ring to map the field (no beam, every 3 days), totaling ~ 100km!

Fixed probe's field interpolates trolley's field

1 ppm field homogeneity!

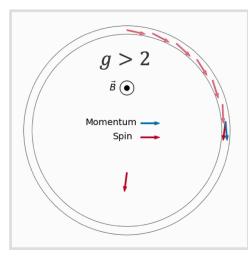
Y (mm)

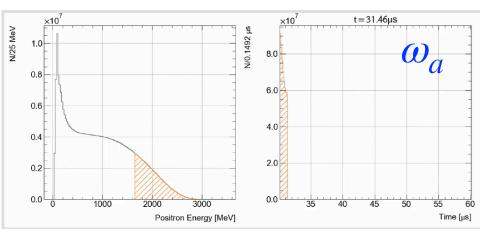
(ppm)

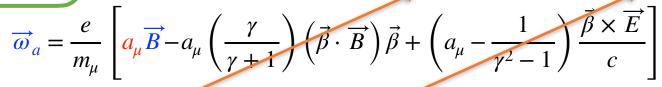
-0.5

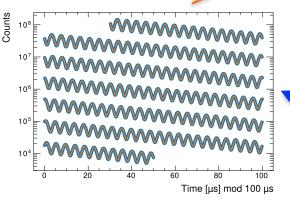
-1.0

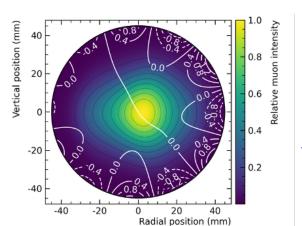
X (mm)


Measuring the Anomaly




Polarized muon injected with $p_\mu=$ 3.1 GeV, $\tau_\mu=$ 64 $\mu {\rm s}$ Storage time: 700 $\mu {\rm s}$, expected 5000 muons stored in one fill.


Cancel out contributions due to weakly focusing.(*)



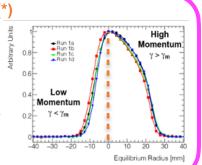
External factors known to be 22 ppb

$$a_{\mu} = \frac{\omega_a}{\tilde{\omega}_p'} \frac{\mu_p'}{\mu_B} \frac{m_{\mu}}{m_e}$$

However, one need to account for corrections due to systematic effects

Corrections and Systematics

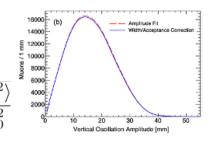
Beam dynamics


$$\frac{a_{\mu} \sim R'_{\mu} = \frac{\omega_a}{\tilde{\omega_p}'(T)} = \frac{\omega_a^m \cdot \left(1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}\right)}{\langle \omega_p' \cdot M \rangle \cdot \left(1 + B_k + B_q\right)}$$

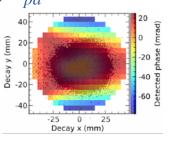
Transient field

Electric Field, $C_e^{(*)}$

Due to finite Δp_{μ} around magic momentum.

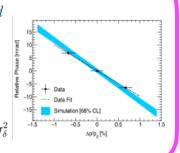

$$C_e \approx 2n(1-n)\beta_0^2 \frac{\langle x_e^2 \rangle}{R_o^2}$$

Pitch, C_p (*)


Non-zero vertical betatron oscillation

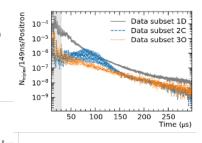
$$C_p \approx \frac{n}{2} \frac{\langle y^2 \rangle}{R_0^2} = \frac{n}{4} \frac{\langle A^2 \rangle}{R_0^2} \stackrel{\text{doop}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}{\stackrel{\text{doop}}}}{\stackrel{\text{doop}}}}{\stackrel{\text{doop}}}}{\stackrel{\text{doop}}}}}}}}}}}}}}}}}}$$

Phase Acceptance, C_{pa}

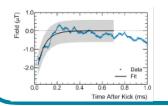

Non-zero correlation between decayed positrons and ϕ_0

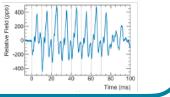
Differential Decay, C_{dd}

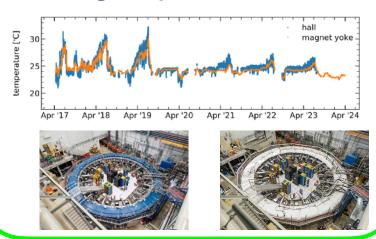
Low/high p_{μ} causes short/longer lifetime, causes $\Delta\phi$ over time.


$$\frac{d\langle\phi\rangle}{dt} = \frac{d\langle\phi\rangle}{d\langle\rho\rangle} \left(\frac{d\langle\rho\rangle}{dt}\right)_{dd} \approx \frac{d\phi}{d\delta} \frac{1}{\gamma_0 \tau_\mu} \sigma_\delta^2$$

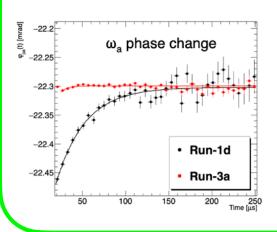
Muon Lost, C_{ml}


Low p_{μ} muon tend to be lost, Δp_{μ} causes $\Delta \phi$ over time.

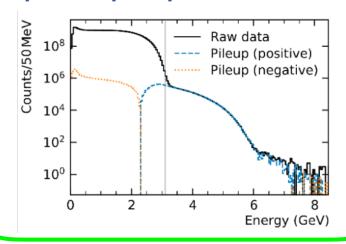

$$\frac{d\langle\phi\rangle}{dt} = \frac{d\langle\phi\rangle}{d\langle p\rangle} \left(\frac{d\langle p\rangle}{dt}\right)_l$$


Transient Field, B_k , B_q

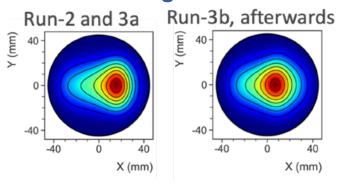
Kicker field causes eddy current; quad pulsing causes mechanical vibration.



Hall/Ring temperature stabilized

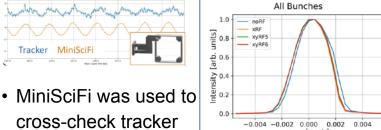


Fixed fail HV resistor in quad

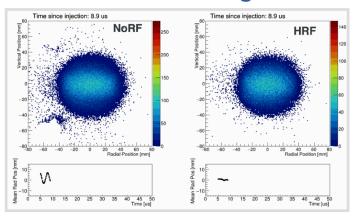


- Stable beam
- ullet Smaller C_{pa}
- Smaller C_{ml}

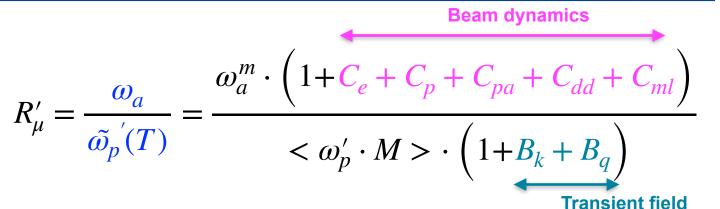
Improved pileup reconstruction

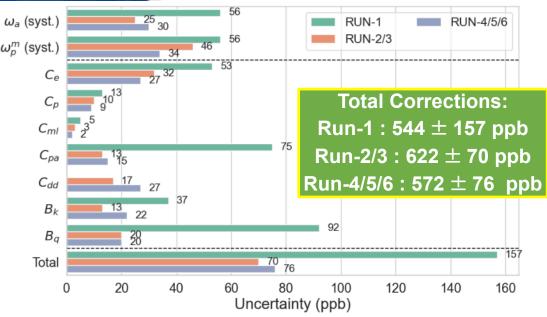


Stronger Kick


- More center beam Better measures C_{ρ}
- Higher homogeneity

Additional Measurement


MiniSciFi was used to cross-check tracker and calorimeter's momentum distribution measurements


RF matching

Reduces ~ x9 times CBO

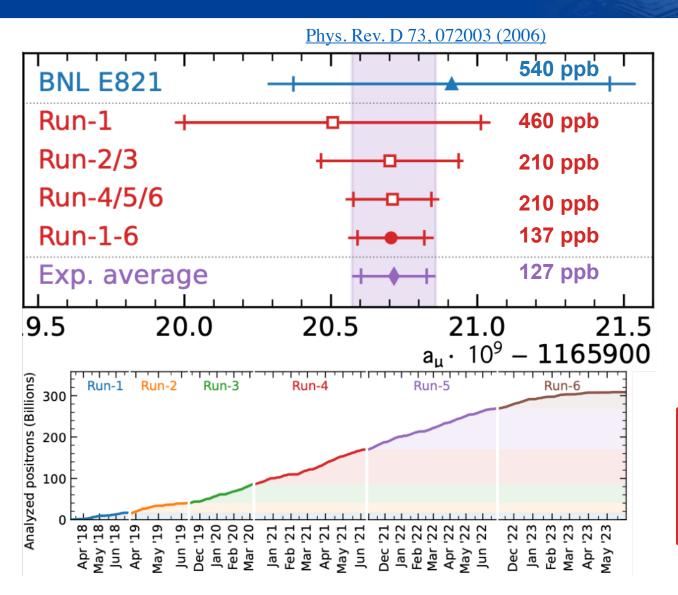
Corrections and Systematics

400

Electric Field, $C_e^{(*)}$ Due to finite Δp_{μ} around magic momentum. $C_e \sim 350 \text{ ppb}$

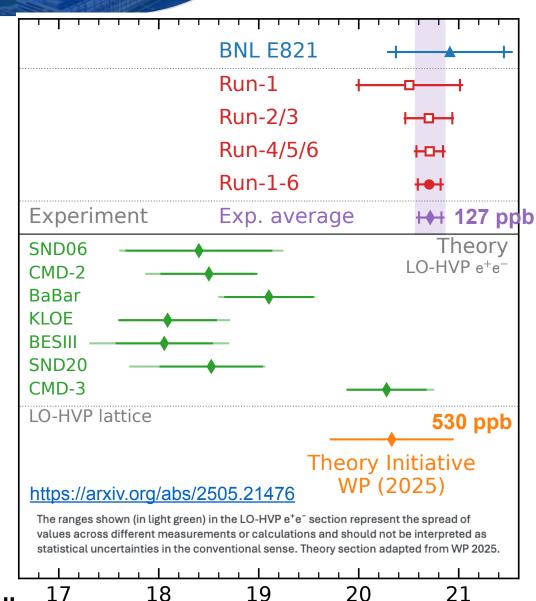
Pitch, C_p Non-zero vertical betatron oscillation $C_p \sim 170~\mathrm{ppb}$

Statistical


Systematic

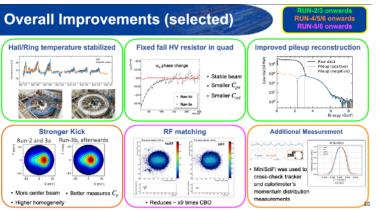
- $C_{pa}+C_{dd}+C_{ml}\sim 30~\mathrm{ppb}$
- 1.Largest corrections come from Electric field and pitch effects.
- 2. Uncertainties contribute equally to total error.
- 3. Combined uncertainties surpassed total TDR precision goal of 140 ppb!

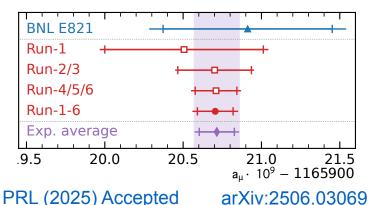
Muon g-2 Final Results

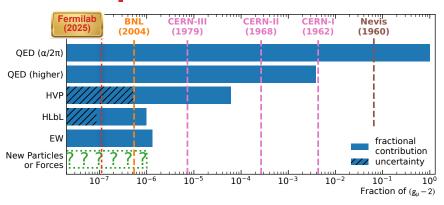

- Fermilab results are in excellent agreement to the BNL E821.
- Run-2/3 result halved the uncertainty of Run-1.
- Run-4/5/6 reduced uncertainty by another x1.8.
- Combined average reduces the uncertainty by 4.3, compares to BNL E821.
- The Fermilab result is the most precise measurement of a_{u} .

$$a_{\mu}$$
(Run-4/5/6) = 0.001165920710 (162)
 a_{μ} (Run-1-6) = 0.001165920705 (148)

Theory Initiative 2025 SM Prediction


- White Paper 2020 (WP2020): compilation of datadriven dispersive methods (20 years+): CMD-3 is in tension with previous evaluations.
- WP2025 exclusively compiled Lattice-QCD results:
 - Hadronic effects:
 - HVP (520 ppb)
 - HLbL (85 ppb)
 - No significant discrepancy with experiment at this precision.
- However, long standing tension between datadriven and Lattice-CQD exists.



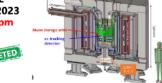

Conclusion and Outlook

Fermilab announced final result with record precision!!

Benchmark for new models with new particles of forces (BSM)

J-PARC g-2 Experiment

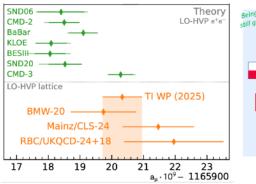
CERN 1960s - 1976 7.3 ppm



BNL 1990s - 2001 <mark>0.54 ppm</mark>

FNAL 2009 - 2023 0.14 ppm

J-PARC 2009 - 2030s 0.45 ppm


See Gerco's talk

Improve HVP precision:

- e^+e^- and au new input.
- Space-like HVP (MUonE)

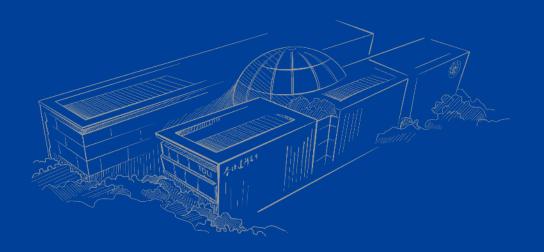
Theory initiative



Aim to reduce theory uncertainty by x4 to test SM

Eur. Phys. J. C 77, 139 (2017) https://arxiv.org/abs/2505.21476

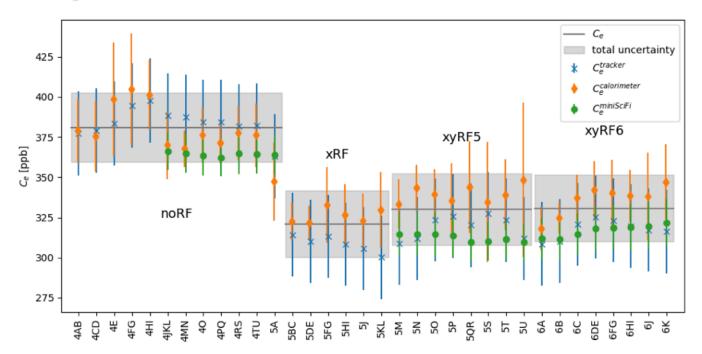
Thanks For Your Attention!


The Muon g-2 Collaboration:

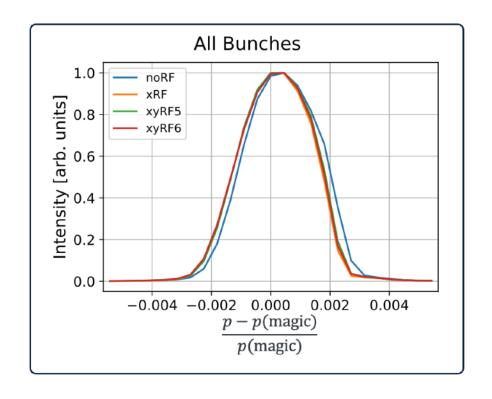
176 collaborators, 34 institutes, 7 countries

Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theoretical-Physicists and Engineers

Backup



C_e Corrections



The **largest** correction

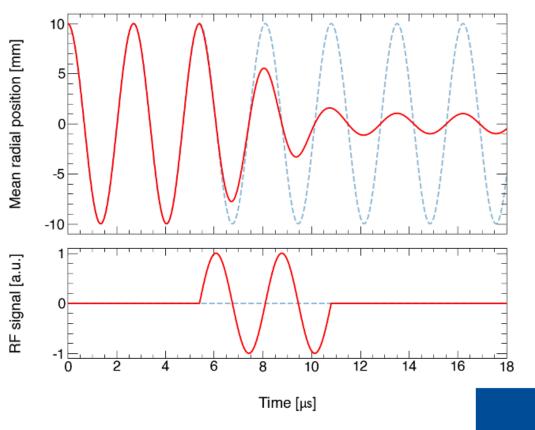
Increased confidence and small reduction of uncertainties to total of 27 ppb.

Trackers

Parasitic: Dispersion & Beam Dynamics (Improved uncertainties from MiniSciFi)

Calorimeters

Parasitic: Muon Dephasing taking time-in-bunch into account (improved robustness of method)


NEW! Minimally Intrusive Scintillating Fiber Detector (MiniSciFi)

Vertical and Horizontal versions

Dedicated studies: Cross-checks and uncertainty determination (tracker)

RF-Matching

- RF acts like a forced harmonic oscillator (for 6 μs)
- If tuned correctly to the CBO frequency:
 - Phase-shifts different muon distributions
 - Reduces the oscillation of the mean of the particle ensemble (reduces the coherence)

*illustration of the effect

Split data into 4 datasets noRF, xRF, xyRF5, xyRF6

Total Corrections

Quantity	Correction terms (ppb)	Uncertain (ppb)	ıty
ω_a^m (statistical)		434	
ω_a^m (systematic)		56	
C_e	489	53	
C_p	180	13	
$C_{ml}^{'}$	-11	5	
C_{pa}	-158	75	
$f_{\text{calib}}\langle \omega_p(x,y,\phi) \times M(x,y,\phi) \rangle$		56	
B_k	-27	37	
$B_q^{"}$	-17	92	
$u_p'(34.7^{\circ})/\mu_e$		10	
m_{μ}/m_e		22	
$g_e/2$	• • •	0	
Total systematic		157	15
Total fundamental factors		25	
Totals	544	462	

Quantity	Correction (ppb)	Uncertainty	(ppb)
ω_a^m (statistical)		201	
ω_a^m (systematic)	• • •	25	
C_e	451	32	
C_p	170	10	
C_{pa}	-27	13	
C_{dd}	-15	17	
C_{ml}	0	3	
$f_{\rm calib} \cdot \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$		46	
B_k	-21	13	
B_q	-21	20	
$\mu_p'(34.7^{\circ})/\mu_e$		11	
m_{μ}/m_e		22	
$g_e/2$		0	
Total systematic for \mathcal{R}'_{μ}		70	78
Total external parameters		25	
Total for a_{μ}	622	215	

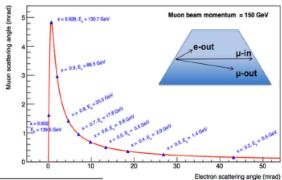
0 111	Correction	Uncertainty
Quantity	(ppb)	(ppb)
ω_a^m (statistical)		114
ω_a^m (systematic)		30
C_e	347	27
C_p	175	9
C_{pa}	-33	15
C_{dd}	26	27
C_{ml}	0	2
$\langle \omega_p' \times M \rangle$ (mapping, tracking)		34
$\langle \omega_p' \times M \rangle$ (calibration)		34
B_k	-37	22
B_q	-21	20
$\mu_{\scriptscriptstyle \mathcal{D}}'/\mu_B$		4
m_{μ}/m_e		22
Total systematic for \mathcal{R}'_{μ}		76
Total for a_{μ}	572	139

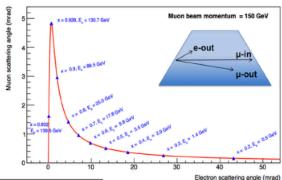
PRL 126, 141801 (2021)

PRL 131, 161802 (2023)

arXiv:2506.03069

PRL (2025) Accepted




MUonE uses a new, independent evaluation of a^{HLO}

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1 - x) \Delta \alpha_{had}[t(x)]$$

 Δa_{had} : hadronic contribution to the running of α in the space-like region

 $\Delta a_{had}(t)$: can be extracted from the shape of $\mu e \rightarrow \mu e$ differential cross section

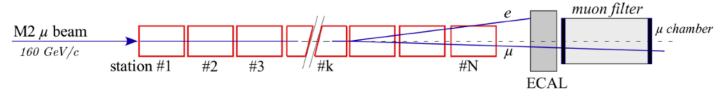


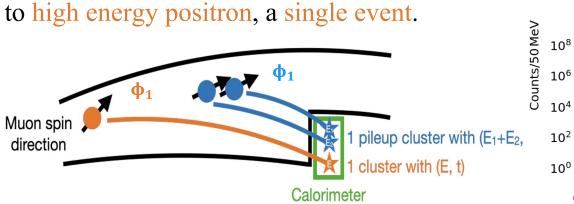
Figure 24: Schematic view of the MUonE experimental apparatus (not to scale).

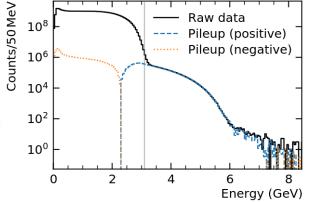
Conclusions

- The MUonE Phase I is ongoing with reduced setup MiniMUonE
- 3 more weeks of data taking as main users of the M2 beamline
- Next step:
 - Analysis of the data taken during 2025
 - R&D activities to improve the experimental apparatus
 - · e.g. SciFi Muon Filter, IR HAM, mechanics of the tracking stations...
- Full Setup ready after the Long Shutdown 3 (~2029)
- More info about the MUonE experiment with some preliminary results will be given in Eugenia Spedicato's talk "Tackling the muon g-2 anomaly with the MUonE experiment at CERN"

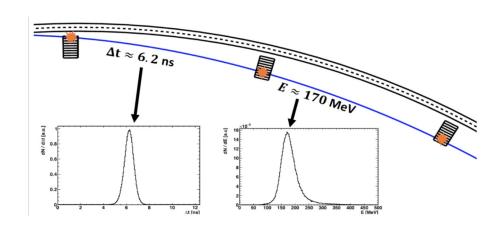
07/07/25

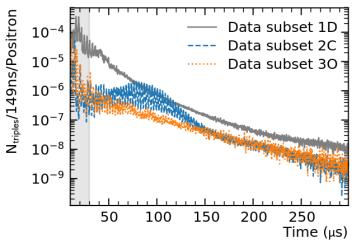
MUonE detector at CERN, EPS-HEP 2025


23


30

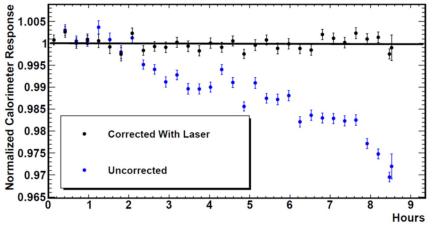
Pile-up and Lost Muon


• Low energy positrons with different phase measured in calorimeter, contributing to pile-up event; compares

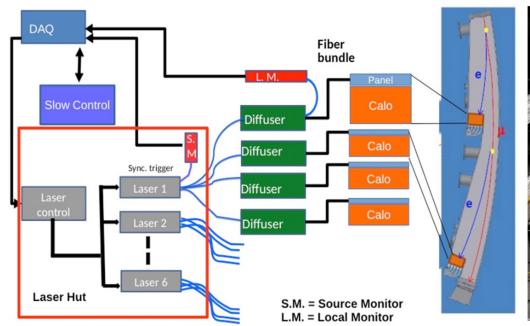


pileup model uncertainty, ~ 3 ppb

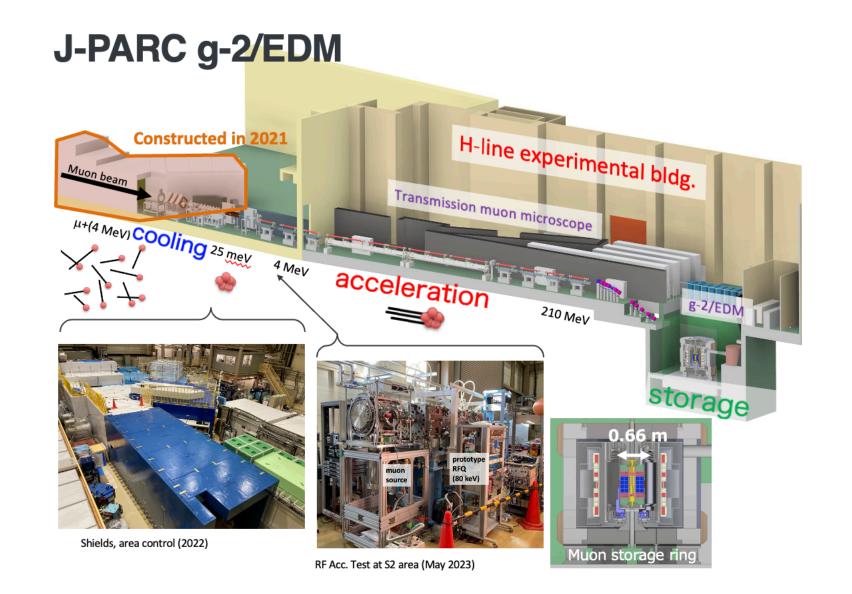
- Muons impact on vicinity of the SR, losses energy, exits the SR before decaying into positrons.
- Lost muons introduce time-dependent distortion of measured positrons.



Muon lost time distribution for different sub-datasets.

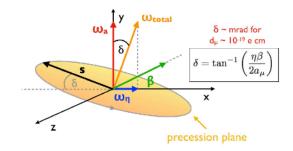

Laser Calibration

- Sends laser pulse synchronously on all calorimeter channels:
 - o provide calibration for the SiPMs response,
 - short and long term calibration of the SiPM gain function,
 - troubleshoot calorimeter and DAQ systems,
 - additional synchronization signals.


Stable gain 10⁻⁴ achieved

J-PARC g-2/EDM

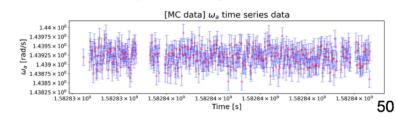
from Muon g-2 at Fermilab


- Muon EDM results
- More Beyond Standard Model Analysis:
 - · CPT/Lorenz-violating
 - Dark Matter

BSM searches (EDM, CPT/LV, DM)

Muon Electric Dipole Moment (EDM)

- The spin precession plane is tilted in the presence of the EDM.
- Run-2/3 analysis to be announced soon!
- Current limit (BNL): 1.8 × 10⁻¹⁹ e · cm
 → Projected limit: ~ O(10⁻²⁰ e · cm)

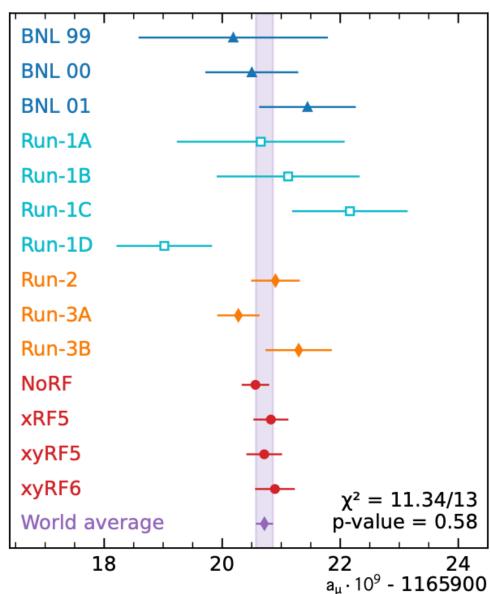


CPT and Lorentz Invariance Violation

- ω_a modulated at the sidereal motion freq.
- Run-2/3 analysis in review.
- Current limit (BNL): $1.4 \times 10^{-24} \text{ GeV} \rightarrow$ Projected limit (FNAL Run-2/3): $\mathcal{O}(10^{-25}) \text{ GeV}$

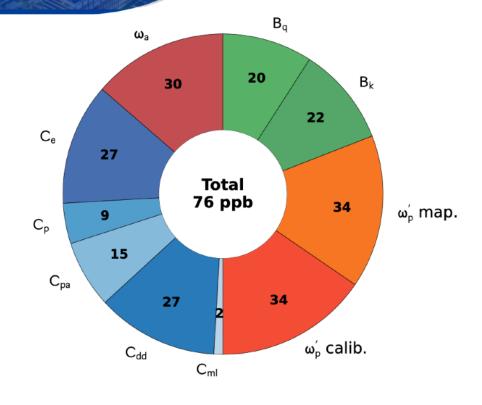
Ultralight Muonic Dark Matter (scalar)

- ω_a modulated at the DM Compton frequency.
- Run-2/3 analysis in progress.


from others

- J-PARC g-2/EDM experiment plans to take data in the next years
 - Complementary technique, no electric fields, not at the magic momentum
 - goal: a 450 ppb measurement
- Theory community including experimental input for data-driven HVP determination
 - including the MUonE experiment, complementary input data

完币 NSTITUTE


allows to demonstrate consistency

Final Systematics

O	Correction	Uncertainty
Quantity	(ppb)	(ppb)
ω_a^m (statistical)		114
ω_a^m (systematic)	• • • •	30
$\overline{C_e}$	347	27
C_p	175	9
C_{pa}	-33	15
C_{dd}	26	27
C_{ml}	0	2
$\overline{\langle \omega_p' \times M \rangle}$	• • • •	48
B_k	-37	22
B_q	-21	20
$\overline{\mu_p'/\mu_B}$	•••	4
m_{μ}/m_e	•••	22
Total systematic for \mathcal{R}'_{μ}		76
Total for a_{μ}	572	139

TDR goal : 100 ppb √

- "Evenly" distributed
- No dominant source
- Further improving would require reducing in many categories