
Leptogenesis via scalar doublet decay in the Scotogenic model

Yurika Sekikawa (Yokohama National University)

In collaboration with Joe Sato, Kento Asai, Masato Yamanaka

work in progress

Why neutrino mass so small?

neutrinos are Dirac fermions? (SM+right handed neutrino)

Neutrino mass

$$y_{\nu}\bar{L}\tilde{\Phi}\nu_{\rm R} + \text{h.c.} \longrightarrow \mathcal{M}_{\nu} = y_{\nu}\frac{v}{\sqrt{2}}$$

 $\mathcal{O}(0.1)eV$ needs $y_{\nu} \sim 10^{-13}$

Seesaw mechanism? (right-handed neutrinos are Majorana)

$$y_{\nu}\bar{L}\tilde{\Phi}\nu_{R} + \frac{1}{2}M\bar{\nu}_{R}^{c}\nu_{R} + \text{h.c.}$$

$$\longrightarrow \mathcal{M}_{\nu} \simeq \frac{y_{\nu}^{2}v^{2}}{M}$$

Requires very heavy Majorana masses

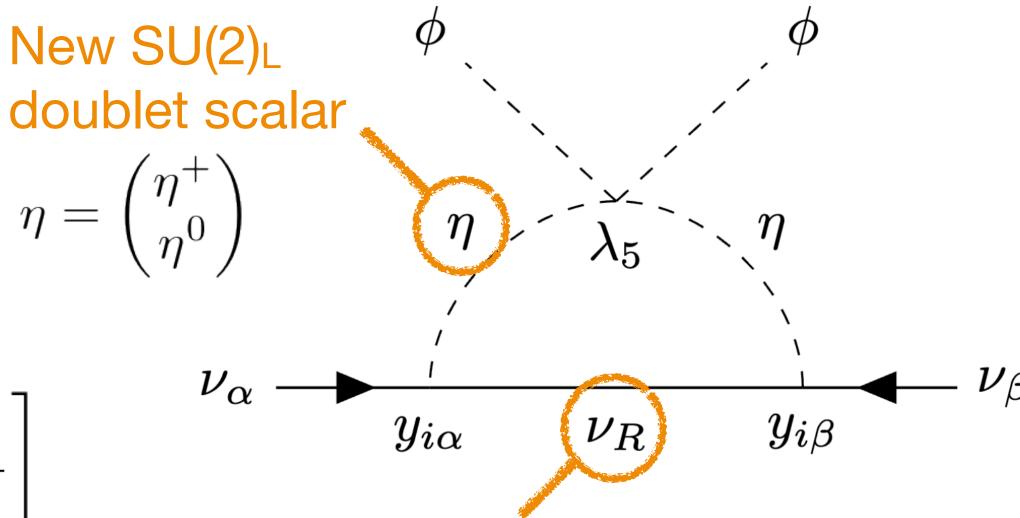
Neutrinos are extremely light compared to charged leptons and quarks

Some mechanism?

Neutrino mass generated radiatively

Radiative Seesaw Model

- massless at tree level
- generated neutrino mass radiatively at one or more loops


Suppression from loop factors and couplings

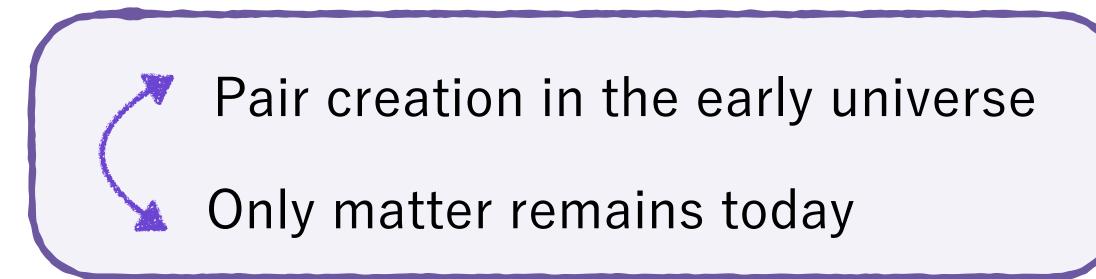
Scotogenic Model

♦ Generate neutrino masses via dark sector (η) radiatively

Neutrino mass

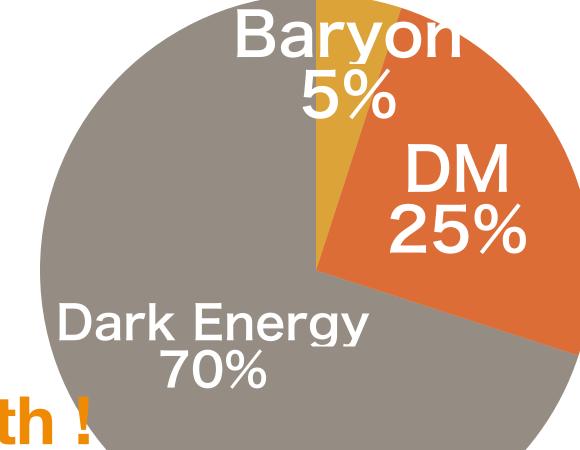
$$[\mathcal{M}_{\nu}]_{\alpha\beta} = \frac{\lambda_5 v^2}{16\pi^2} \sum_{i} \frac{y_{i\alpha} y_{i\beta} M_i}{m_{\eta}^2 - M_i^2} \left[1 - \frac{M_i^2}{m_{\eta}^2 - M_i^2} \log \frac{m_{\eta}^2}{M_i^2} \right]$$

Right-handed neutrino (i=1,2,3)


@ ICISE (Aug. 21. 2025)

E. Ma, Phys.Rev.D.73.077301 (2006) Z. Tao, Phys.Rev.D.54.5693 (1996)

Neutrinos as window into BSM physics


Cosmological issues suggesting BSM

Matter-antimatter asymmetry

why did particles remain, while antiparticles disappeared?

 Dark Matter Massive, long-lived, weakly interacting particle

Scotogenic model has the potential to explain them both !

Scenario

♦ DM candidate → N₁ or η

<u>n as DM candidate</u> $m_{\eta} < M_1 < M_2 < M_3$

- Neutrino masses
- ✓ DM abundance
- ✓ Baryon asymmetry

 N_1 as DM candidate

? Neutrino masses

? DM abundance

? Baryon asymmetry

$$M_1 < m_{\eta} < M_2 < M_3$$

$$M_1 < M_2 < m_{\eta} < M_3$$

$$M_1 < M_2 < M_3 < m_{\eta}$$

Scenario

♦ DM candidate → N₁ or η

η as DM candidate $m_{\eta} < M_1 < M_2 < M_3$

- Neutrino masses
- ✓ DM abundance
- ✓ Baryon asymmetry

N_1 as DM candidate

- ? Neutrino masses
- ? DM abundance
- ? Baryon asymmetry

$$M_1 < m_{\eta} < M_2 < M_3$$

$$M_1 < M_2 < m_{\eta} < M_3$$

$$M_1 < M_2 < M_3 < m_{\eta}$$

Scenario

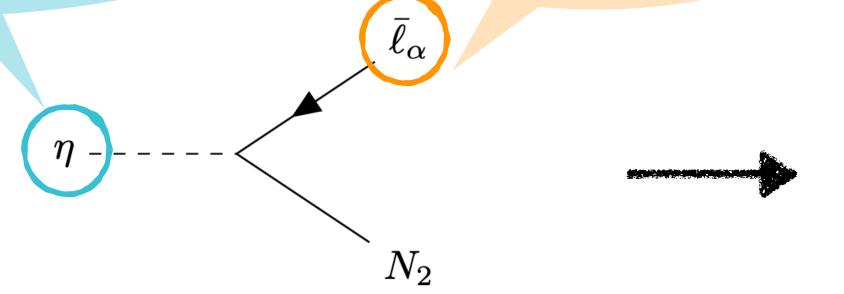
♦ DM candidate → N₁ or η

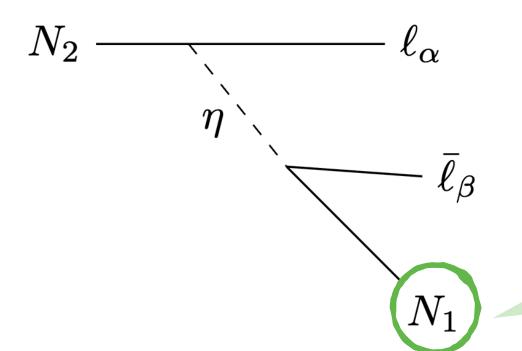
<u>n as DM candidate</u> $m_{\eta} < M_1 < M_2 < M_3$

- Neutrino masses
- ✓ DM abundance
- Baryon asymmetry

N_1 as DM candidate

- ? Neutrino masses
- ? DM abundance
- ? Baryon asymmetry


$$M_1 < m_{\eta} < M_2 < M_3$$


$$M_1 < M_2 < m_{\eta} < M_3$$

$$M_1 < M_2 < M_3 < m_{\eta}$$

η is thermaly produced in the early universe

Generation of lepton asym.

Production of Dark Matter

Baryon asymmetry from η decay

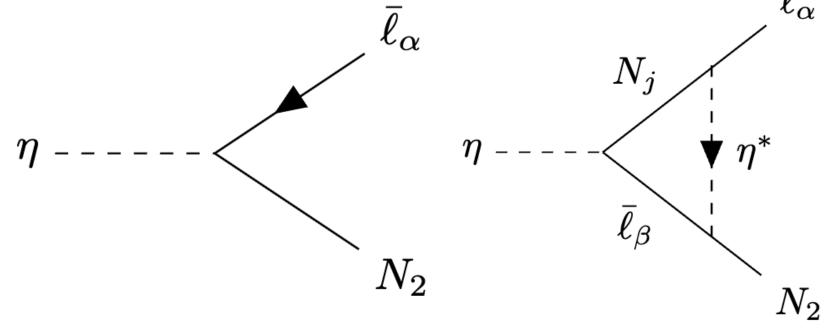
Baryon-asymmetry : the differences of the number of baryon and anti-baryon $B=n_b-n_{ar{b}}$

$$B = n_b - n_{\bar{b}}$$

Leptogenesis

Lepton asym. Baryon asym. sphaleron process

CP is conserved→no asymmetry


$$X \to A + B$$

 $\bar{X} \to \bar{A} + \bar{B}$

- Need CP violation
- CP asym. from interference of tree and 1-loop

CP asym. in this scenario

$$\epsilon_{i\alpha} = \frac{\Gamma(\eta \to N_i \bar{\ell}_{\alpha}) - \Gamma(\bar{\eta} \to N_i \ell_{\alpha})}{\Gamma(\eta \to N_i \bar{\ell}_{\alpha}) + \Gamma(\bar{\eta} \to N_i \ell_{\alpha})}$$

$$= \frac{1}{8\pi} \sum_{\beta,j} \frac{Im[Y_{i\alpha}^* Y_{i\beta}^* Y_{j\alpha} Y_{j\beta}]}{|Y_{\alpha i}|^2} \frac{M_i M_j}{m_{\eta}^2 - M_i^2} \left\{ 1 - \left(1 + \frac{m_{\eta}^2 - M_j^2}{m_{\eta}^2 - M_i^2}\right) \log\left(\frac{m_{\eta}^2 - M_i^2}{m_{\eta}^2 - M_j^2} + 1\right) \right\}$$

A parameter for Neutrino mass

Neutrino masses from radiative seesaw

$$[\mathcal{M}_{\nu}]_{\alpha\beta} = \frac{\lambda_5 v^2}{16\pi^2} \sum_{i} \frac{y_{i\alpha} y_{i\beta} M_i}{m_{\eta}^2 - M_i^2} \left[1 - \frac{M_i^2}{m_{\eta}^2 - M_i^2} \log \frac{m_{\eta}^2}{M_i^2} \right]$$

$$M_1 = 1 \,\mathrm{MeV}$$

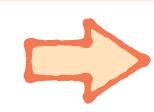
$$\lambda_5 = 1$$

$$M_2 = 9.5 \times 10^9 \,\mathrm{GeV}$$

 $M_3 = 9.8 \times 10^9 \, \text{GeV}$

$$u_{i\alpha} = \begin{cases} 6.03 \times 10^{-7} + 1.06 \\ -1.17 \times 10^{-2} + 5.95 \end{cases}$$

$$-1.71 \times 10^{-6} + 2.29 \times 10^{-6}$$
$$-2.34 \times 10^{-2} - 2.21 \times 10^{-2}$$


 $m_3 = 5.03 \times 10^{-2} eV$

$$-1.96 \times 10^{-6} - 5.23 \times 10^{-7} i$$
$$6.87 \times 10^{-3} - 2.22 \times 10^{-2} i$$

$$m_{\eta} = 10^{10} \, \mathrm{GeV}$$

$$y_{i\alpha} = \begin{cases} -1.17 \times 10^{-2} + 5.93 \times 10^{-3}i \\ -1.33 \times 10^{-2} - 5.85 \times 10^{-5}i \end{cases}$$

$$y_{i\alpha} = \begin{pmatrix} 6.03 \times 10^{-7} + 1.06 \times 10^{-6}i & -1.71 \times 10^{-6} + 2.29 \times 10^{-6}i & -1.96 \times 10^{-6} - 5.23 \times 10^{-7}i \\ -1.17 \times 10^{-2} + 5.93 \times 10^{-3}i & -2.34 \times 10^{-2} - 2.21 \times 10^{-2}i & 6.87 \times 10^{-3} - 2.22 \times 10^{-2}i \\ -1.33 \times 10^{-2} - 5.85 \times 10^{-5}i & 4.14 \times 10^{-2} - 1.23 \times 10^{-2}i & 4.17 \times 10^{-2} + 3.60 \times 10^{-3}i \end{pmatrix}$$

neutrino masses and mixing can be reproduced!

$$\sin \theta_{12}^2 = 0.307$$

$$m_1 = 1.00 \times 10^{-31} eV$$

$$\sin \theta_{23}^2 = 0.561$$

$$m_2 = 8.65 \times 10^{-3} eV$$

$$\sin \theta_{13}^2 = 0.02195$$

$$\delta_{CP}/^{\circ} = 177$$

(From NuFit6.0)

Calculation of Lepton asym.

L-asym. is calculated by solving Boltzmann equation

equation of time evolution of number density

$$\frac{dn_L}{dt} + 3Hn_L = -\left\{n_{\Delta\eta} + n_{\eta}^{eq} \frac{n_L}{n_{\ell}^{eq}} \frac{n_N}{n_N^{eq}}\right\} \langle \Gamma_{\eta} \rangle - \left\{n_+ - n_+^{eq} \frac{n_N}{n_N^{eq}}\right\} \langle \Gamma_{\eta} \rangle + \left\{n_{\Delta\eta} n_+ - n_{\eta}^{eq} n_+^{eq} \frac{n_L}{n_{\ell}^{eq}}\right\} C_{spec} \langle \sigma v \rangle_{\eta\eta \to \phi\phi}$$

$$n_{\Delta\eta} = n_{\bar{\eta}} - n_{\eta}$$
$$n_{+} = n_{\bar{\eta}} + n_{\eta}$$

 n^{eq} : number density in thermal equilibrium

 C_{spec} : Coefficient converting Higgs asym. to lepton asym.

solve a set of three coupled differential equations numerically

Calculation of Lepton asym.

L-asym. is calculated by solving Boltzmann equation

equation of time evolution of number density

$$\frac{dn_L}{dt} + 3Hn_L = -\left\{n_{\Delta\eta} + n_{\eta}^{eq} \frac{n_L}{n_{\ell}^{eq}} \frac{n_N}{n_N^{eq}}\right\} \langle \Gamma_{\eta} \rangle - \left\{n_+ - n_+^{eq} \frac{n_N}{n_N^{eq}}\right\} \langle \Gamma_{\eta} \rangle$$

$$+ \left\{n_{\Delta\eta} n_+ - n_{\eta}^{eq} n_+^{eq} \frac{n_L}{n_{\ell}^{eq}}\right\} C_{spec} \langle \sigma v \rangle_{\eta\eta \to \phi\phi}$$

$$n_{\Delta\eta} = n_{\bar{\eta}} - n_{\eta}$$
$$n_{+} = n_{\bar{\eta}} + n_{\eta}$$

 n^{eq} : number density in thermal equilibrium

 C_{spec} : Coefficient converting Higgs asym. to lepton asym.

solve a set of three coupled differential equations numerically

Calculation of Lepton asym.

L-asym. is calculated by solving Boltzmann equation

equation of time evolution of number density

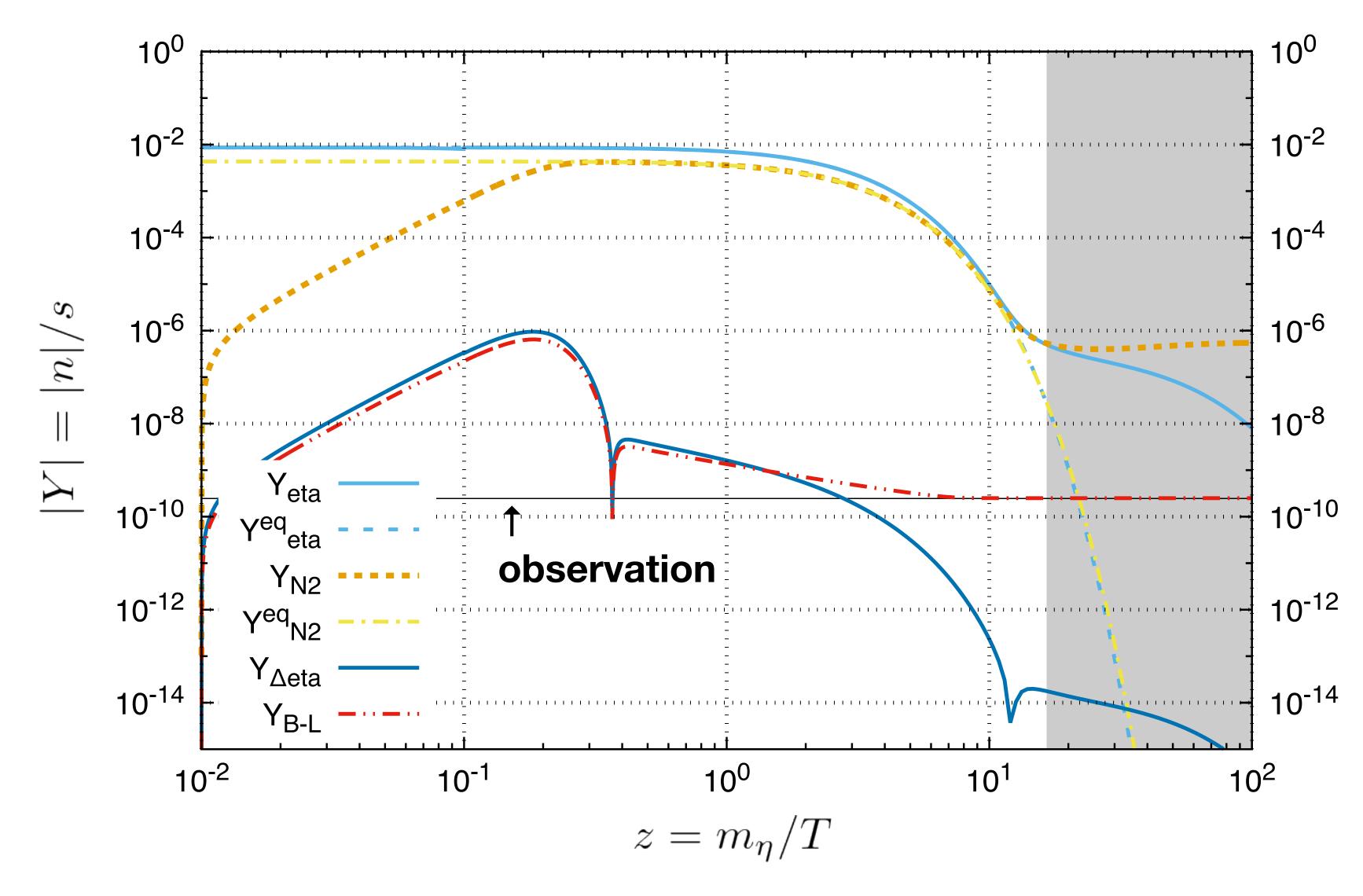
$$\frac{dn_L}{dt} + 3Hn_L = -\left\{n_{\Delta\eta} + n_{\eta}^{eq} \frac{n_L}{n_{\ell}^{eq}} \frac{n_N}{n_N^{eq}}\right\} \langle \Gamma_{\eta} \rangle - \left\{n_+ - n_+^{eq} \frac{n_N}{n_N^{eq}}\right\} \langle \Gamma_{\eta} \rangle$$

$$+ \left\{n_{\Delta\eta} n_+ - n_{\eta}^{eq} n_+^{eq} \frac{n_L}{n_{\ell}^{eq}}\right\} C_{spec} \langle \sigma v \rangle_{\eta\eta \to \phi\phi}$$

$$\frac{dn_{\Delta\eta}}{dt} + 3Hn_{\Delta\eta} = \left\{ n_{\Delta\eta} + n_{\eta}^{eq} \frac{n_L}{n_{\ell}^{eq}} \frac{n_N}{n_N^{eq}} \right\} \langle \Gamma_{\eta} \rangle + \left\{ n_+ - n_+^{eq} \frac{n_N}{n_N^{eq}} \right\} \epsilon \langle \Gamma_{\eta} \rangle
+ \left\{ n_{\Delta\eta} n_+ - n_{\eta}^{eq} n_+^{eq} \frac{n_L}{n_{\ell}^{eq}} \right\} C_{spec} \langle \sigma v \rangle_{\eta\eta \to \phi\phi}$$

$$\frac{dn_{+}}{dt} + 3Hn_{+} = -\left\{n_{+} + n_{+}^{eq} \frac{n_{N}}{n_{N}^{eq}}\right\} \langle \Gamma_{\eta} \rangle - \frac{1}{2} \left\{n_{+}^{2} - n_{+}^{eq2}\right\} \epsilon \langle \Gamma_{\eta} \rangle_{\eta\eta \to \phi\phi, \eta\eta \to AA}$$

$$\frac{dn_{N_2}}{dt} + 3Hn_{N_2} = \langle \Gamma_{\eta} \rangle \left\{ n_{\eta} - \frac{n_{N_2}}{n_{N_2}^{eq}} \frac{n_{\ell}}{n_{\ell}^{eq}} n_{\eta}^{eq} \right\}$$


solve a set of four coupled differential equations numerically

$$n_{\Delta\eta} = n_{\bar{\eta}} - n_{\eta}$$
$$n_{+} = n_{\bar{\eta}} + n_{\eta}$$

 n^{eq} : number density in thermal equilibrium

 C_{spec} : Coefficient converting Higgs asym. to lepton asym.

L asym. time evolution

- lacktriangle Unified framework for $m_{
 u}$, mixing, DM, Baryon Asym.
- The favored parameter space is completely different from the scenario with η as the DM candidate.

Summary

- → The radiative seesaw model is an attractive scenario that explains the smallness of neutrino masses through one or more loops.
- Scotogenic model generate neutrino mass via dark sector.
- In this model, neutrino masses, the baryon asymmetry, and DM abundance can all be explained in unified framework when the lightest right-handed neutrino is the DM candidate.
- The favored parameter space is completely different from the scenario with η as the DM candidate.