Searches for Baryogenesis and Dark Matter in B-meson decays at BABAR

Steven Robertson

Institute of Particle Physics, Canada steven.robertson@ualberta.ca

On behalf of the BABAR Collaboration

21st Rencontres du Vietnam: Flavour Physics Conference 2025 Quy Nhon, Vietnam Aug 17-23, 2025

Outline

- B-baryogenesis introduction
- BABAR overview
- Searches:

-
$$B^+ \rightarrow p + \psi_D$$

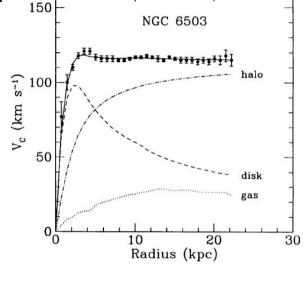
-
$$B^0 \rightarrow \Lambda + \psi_D$$

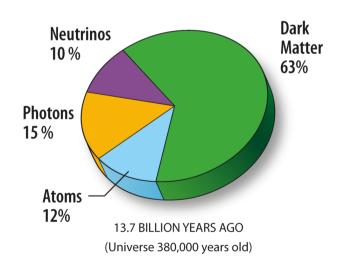
-
$$B^+ \rightarrow \Lambda_c^{+} + \psi_D$$

Phys. Rev. Lett. 131, 201801 (2023)

Phys. Rev. D 107, 092001 (2023)

Phys. Rev. D 3, L031101 (2025)




Dark matter and the BAU

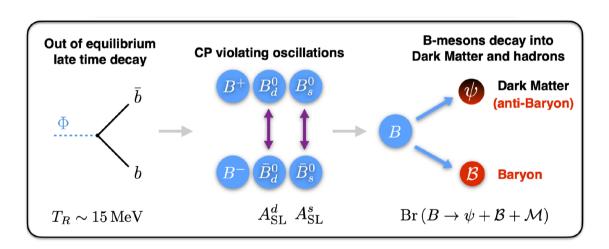
The particle physics Standard Model has no explanation for two of the biggest problems in cosmology:

The Baryon Asymmetry of the Universe (BAU)

- Sakharov conditions:
- Sakharov, A.D., JETP 5 (1967) 24
- Baryon number violation
- C and CP violation
- Deviation from thermal equilibrium

The nature of dark matter:

- Astronomical evidence for dark matter is overwhelming, all measurements to date are gravitational in nature
- The majority of the matter in the universe has an unknown composition

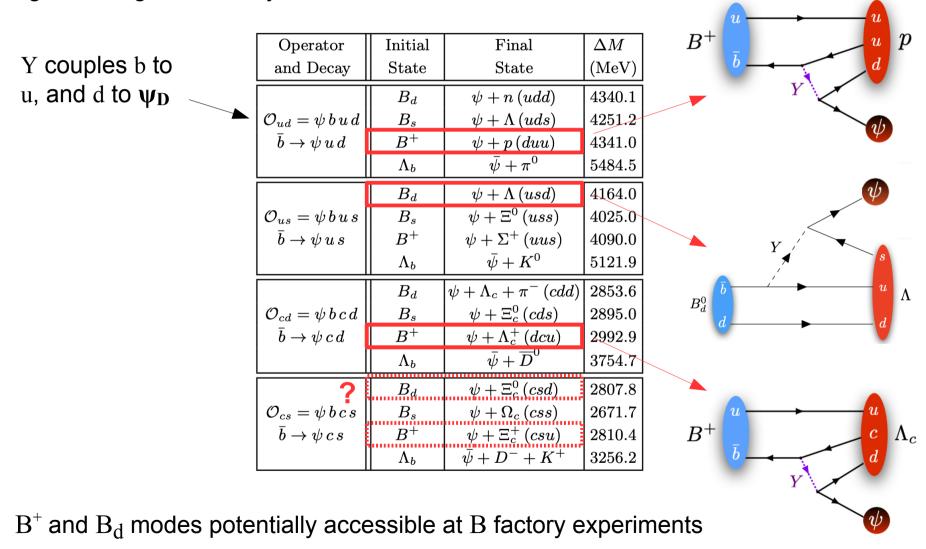

B Baryogenesis

Model provides a possible mechanism to explain dark matter abundance and baryon asymmetry of the universe (BAU):

- Postulates the existence of a light dark-sector anti-baryon (ψ_D) and a TeV-scale color-triplet bosonic mediator (Y)
- Matter antimatter asymmetry arises from CP violation in ${\bf B}^0$ ${\bf B}^0$ oscillations
- BAU results from B meson decays into a baryon and a dark sector anti-baryon ψ_D (+ mesons)

G. Elor, M. Escudero and A. E. Nelson, Phys. Rev. D 99, 035031 (2019).

G. Alonso-Alvarez, G. Elor and, and M. Escudero, Phys.Rev. D 104, 035028 (2021).

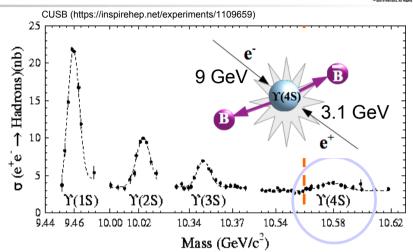

Visible and dark sectors have equal but opposite baryon number asymmetries, but total baryon number is conserved

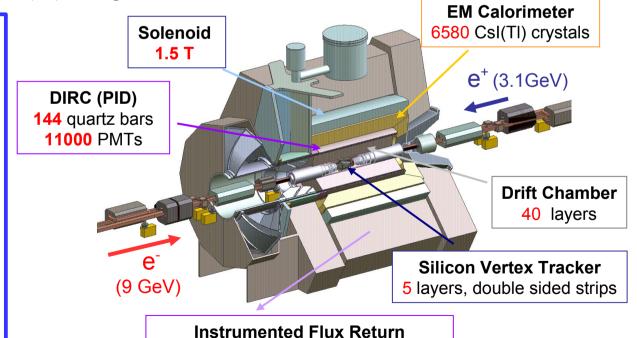
• Experimentally testable predictions of ${f B}
ightarrow \psi_D + {f eta}$ (+ additional light mesons)

Decay modes

Baryon asymmetry is produced by B^0 decays, but the same operators produce analogous charged B^+ decays as well:

BABAR experiment

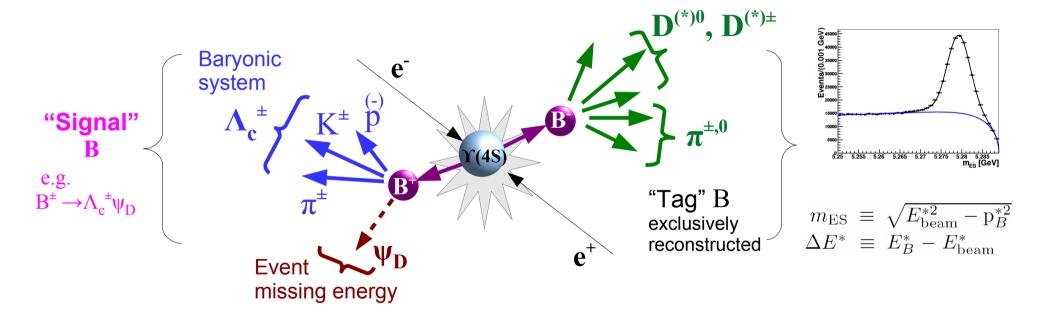



Asymmetric B Factory experiment at the SLAC National Accelerator Laboratory

- BABAR collected data from 1999 until 2008:
- 432 fb⁻¹ Υ (4S) "on peak" (~470 x 10⁶ \overline{BB} pairs)
- 53 fb⁻¹ non-resonant "off peak"
- Smaller samples at the $\Upsilon(2S)$ and $\Upsilon(3S)$ energies

Optimized for tracking and B vertex reconstruction, K - π particle identification, precision calorimetry, and μ ID

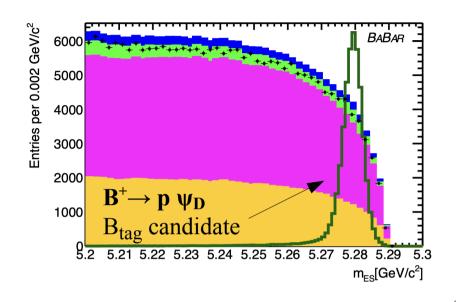
- Clean environment with large solid-angle detector coverage and good missing energy reconstruction
- Inclusive trigger (N_{tracks}>3) as well as dedicated low-multiplicity triggers


iron / RPCs (muon / neutral hadrons)

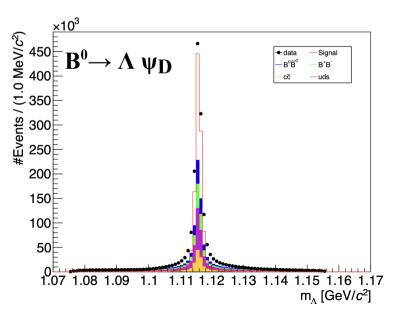
Methodology

B meson decays with missing energy have limited kinematic information available to uniquely identify the signal decay

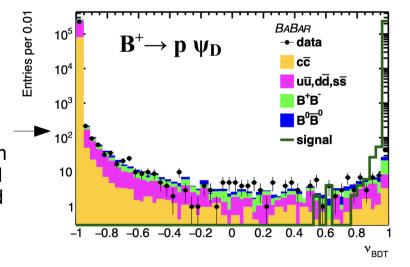
 Instead, exclusively reconstruct one of the B meson decays ("Tag B") in one of several thousand possible hadronic decay modes:


- Advantage: improves knowledge of signal kinematics and missing energy, and strongly suppresses combinatorial backgrounds
- Disadvantage: low reconstruction efficiency (~0.1%)

$$\begin{array}{c} B^+ \longrightarrow p + \psi_D \\ \text{and} \\ B^0 \longrightarrow \Lambda + \psi_D \end{array}$$



${f B}^+ \! o \! \psi_{f D} + {f p}$ and ${f B}^0 \! o \! \psi_{f D} + {f \Lambda}$

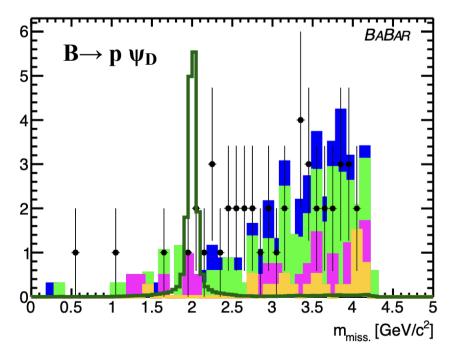


Reconstruct accompanying B meson from $\Upsilon(4S) \to B^{^+}\!B^{^-}$ and (or $B^0 \overline B^0$) and look for signal signature in the remainder of the event:

- identified proton (and no additional tracks), or
- reconstruct $\Lambda^0 \to p \; \pi^-$, including displaced vertex significance requirement and kinematic fit

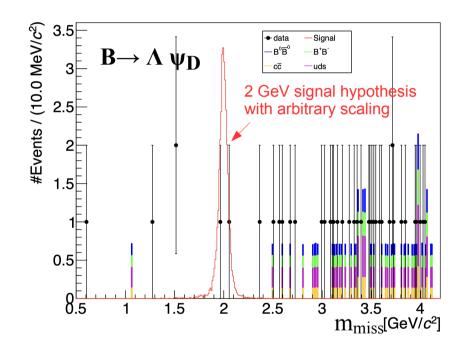
Boosted decision tree used to suppress continuum backgrounds based on event shape and kinematic variables

The dark sector ψ_D escapes undetected, but can be inferred from the event kinematics



Entries per 10 MeV/c²

Dark anti-baryon reconstruction


Missing energy 4-vector of "recoil" against the p or Λ yields the ψ_D invariant mass

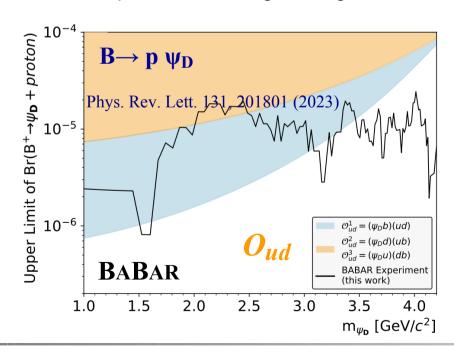
- For $B \rightarrow p \ \psi_D$, m_{miss} resolution varies from ~110 MeV/c² (low mass) to ~11 MeV/c² (high mass)
- Background estimated directly from m_{miss} sideband data

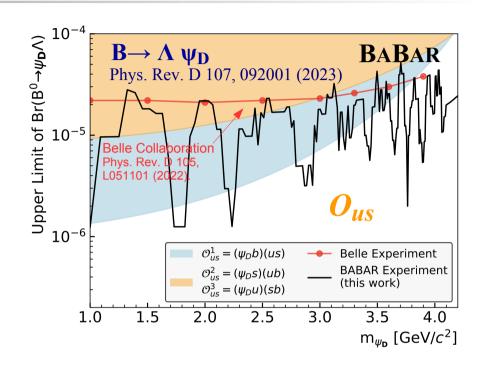
46 events pass signal selection

$$m_{\text{miss}}c^2 = \sqrt{(E_{B_{\text{sig}}}^* - E_{\text{p}}^*)^2 - |\vec{p}_{B_{\text{sig}}}^* - \vec{p}_{\text{p}}^*|^2c^2}$$

41 events pass signal selection

Scan the recoil m_{miss} distribution in steps of $\sigma(m_{miss})$ for evidence of a narrow signal peak above a smoothly varying background


Branching fraction limits

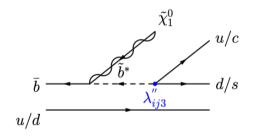

$B \rightarrow p \psi_D$:

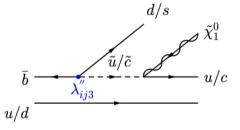
- a total of 127 mass hypotheses are tested
- largest local significance @ 3.3 GeV/c² corresponds to ~1 σ global significance

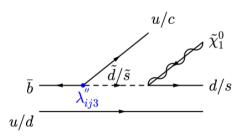
$B \rightarrow \Lambda \psi_D$:

- 193 mass hypotheses are tested
- largest local significance @ 3.7 GeV/c² corresponds to ~0.4 σ global significance

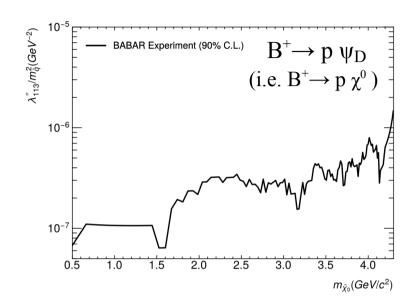
Branching fraction 90% confidence limits obtained at level of $10^{-6} - 10^{-5}$ for both modes:

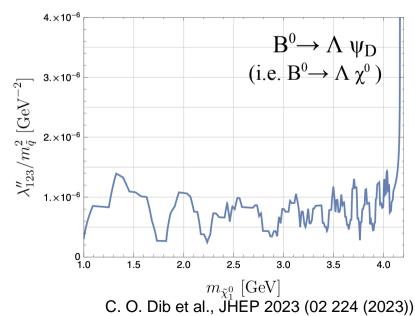

- Probes effective operators $O_{i,j} = (\psi_D b)(q_i q_j)$ with $q_i = \mathbf{u}$ and $q_j = \mathbf{d}$,s
- Results exclude a large fraction of the model parameter space




RPV SUSY interpretation

 $B\to \mathcal{B}$ + (missing energy) signature can also be generically interpreted in other new physics models


• e.g. missing neutralino in $B \to \mathcal{B} + \chi^0$ in R-Parity Violating SUSY model:



• Interpret as limits on RPV couplings λ''_{113} and λ''_{123}

Decay modes

Baryon asymmetry is produced by B⁰ decays, but the same operators

produce analogous charged B⁺ decays as well:

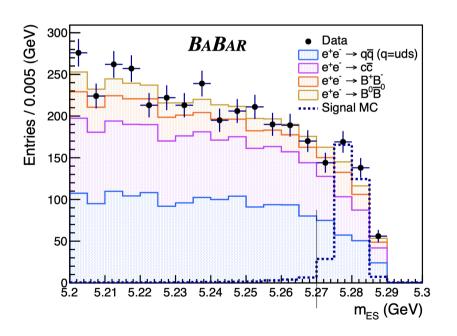
		_			
	Operator	Initial	Final	ΔM	B^+ u p
Y couples b to	and Decay	State	State	(MeV)	
u, and ${ m d}$ to $\psi_{ m D}$ $$		B_d	$\psi + n (udd)$	4340.1	Y
	$ig \mathcal{O}_{ud} = \psi b u d ig $	B_s	$\psi + \Lambda \left(uds ight)$	4251.2	
	$ar b o\psiud$	B^+	$\psi + p \left(duu ight)$	4341.0	Ψ
		Λ_b	$\bar{\psi} + \pi^0$	5484.5	
		B_d	$\psi + \Lambda \left(usd ight)$	4164.0	ψ
	$\mathcal{O}_{us} = \psi b u s$	B_s	$\psi + \Xi^0 \left(uss ight)$	4025.0	
	$ar{b} ightarrow \psi u s$	B^+	$\psi + \Sigma^+ (uus)$	4090.0	Y /
		Λ_b	$ar{\psi} + K^0$	5121.9	, A
		B_d	$\psi + \Lambda_c + \pi^- (cdd)$	2853.6	$\frac{1}{b}$ $\frac{1}{\lambda}$
	$igg \mathcal{O}_{cd} = \psi b c d igg $	B_s	$\psi+\Xi_{c}^{0}\left(cds ight)$	2895.0	B_d^0
	$ar{b} ightarrow \psi c d$	B^+	$\psi + \Lambda_c^+ (dcu)$	2992.9	
		Λ_b	$\bar{\psi} + \overline{D}^0$	3754.7	
		B_d	$\psi + \Xi_c^0 \left(csd \right)$	2807.8	
	$\begin{array}{ c } \mathcal{O}_{cs} = \psi b c s \\ \bar{b} \to \psi c s \end{array}$	B_s	$\psi + \Omega_c \left(css \right)$	2671.7	
	$\bar{b} ightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$	2810.4	
		Λ_b	$\bar{\psi} + D^- + K^+$	3256.2	

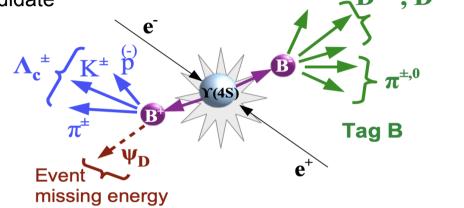
• B⁺ and B_d modes potentially accessible at B factory experiments

Decay modes

Baryon asymmetry is produced by B^0 decays, but the same operators produce analogous charged B^+ decays as well:

$$B^+ \rightarrow \Lambda_c^+ + \psi_D$$

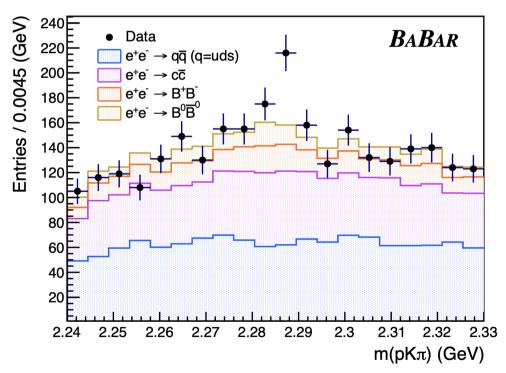



$B^+ \rightarrow \psi_D + \Lambda_c^+$

Operator $O_{cd} = \psi bcd$ can be accessed via $B^+ \to \Lambda_c^+ \psi_D$ mode

• Hadronic tag reconstruction of B_{tag} with $\Lambda_c^{\ +}$ candidate reconstructed from remaining tracks

• Λ_c^+ reconstructed via $\Lambda_c^+ \to p \ K^- \pi^+$ (all charged tracks)


- Require exactly three high quality tracks, satisfying $\Lambda_c^+ \to p \; K^- \pi^+$ charge and particle ID expectations
- Backgrounds arise primarily from qq
 (continuum); very low background
 from B → baryons + X;
- Analysis based on 399 fb⁻¹ of data (~2 x 10⁸ B⁺B⁻ events), with an additional 32 fb⁻¹ used for (unblinded) analysis optimization and subsequently discarded

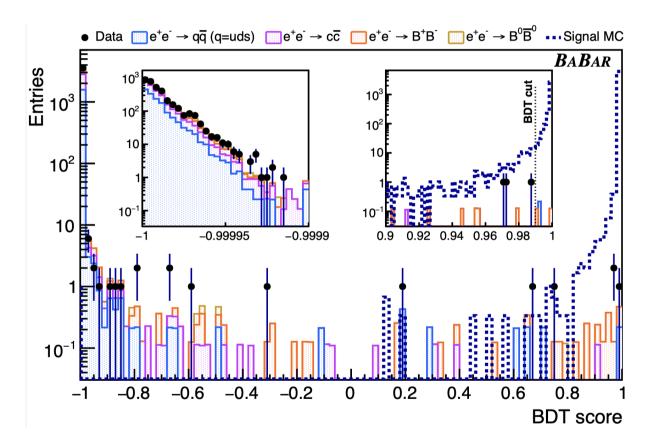
Signal reconstruction

Signal Λ_c^+ reconstruction is validated using m_{ES} sideband region data

- Clear Λ_c^+ peak visible from continuum $q\overline{q}$ (q = u,d,s,c) with an incorrectly reconstructed B_{tag}
- Not present in continuum MC, but enables data-driven background estimate in m_{ES} signal region, as well as check of resolution of $m(pK\pi)$ in data

 $\Lambda_c^{^+}$ candidates in m_{ES} sideband region

Continuum $\Lambda_c^{\ +}$ events and $B\to$ baryons+X backgrounds typically have low missing energy and additional neutral particles besides the $B_{tag}^{\ }$ and $\Lambda_c^{\ +}$ candidates

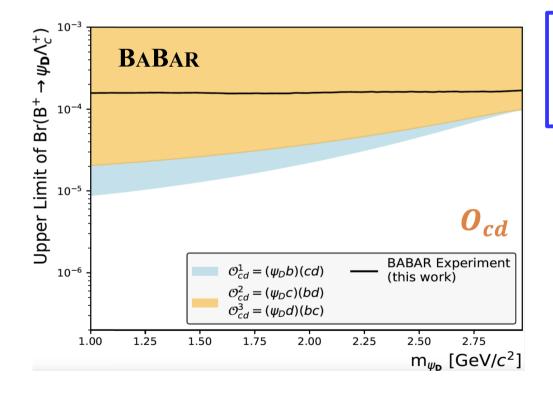

- Multivariate (BDT) selector to suppress remaining backgrounds
- 14 inputs, based on overall event shape, B_{tag} properties, Λ_c^+ candidate properties, and additional detector activity in the event

Background rejection

Boosted decision tree (BDT) provides extremely high suppression of remaining backgrounds with little loss of signal efficiency

- 32 fb⁻¹ data sample used for input validation and training, then discarded
- Signal samples spanning full kinematically accessible ψ_D mass range.
- Optimization was performed blinded
- Require BDT score > 0.99

No events survive the BDT selection (~0.4 expected background)


• Three events close to signal region were examined and found to be consistent with $q\overline{q}$ continuum production of $\Lambda_c^{\ ^+}$

Results

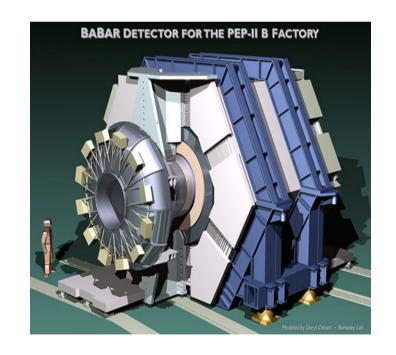
Signal significance determined as a function of ψ_D mass by scanning across $m(\psi_D)$ in steps of $\sigma(m(\psi_D))$

- 4-vector of ψ_D obtained from inferred B_{sig} kinematics in range $0.94 < m(\psi_D) \ < 2.99 \ GeV/c^2$
- $m(\psi_D)$ resolution varies from $60 20 \text{ MeV/c}^2$ as a function of mass

Branching fraction limit @ 90% CL $B(B^+ \to \Lambda_c^+ \psi_D^-) \leq (1.6-1.7) \ x \ 10^{-4}$ over kinematically accessible mass range

Exclusive $B^+ \to \Lambda_c^{+} \psi_D^{}$ branching fraction expected to range from 10% - 100% of inclusive $B(B^+ \to \Lambda_c^{+} \psi_D^{} X),$ depending on mass

• Substantial new constraint on model parameter space for O_{cd} operator


Conclusion

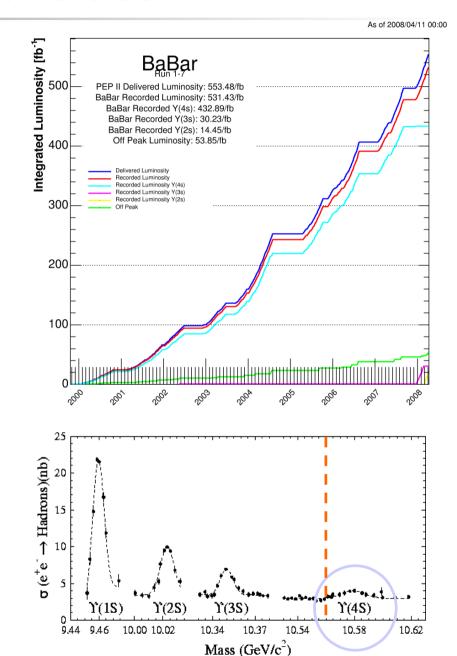
Clean B factory environment is extremely well suited to searches for light dark sector signatures, and precision probes of new physics:

- Two 2023 BABAR papers substantially reduce parameter space for B-mesogenesis operators $O_{ud} = \psi bud$ and $O_{us} = \psi bus$
- 2025 results for $B^+ \to \Lambda_c^+ \psi_D$ search constrain operator $O_{cd} = \psi bcd$

$$\begin{split} B^0 &\to \Lambda \; \psi_D \qquad & \text{Phys. Rev. D 107, 092001 (2023)} \\ B^+ &\to p \; \psi_D \qquad & \text{Phys. Rev. Lett. 131, 201801 (2023)} \\ B^+ &\to \Lambda_c^+ \; \psi_D \qquad & \text{Phys. Rev. D 3, L031101 (2025)} \end{split}$$

Unique **BABAR** data set remains productive more than 17 years after the end of data taking!

Extra Material

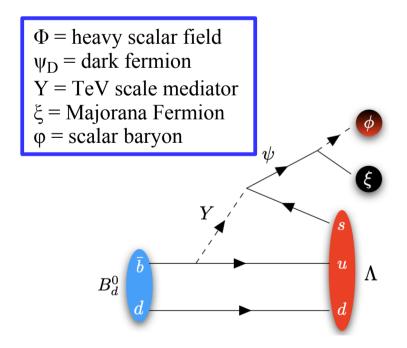


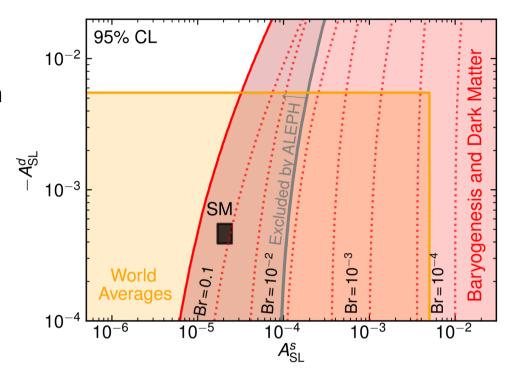
BABAR data sets

BABAR collected data from 1999-2008

- 432 fb⁻¹ Υ(4S) "onpeak" (~470 x 10⁶ BB pairs)
- 53 fb⁻¹ non-resonant "offpeak"
 - collected ~40MeV below Y(4S) peak
- Samples of "narrow Y" events collected during last few months of running:
 - $122 \times 10^6 \text{ } \Upsilon(3\text{S}) \text{ decays}$
 - 99 x $10^6 \text{ } \Upsilon(2\text{S}) \text{ decays}$

Process	Cross section (nb)
bb	1.1
cc	1.3
light quark	qq ~2.1
$ au^+ au^-$	0.9
e ⁺ e ⁻	~40


$B^+ \rightarrow \Lambda_c^+ + \psi_D$


BDT inputs:

	Input	Type	Description
_	R_2	Event	Ratio of the second to the zeroth Fox-
		$_{\mathrm{shape}}$	Wolfram moment [20] computed using
			all tracks and neutral clusters
	purity	$B_{ m tag}$	Fraction of correctly reconstructed B
			mesons in each B_{tag} mode
i	ntpurity	$B_{ m tag}$	Integrated purity of the overall B_{tag}
			sample as a function of the value of a
			cut applied on purity
	$B_{ m mode}$	$B_{ m tag}$	Reconstructed decay mode of the $B_{\rm tag}$
	$m_{ m ES}$	B_{tag}	$B_{\rm tag}$ invariant mass
	ΔE	$B_{ m tag}$	Difference between the B_{tag} energy and
			the beam energy
	$B_{ m thrust}$	B_{tag}	The magnitude of the B_{tag} thrust
	$B_{ m thrust Z}$	$B_{ m tag}$	Component of the B_{thrust} along the z-
			axis (i.e. the e^+e^- collision axis)
7	$m_{pK^+\pi^-}$ χ^2	Λ_c^+	Reconstructed invariant mass of the Λ_c^+
	-		candidate
	χ^2	Λ_c^+	χ^2 of the fit of the Λ_c^+ candidate
	$N_{ m neut}$	ECL	Total number of additional neutral
			clusters
	N_{π^0}	ECL	Number of additional π^0 candidates
	$E_{ m extra}$	ECL	Sum of the energies of all additional
			neutral clusters
	$\cos heta_{\psi_D}$	ψ_D	Cosine of the polar angle of the miss-
			ing energy 4-vector in the laboratory
			frame.

- Baryon number asymmetry depends on the level of CP violation in B mixing, and on the branching fraction to dark baryons
- Dark baryon mass must be large enough to protect against proton decay but small enough to permit production from B meson decays

$$Y_{\mathcal{B}} \simeq 8.7 \times 10^{-11} \frac{\text{Br}(B \to \psi \,\mathcal{B} \,\mathcal{M})}{10^{-3}} \sum_{q} \alpha_q \, \frac{A_{\text{SL}}^q}{10^{-3}}$$

 Dark baryon must decay rapidly into other dark sector particles (i.e. astronomical dark matter), to avoid decay to SM particles

Dark sector and BSM

Dark matter may carry charges for non-SM gauge interactions:

Effective Field Theory (EFT) provides a number of "portals" to access this dark sector:

Darkonium:

Phys. Rev. Lett. 128 021802 (2022)

Axion-like particles:

Phys. Rev. Lett. 128, 131802 (2022).

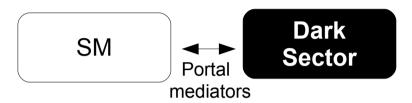
Dark Leptophilic scalar:

Phys. Rev. Lett. 125,181801 (2020).

Six quark dark matter:

Phys. Rev. Lett. 122, 072002 (2019).

Dark photon:


Phys. Rev. Lett. 113, 201801 (2014); Phys. Rev. Lett. 119, 131804 (2017).

Muonic dark force:

Phys. Rev. D 94, 011102 (2016).

Dark Higgs bosons:

Phys. Rev. Lett. 108, 211801 (2012)

$$\mathcal{L} = \sum_{n=k+l-4} \frac{c_n}{\Lambda^n} \mathcal{O}_k^{(\mathrm{SM})} \mathcal{O}_l^{(\mathrm{med})} = \mathcal{L}_{\mathrm{portals}} + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$

$$= -\frac{\epsilon}{2} B^{\mu\nu} A'_{\mu\nu} - H^\dagger H (AS + \lambda S^2) - Y_N^{ij} \bar{L}_i H N_j + \mathcal{O}\left(\frac{1}{\Lambda}\right)$$
 Vector portal Higgs portal Neutrino portal

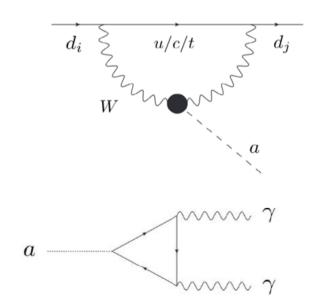
Dark sector @ BABAR:

- Production of on-shell dark bosons via $e^+e^- \rightarrow \gamma Z'$ "radiative" and $e^+e^- \rightarrow f f Z'$ "-strahlung" processes
- Light dark sector particles can be produced in decays of B and D mesons

Extensive BABAR program of dark sector and BSM searches

Many extensions of SM include spontaneously-broken global symmetries, resulting in pseudo-Goldstone bosons known as **Axion-Like Particles (ALPs)**

- Can potentially help resolve issues of naturalness of SM parameters but may also serve as mediators to dark sectors
- ALPs (a) couple primarily to pairs of SM gauge bosons.

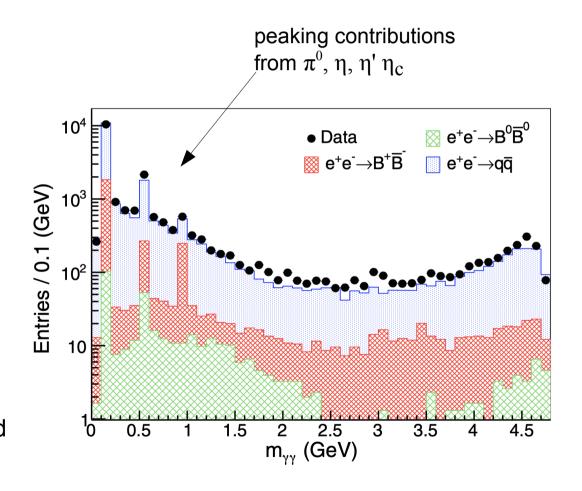

coupling $\mathcal{L}=-rac{g_{aW}}{4}aW_{\mu
u}^{b} ilde{W}^{b\mu
u}$ rs $_{\mathsf{SU(2)_W}}$ field strength tensor

E. Izaguirre et al., PRL 118 (2017) 111802

Can be produced in FCNC B decay processes, specifically $\mathbf{B} \to \mathbf{Ka}$

- $a \rightarrow \gamma \gamma$ with nearly 100% BF for m(a) < m(W)
- For low axion mass and small coupling, the axion lifetime can become "long", i.e. non-prompt.

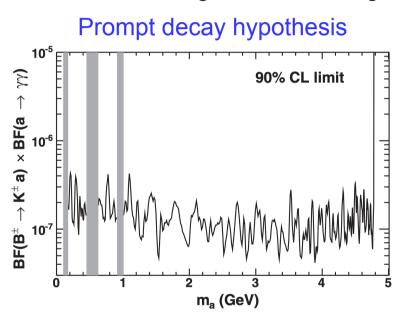
$$\tau \sim 1 \ / \ m_a^{\ 3} \ g_{aW}^2$$

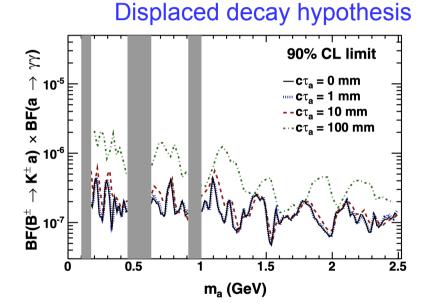


Phys. Rev. Lett. 128, 131802 (2022)

BABAR searches for ALPs in $B^+ \to K^+ a$ ($a \to \gamma \gamma$) in 4.72 x 10⁸ $B\bar{B}$ pairs (424 fb⁻¹) collected at the $\Upsilon(4S)$ energy.

- Exclusively reconstruct B meson via well-identified K and photons, then "bump hunt" in the reconstructed γγ mass
- Kinematic fit to improve resolution
- Boosted decision trees using kinematic variables from "rest of event" to suppress continuum e⁺e⁻ → qq (q = u,d,s,c) and BB backgrounds
- Analysis optimized and validated on 8% of data set (subsequently discarded), then search performed on remainder of (blinded) dataset

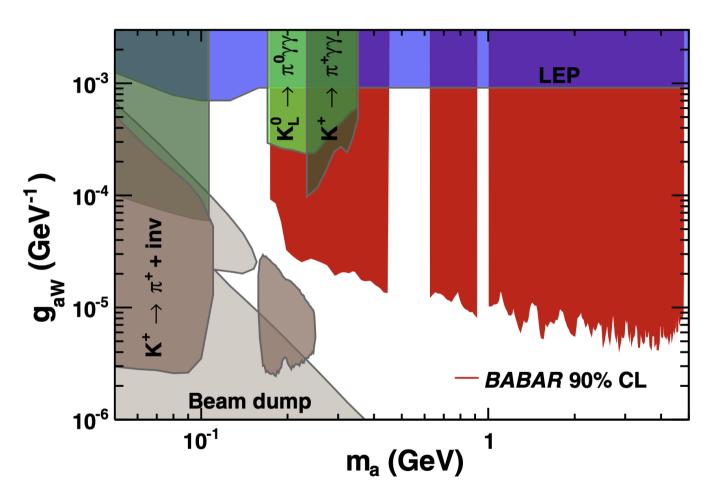




Phys. Rev. Lett. 128, 131802 (2022)

Scan $m_{\gamma\gamma}$ with steps equal to the signal mass resolution (~ 8 – 14 MeV)

461 signal mass hypotheses fit with unbinned ML fits to a hypothetical signal peak
 + smooth background over range of ~24 – 60 σ around each hypothesis



In low mass region ($m_{\gamma\gamma}$ < 2.5 GeV) the signal sensitivity is also assessed for non-prompt signal hypotheses: $c\tau$ = 1, 10, 100mm

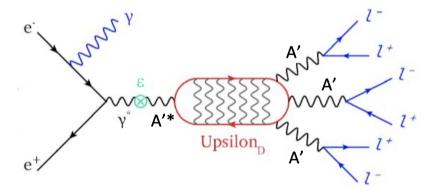
- displaced vertex not reconstructed, but ALP resolution degraded
- No significant excess observed

Phys. Rev. Lett. 128, 131802 (2022)

Set 90% CL exclusion bounds on the ALP coupling g_{aW}

Improvements of up to two orders of magnitude over previous limits

Search for Darkonium

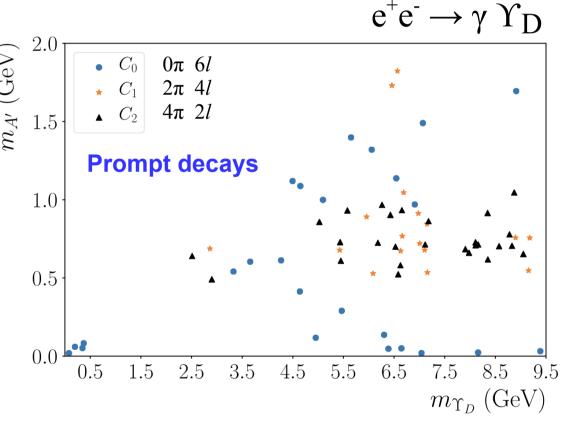

Self-interacting dark matter, i.e. dark matter bound states can arise in simple dark photon models in which the A' couples strongly to the dark matter fermion (χ) via coupling α_D

- Two lowest bound states are η_D (J^{PC} = 0⁻⁺) and Υ_D (J^{PC} = 1⁻⁻)
- Dark photon A' mixes with SM photon via kinetic mixing with strength

Produced via $e^+e^- \to \gamma \ \Upsilon_D$, with

$$\Upsilon_D \to A'A'A'$$
 and $A' \to ff$ ($f = e, \mu, \pi$)

- Dark photon lifetime can be long for small masses and small kinetic mixing ε hence prompt and displaced vertex signatures
- BABAR search in six-track final state in 514 fb⁻¹

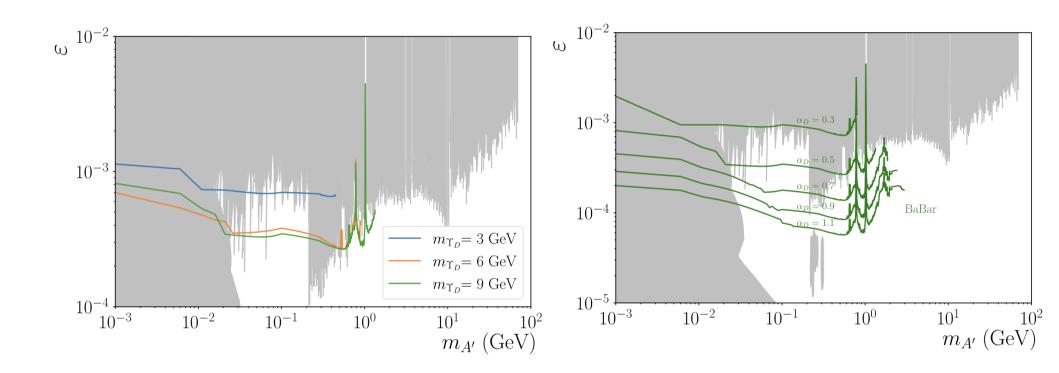


Search for Darkonium

PRL 128, 021802 (2022)

3 pairs of opposite-sign tracks (at least one lepton pair) which should all have same invariant mass

- Reconstruct Υ_D mass $\nearrow^{\oplus D}$ ISR photon may or may not be detected, but recoil $\overset{}{\cancel{\xi}}$ mass against Υ_D should be consistent with zero
- MVA used to suppress backgrounds
- Scan $m(\Upsilon_D)$ m(A') for evidence of peaks



No significant signals observed in either prompt or displaced decay searches

Search for Darkonium

PRL 128, 021802 (2022)

90% C.L. Upper limits placed on the kinetic mixing parameter ϵ

- As a function of m(A')
- For different values of $m(\Upsilon_D)$ and α_D

Dark sector and BSM

 $B^+ \to \Lambda_c^+ \psi_D$ Phys. Rev. D 111 (2025) 3, L031101

 $B^+ \to p \psi_D$ Phys. Rev. Lett. 131, 201801 (2023)

 $B^0 \rightarrow \Lambda \psi_D$ Phys. Rev. D 107, 092001 (2023)

Darkonium

Phys. Rev. Lett. 128 021802 (2022)

Axion-like particles Phys. Rev. Lett. 128, 131802 (2022).

Dark Leptophilic scalar Phys. Rev. Lett. 125,181801 (2020).

Six quark dark matter Phys. Rev. Lett. 122, 072002 (2019).

Dark photon Phys. Rev. Lett. 113, 201801 (2014); Phys. Rev. Lett. 119, 131804 (2017).

Muonic dark force Phys. Rev. D 94, 011102 (2016).

Dark Higgs bosons Phys. Rev. Lett. 108, 211801 (2012) Extensive *BABAR* program of searches for physics beyond the Standard Model, and dark sector in particular

Search for heavy neutral leptons in τ decays Phys. Rev. D 107, 5, 052009 (2023)

Search for LFV in Y(3S) \rightarrow e μ Phys. Rev. Lett. 128, 091804 (2022)

Lepton universality in Y(3S) decays Phys. Rev. Lett .125, 241801 (2020)

Rare and forbidden D decays Phys. Rev. Lett. 124, 071802 (2020)

Search for LFV in $D^0 \rightarrow X^0 e^+ \mu^-$ Phys. Rev. D 101, 112003 (2020)