Inclusive vs exclusive $b \to s\ell^+\ell^-$ decays: a path around irreducible non-perturbative uncertainties

Enrico Lunghi Indiana University

Vietnam Flavor Physics Conference August 17-23 2025

Based mostly on:

Huber, Hurth, Jenkins, EL, Qin, Vos; 2404.03517 [JHEP 11 (2024) 130]

Operators

• SM operator basis (q = d, s):

$$\mathcal{L}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \left[\sum_{i=1}^{10} C_i Q_i + \underbrace{\frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*}}_{\equiv \lambda_q} \sum_{i=1}^{2} C_i (Q_i - Q_i^u) + \underbrace{\sum_{i=3}^{6} C_{iQ} Q_{iQ} + C_b Q_b}_{\text{for QED corrections}} \right]$$

Semileptonic

$$Q_{9} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum_{l}(\bar{\ell}\gamma_{\mu}\ell_{L})$$

$$Q_{10} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum_{l}(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell_{L})$$

Magnetic & chromo-magnetic

$$Q_7 = \frac{e}{16\pi^2} m_b (\bar{q}_L \sigma^{\mu\nu} b_R) F_{\mu\nu}$$

$$Q_8 = \frac{g_s}{16\pi^2} m_b (\bar{q}_L \sigma^{\mu\nu} T^a b_R) G^a_{\mu\nu}$$

Current-current

$$Q_1 = (\bar{q}_L \gamma_\mu T^a c_L)(\bar{c}_L \gamma_\mu T^a b_L)$$

$$Q_2 = (\bar{q}_L \gamma_\mu c_L)(\bar{c}_L \gamma_\mu b_L)$$

$$Q_1^u = (\bar{q}_L \gamma_\mu T^a u_L)(\bar{u}_L \gamma_\mu T^a b_L)$$

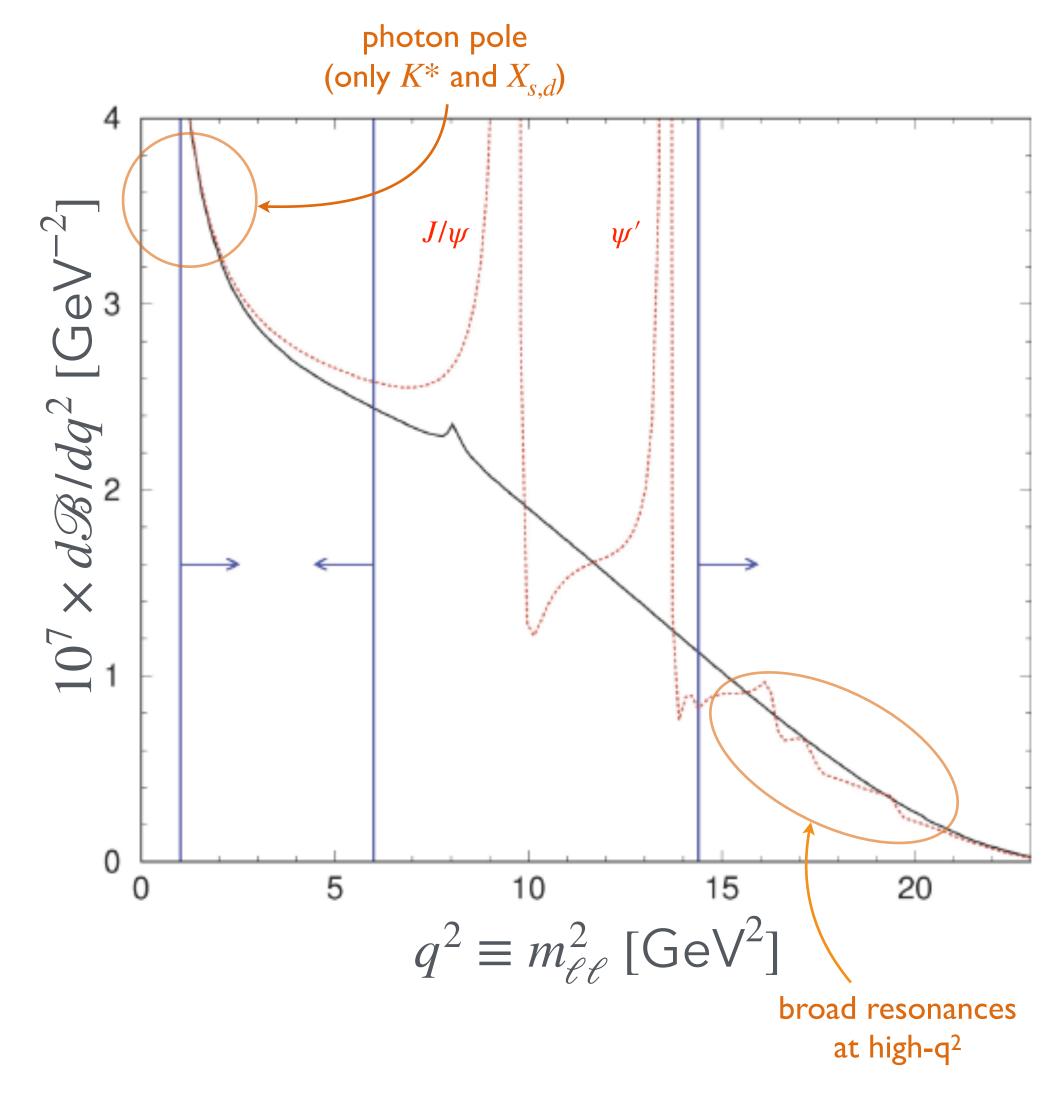
$$Q_2^u = (\bar{q}_L \gamma_\mu u_L)(\bar{u}_L \gamma_\mu b_L)$$

The $V_{ub}V_{uq}^*$ contribution is small for $b \to s\ell\ell$ but important for $b \to d\ell\ell$ $(\lambda_s \simeq 0.02 \ e^{-2.0i}, \lambda_d \simeq 0.4 \ e^{-1.5i})$

$$(\lambda_s \simeq 0.02 \ e^{-2.0i}, \lambda_d \simeq 0.4 \ e^{-1.5i})$$

$b \rightarrow s\ell\ell$: typical spectrum

- Typical branching ratios are of order 10^{-6}
- Intermediate charmonium resonances contribute via: $B \to (K, K^*, X_s) \psi_{c\bar{c}} \to (K, K^*, X_s) \ell^+ \ell^-$
- Contributions of J/ψ and ψ' have to be dropped:
 - Low- $q^2 \Rightarrow 1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$
 - High- $q^2 \Rightarrow q^2 > (14.4 \text{ or } 15) \text{ GeV}^2$
- Theory at low- q^2 and high- q^2 presents different challenges

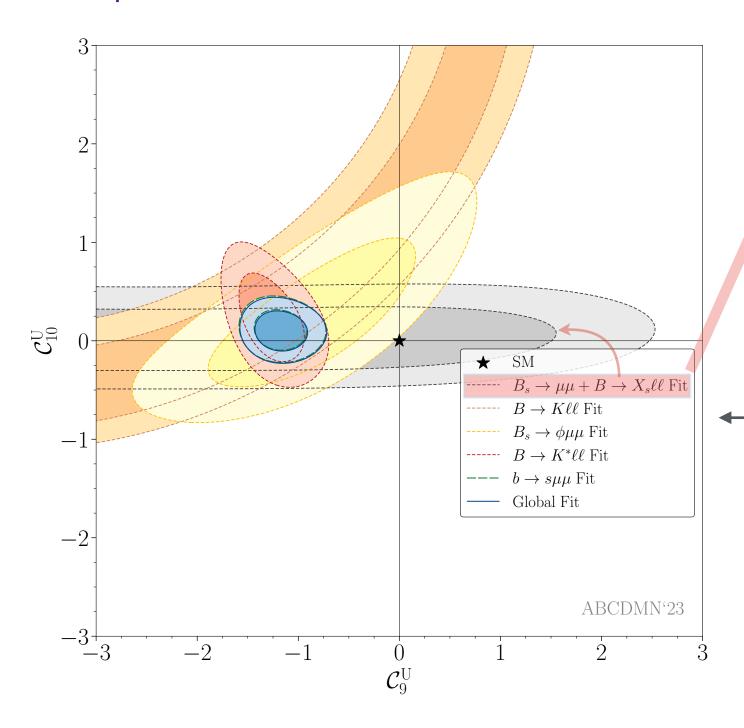


Exclusive: global fits

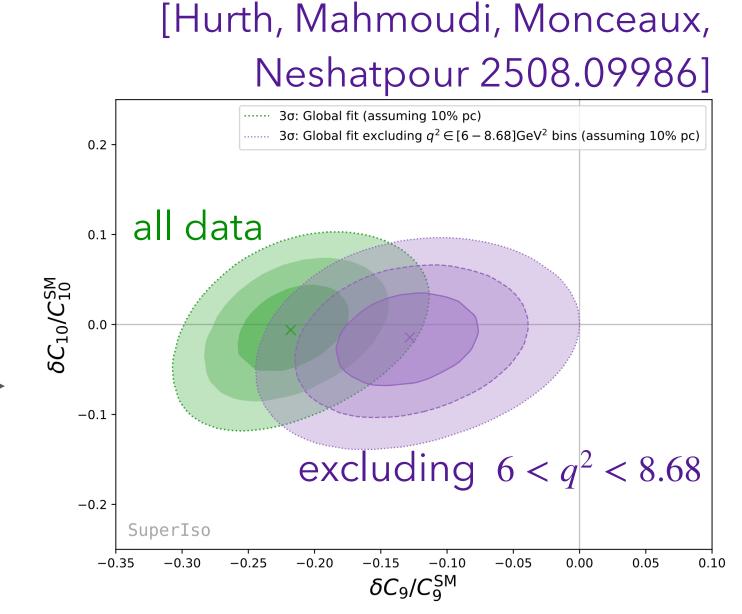
Scen	ario	Best-fit point	1σ	$Pull_{SM}$	p-value
$b \to s \ell^+ \ell^-$	$\mathcal{C}_9^{ ext{U}}$	-1.17	[-1.33, -1.00]	5.8	39.9 %
$b \to s \ell^+ \ell^-$	$egin{array}{c} \mathcal{C}_{9}^{\mathrm{U}} \ \mathcal{C}_{10}^{\mathrm{U}} \end{array}$	$-1.18 \\ +0.10$	$[-1.35, -1.00] \\ [-0.04, +0.23]$	5.5	39.1 %

$$C_9^U \simeq -1.2 \sim -\frac{1}{4} C_9^{\text{SM}}$$

[Capdevila et al, 2309.01311]



- Low- $q^2 B \to X_s \ell \ell$ inclusive constraints are consistent with the SM (more on this later)
- Many global fitters:
 - ABCDMN [Algueró et al, 2304.07330]
 - AS/GSSS [Altmannshofer et al, 2212.10497]
 - CFFPSV [Ciuchini et al, 2212.10516]
 - HMMN [Hurth et al, 2104.10058]
 - GRvDV [Gubernari et al, 2206.03797]



$b \rightarrow s\ell\ell$: theoretical frameworks

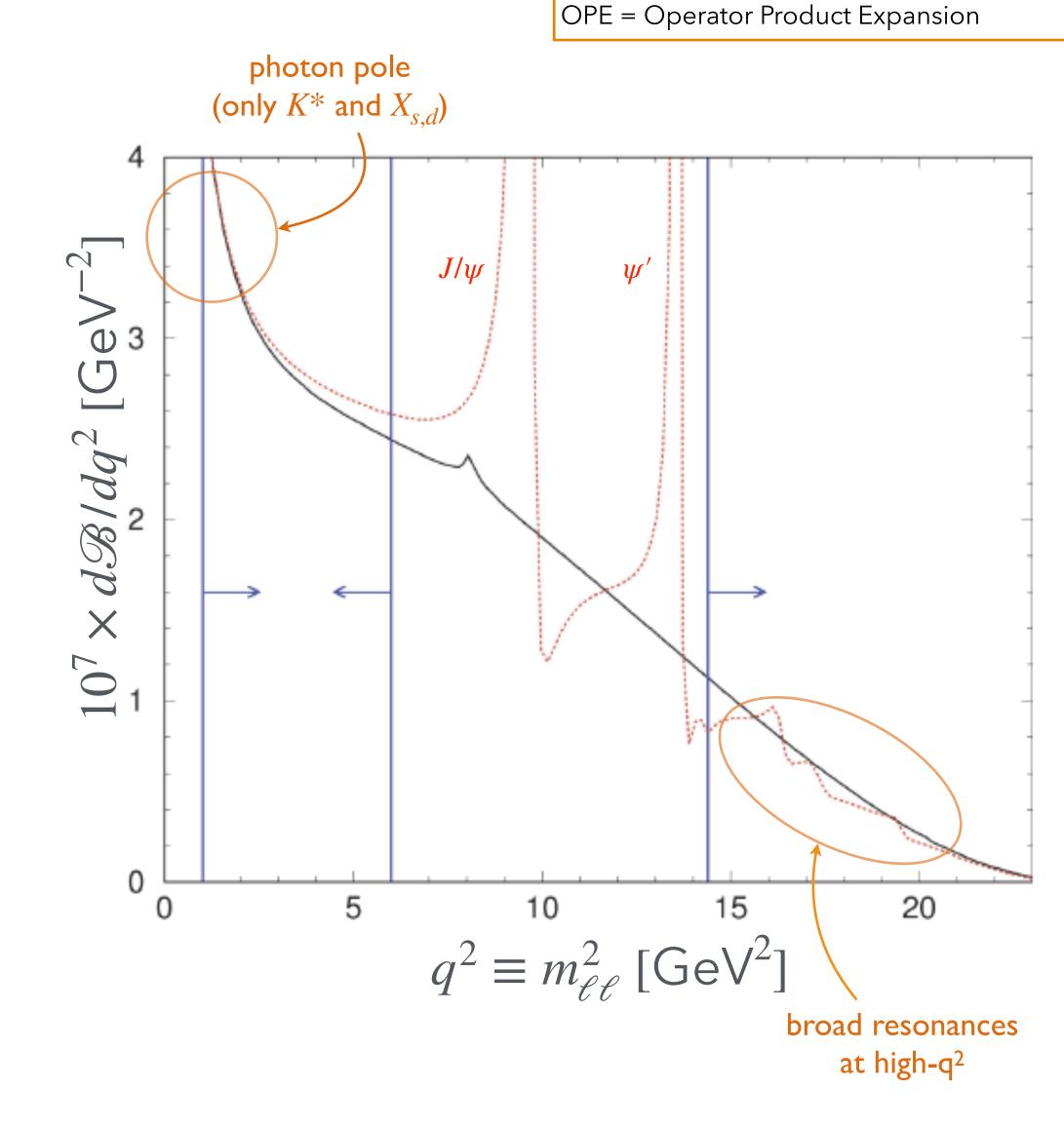
Legend:
SCET = Soft-Collinear Effective Theory
FF=Form Factors
LCDA=Light-Cone Distribution Amplitudes
PC = Power Corrections

• Intermediate charmonium resonances contribute via:

$$B \to (K, K^*, X_s) \psi_{c\bar{c}} \to (K, K^*, X_s) \ell^+ \ell^-$$

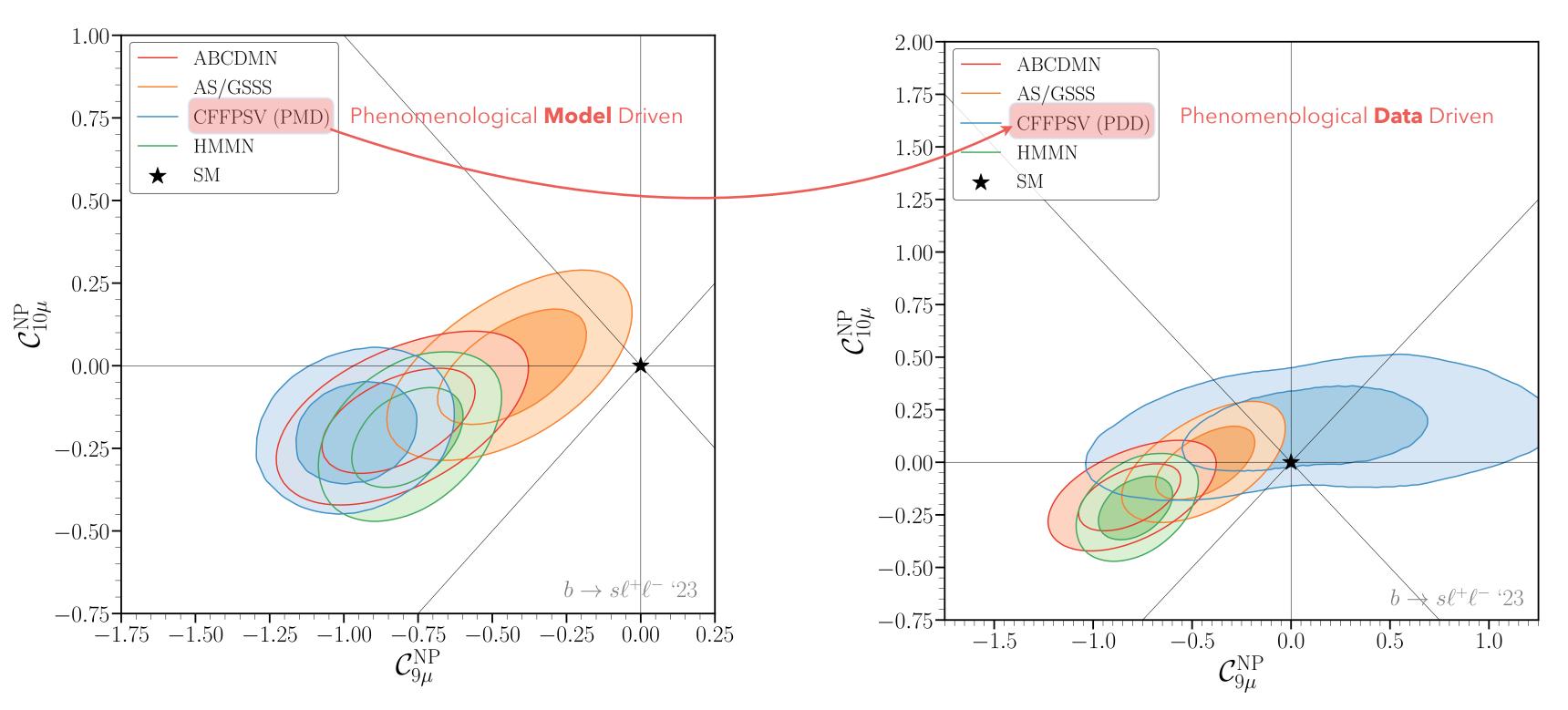
- Contributions of J/ψ and ψ' have to be dropped:
 - Low- $q^2 \Rightarrow 1 \text{ GeV}^2 < q^2 < 6 \text{ GeV}^2$
 - High- $q^2 \Rightarrow q^2 > (14.4 \text{ or } 15) \text{ GeV}^2$

	Theory	Experiment
Excl, Low-q ²	SCET (FF+LCDA) + non-local PC	High statistics
Excl, High-q ²	OPE in q ² (FF) + local PC	Low statistics
Incl, Low-q ²	OPE in M _X + local PC	High X _s multiplicity (difficult at LHCb)
Incl, High-q ²	OPE in M _X breaks down (large local PC)	Low X _s multiplicity (possible at LHCb)



Exclusive: global fits

• Good agreement between global fitters if (1) same sets of inputs are used and (2) unknown non-local power corrections are estimated [Capdevila et al, 2309.01311]:

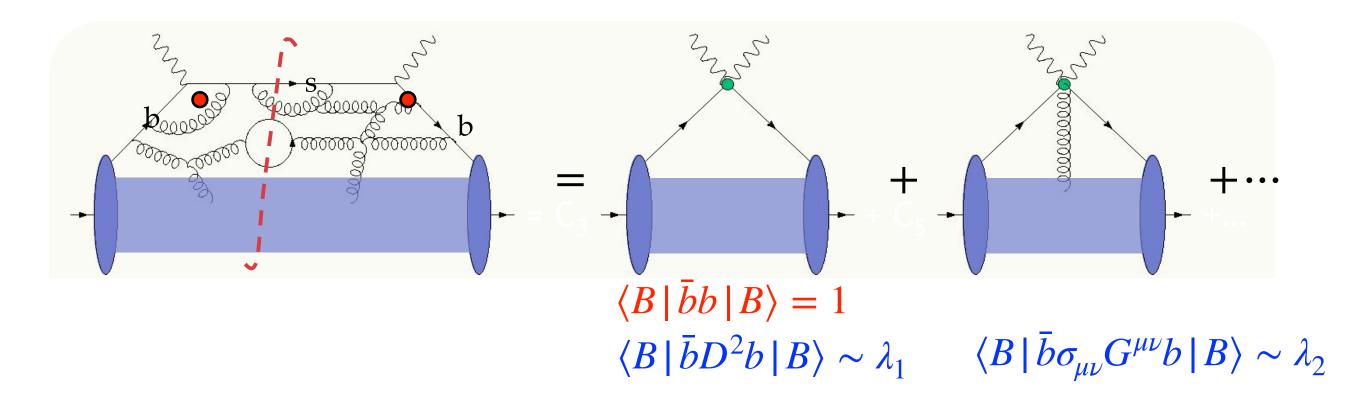


- Main difference between the fits on the left is whether the [6,8] GeV² bin is used or not
- In the Phen. Data Driven approach, non-local power corrections are fitted to data

• The problem is that non-local power corrections with a mild q^2 dependence look identical to new physics contributions to C_9

• Up to power corrections the inclusive rate is free of hadronic uncertainties:

$$\Gamma[B \to X_{\mathcal{S}} \mathscr{E} \mathscr{E}] = \Gamma[b \to X_{\mathcal{S}} \mathscr{E} \mathscr{E}] + O\left(\frac{\Lambda_{QCD}^2}{m_b^2}, \frac{\Lambda_{QCD}^3}{m_b^3}, \frac{\Lambda_{QCD}^2}{m_c^2} \cdots\right)$$



The leading power contribution is most expressed as a series in α_s and $\kappa = \alpha_{\rm em}/\alpha_s$ and is known (almost) up to and including $\alpha_s^3 \kappa^3$

• The OPE breaks down at high-q²:

$$p_{X_s}^2 = (p_b - q)^2 = m_b^2 + q^2 - 2m_b q_0$$

$$< m_b^2 + q^2 - 2m_b \sqrt{q^2} = \left(m_b - \sqrt{q^2}\right)^2$$
 expansion in

This breakdown manifests as very large power corrections

 $m_b - \sqrt{q^2}$

Inclusive: OPE breakdown

• Power corrections proportional to $|C_{9,10}|^2$ are identical to those which appear in $\bar{B}^0 \to X_u \mathcal{E} \nu$ and they can be removed by normalizing the rate to the semileptonic rate with the same q^2 cut [Lee, Ligeti, Stewart, Tackmann]:

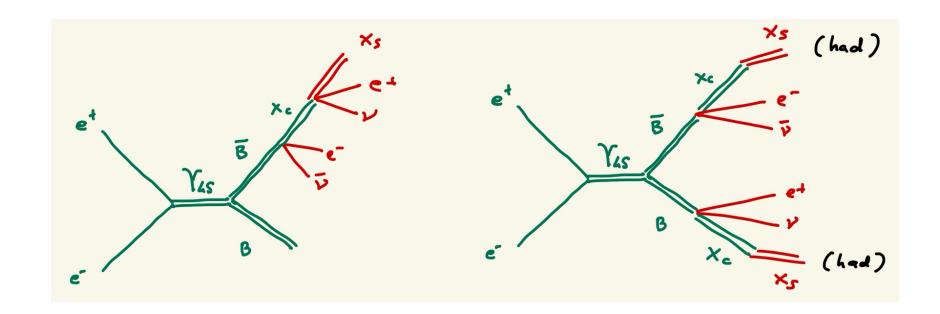
$$\mathcal{R}(q_0^2) = \frac{\int_{q_0^2}^{m_b^2} dq^2 \frac{d\Gamma(\bar{B} \to X_s \ell^+ \ell^-)}{dq^2}}{\int_{q_0^2}^{m_b^2} dq^2 \frac{d\Gamma(\bar{B}^0 \to X_u \ell \nu)}{dq^2}}$$

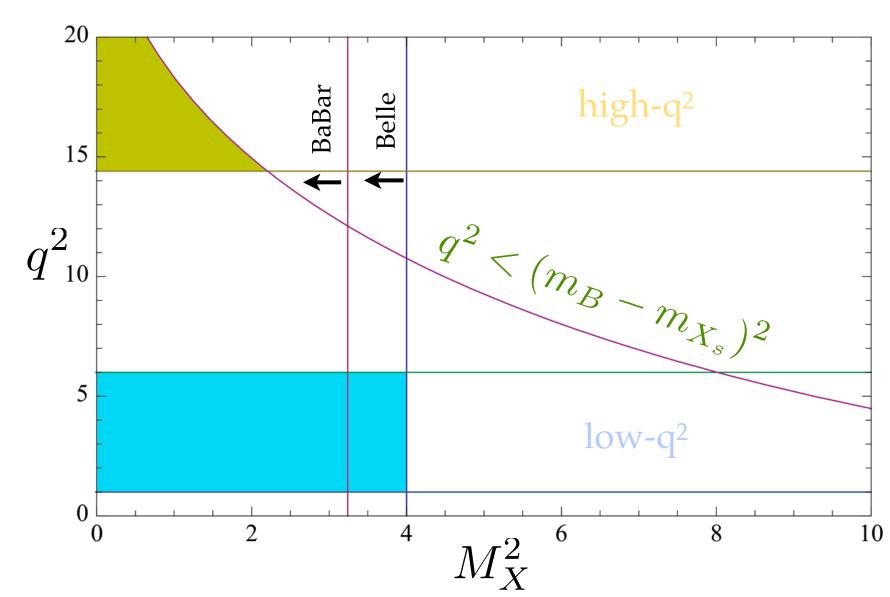
[Note that we need the neutral B⁰ semileptonic rate to avoid contributions from certain weak annihilation matrix elements]

- Non-perturbative effects associated to the breaking of the OPE in the leading $|C_{9,10}|^2$ terms cancel exactly against those in the denominator
- Non-perturbative effects associated to other operators ($|C_7|^2$, C_7C_9) do not necessarily cancel

Inclusive: hadronic cuts

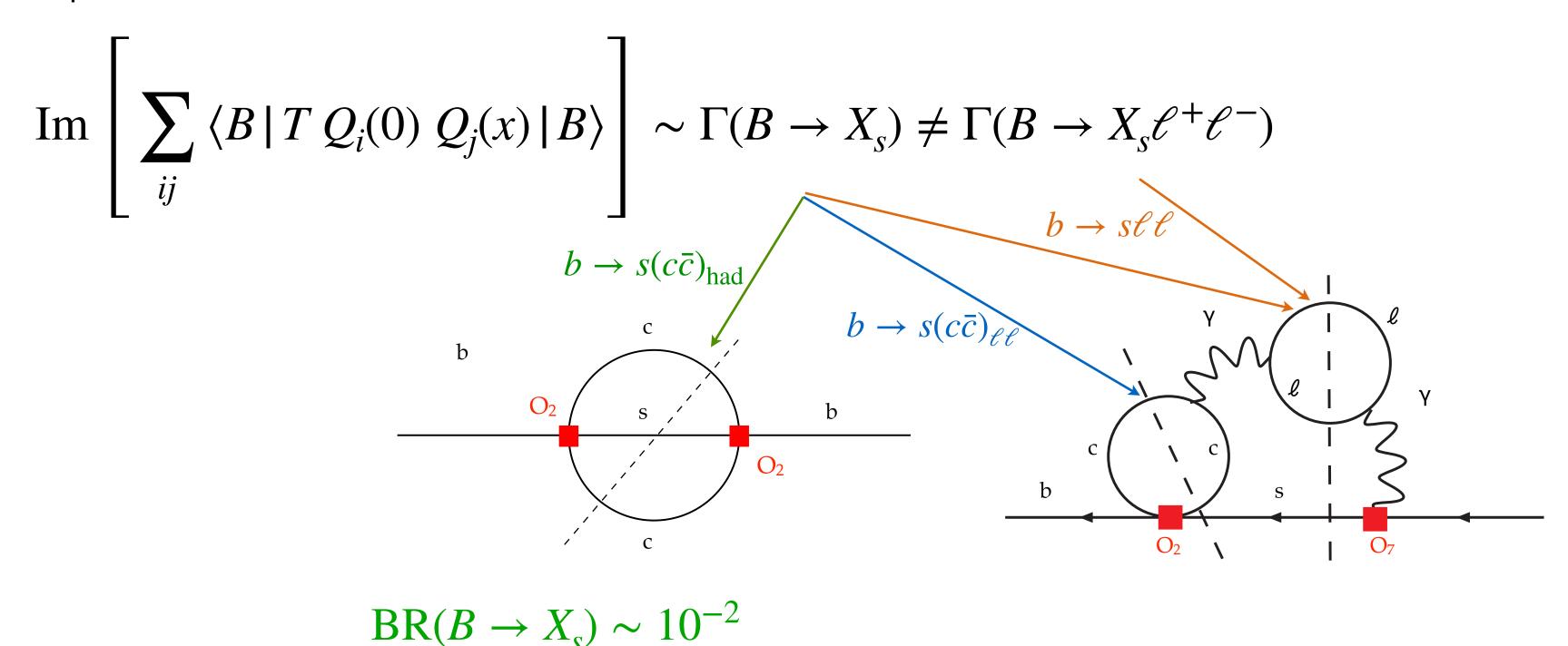
- m_X cuts are required to suppress background from double semileptonic decays (both same side and opposite side):
 - $B \to (X_c \to X_s \ell^+ \nu) \ell^- \bar{\nu} = X_s \ell \ell + \text{missing energy}$
 - $ee \rightarrow (B \rightarrow (X_c \rightarrow X_s)\ell^-\bar{\nu})(\bar{B} \rightarrow (X_c \rightarrow X_s)\ell^+\nu) = X_s\ell\ell + \text{missing energy}$
- These cuts introduce sensitivity to a hard collinear scale (of order 2 GeV) and the rate becomes dependent on the B meson shape function





- The high-q² region is unaffected
- Current BaBar and Belle analyses correct using a Fermi motion model
- Better modeling can be achieved within SCET and by using $B \to X_s \gamma$ and $B \to X_u \ell \nu$ data to extract the shape function

• Optical theorem:



 $BR(B \to X_S \psi(1S,2S) \to X_S \ell \ell) \sim 10^{-4}$ Experimental cuts (low- and high- q^2)

 $BR(B \to X_s \ell \ell) \sim 10^{-6}$ \longrightarrow Need to control charmonium contamination away from $\psi(1S,2S)$

• Krüger-Sehgal mechanism:

$$R_{\text{had}}^{c\bar{c}} = \frac{\sigma(e^{+}e^{-} \to c\bar{c} \text{ hadrons})}{\sigma(e^{+}e^{-} \to \mu^{+}\mu^{-})}$$

$$= e^{-} e^{+}$$

$$e^{+} e^{-}$$

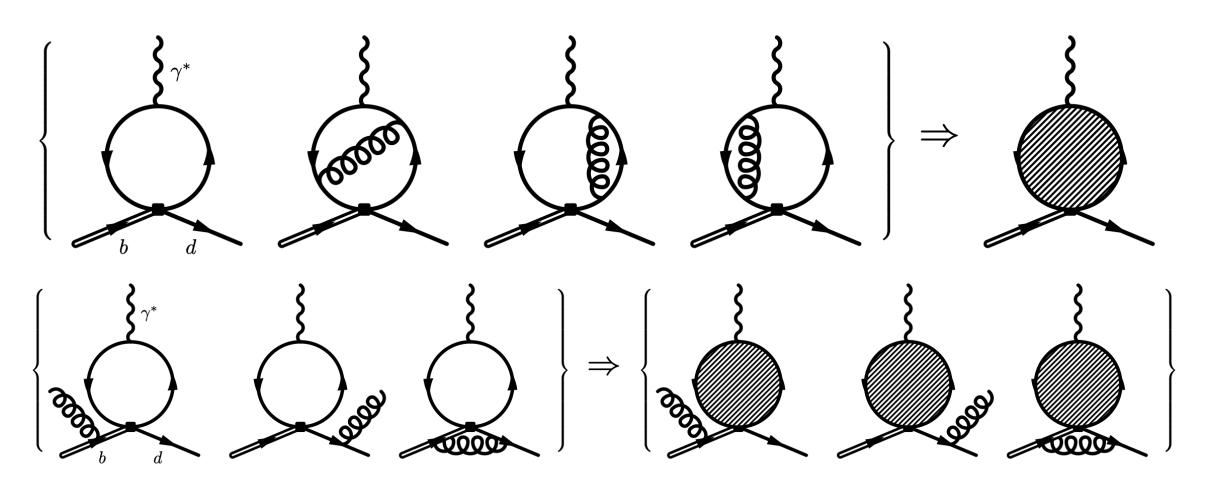
$$b = s$$

$$\operatorname{Im}[h_c] = \frac{\pi}{3} R_{\text{had}}$$

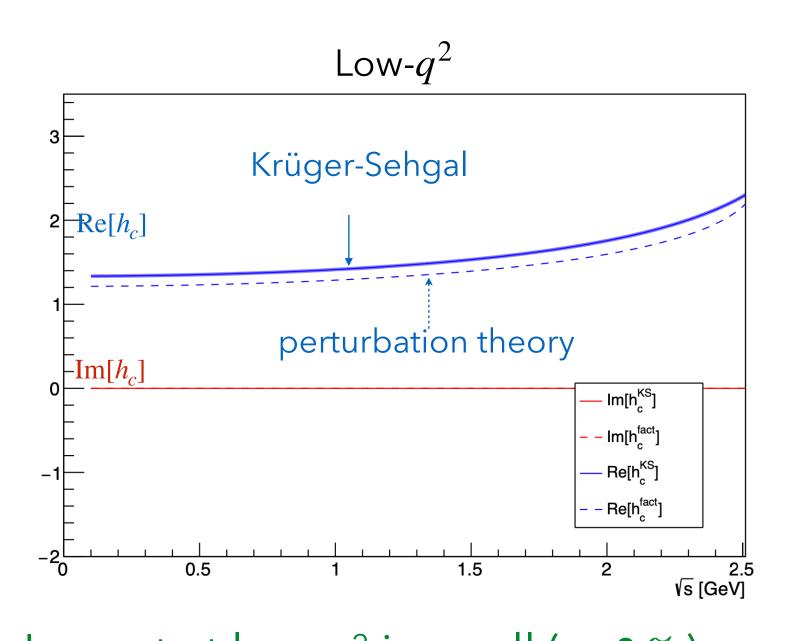
$$\operatorname{Re}[h_c] = \operatorname{Re}[h_c(s_0)] + \frac{s - s_0}{\pi} \int_0^{\infty} \frac{\operatorname{Im}[h_q(t)]}{(t - s)(t - s_0)} dt$$

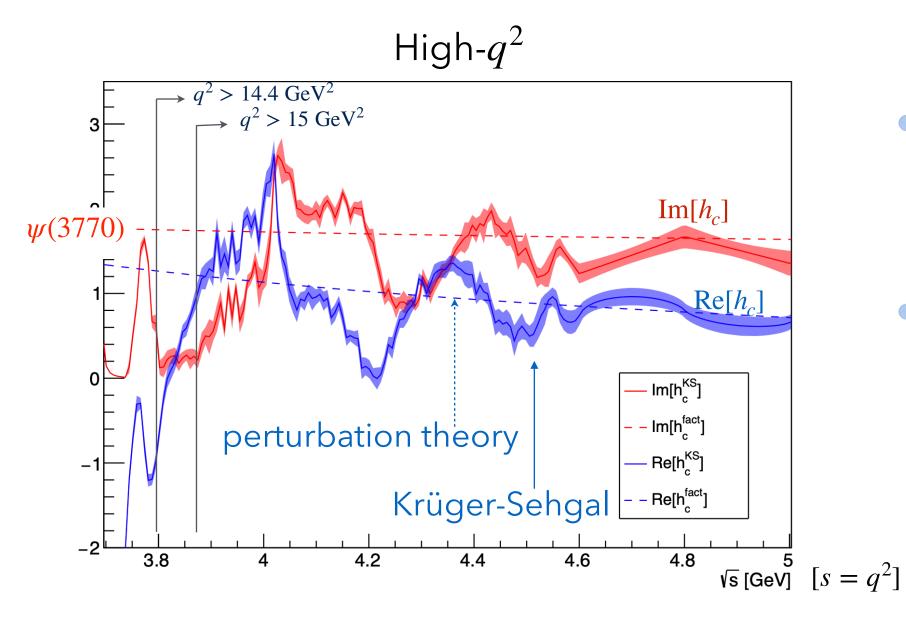
$$\operatorname{perturbative for } s_0 \sim -\mu_b^2$$

• We can include NLO effects [separation of two-loop perturbative functions provided by de Boer]



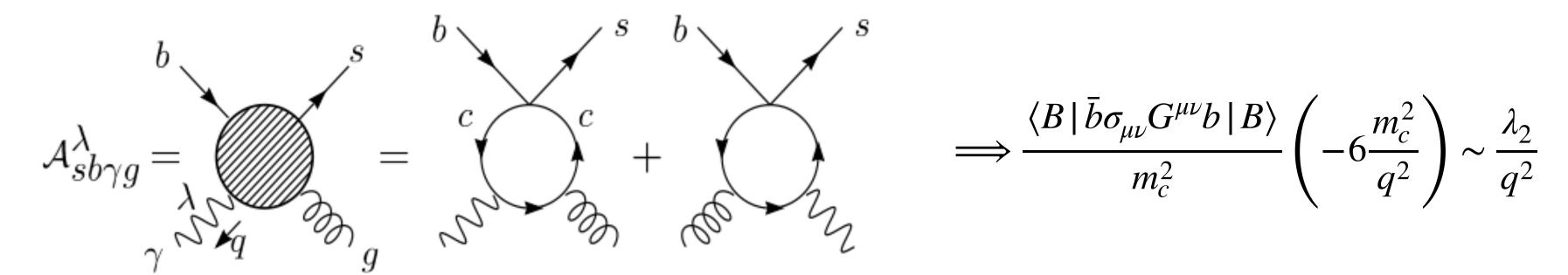
• We use R_{had} data [BESII, BaBar, ALEPH; Keshavarzi, Nomura, Teubner] and perturbation theory (program rhad) for asymptotically large q^2 [Harlander, Steinhauser]



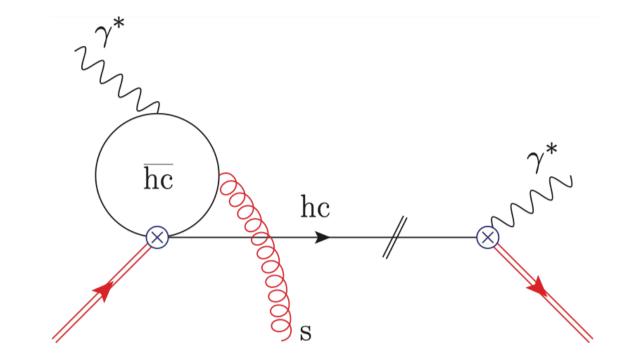


- Exclusive measurements focus on $q^2 > 15 \text{ GeV}^2$ to remove the peak from the $\psi(3770)$
- In inclusive predictions the charmonium spectrum is exactly modeled and we encourage to use the $q^2 > 14.4 \text{ GeV}^2$ cut adopted by BaBar and Belle.
- Impact at low-q² is small ($\simeq 2\%$)
 Perturbation theory and dispersive approaches agree because below threshold we are mostly sensitive to the total integral over R_{had} which is well described in perturbation theory
- Impact at high-q² region is large ($\simeq -10\%$)

• Non-resonant color octet effects at <u>high-q²</u> can be calculated in perturbation theory and it scales as $\Lambda_{\rm QCD}^2/q^2$ [Buchalla, Isidori, Rey]:



• Non-resonant color octet effects at $low-q^2$ and with a cut on m_X can treated using SCET [Hurth, Benzke, Fickinger, Turczyk]:



- Power corrections remain non-local after m_X cut is released \Rightarrow so-called resolved contributions
- Depend on mostly unknown subleading B shape functions
- A rough estimate yields an irreducible uncertainty of about 5%
- Effect of resonant non-factorizable charmonium production at low and high q² is being investigated

Inclusive: QED radiation

- The rate is proportional to $\alpha_{\rm em}^2(\mu)$. Without QED corrections the scale μ is undetermined $\rightarrow \pm 4\%$ uncertainty
- Focus on corrections enhanced by large logarithms:
 - $\alpha_{\rm em} \log(m_W/m_b) \sim \alpha_{\rm em}/\alpha_s$
 - $\alpha_{\rm em} \log(m_{\ell}/m_b)$

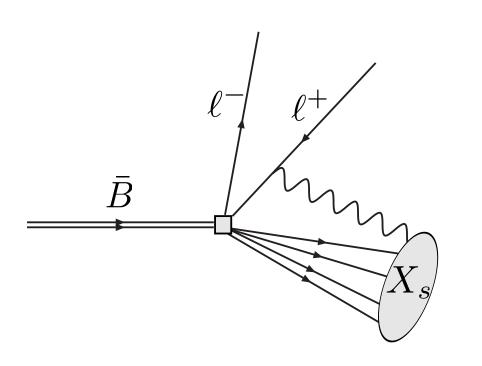
[WC, RG running]

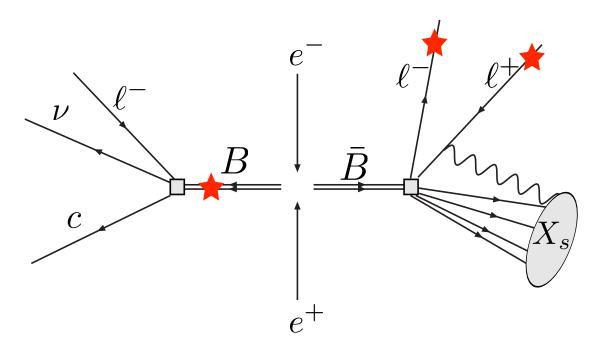
[Bobeth, Gambino, Gorbahn, Haisch]

[Matrix Elements]

[EL, Huber, Misiak, Wyler]

• Fate of photons emitted by the final state leptons (especially electrons):





- At B-factories most but not all of these photons are included in the X_s system \Rightarrow some collinear QED logs survive
- At LHCb all photons emitted by the charged leptons are recovered (physically and using PHOTOS) and included in the lepton 4-momentum:
 - ⇒ all collinear QED logs must not be included

Inclusive: theory summary

- NNLO_{QCD} + NLO_{QED}
- $c\bar{c}$ resonances: included using e^+e^- data via a dispersion relation (Krüger-Sehgal mechansim)
- QED radiation: soft/collinear photons treatment at B-factories and LHCb needs to be taken into account
- m_X cuts: at low-q² removal of double semileptonic background, $b \to (c \to s\ell\nu)\ell\nu$, requires extrapolation in m_X
- Dominant uncertainties:
 - Low-q² \Rightarrow resolved photon contributions (irreducible 5%) and scale (N³LO)
 - High-q²(BR) ⇒ power corrections (OPE breakdown)
 - High-q² ($b \rightarrow s\ell\ell/b \rightarrow u\ell\nu$ ratio) \Rightarrow parametric (CKM) and power corrections (5x smaller than in BR!)

$$\mathcal{B}[1,6]_{\mu\mu} = 17.29 (1\pm4.4\%_{\text{scale}} \pm 1.1\%_{m_t} \pm 2.3\%_{C,m_c} \pm 1.2\%_{m_b} \pm 0.5\%_{\alpha_s} \pm 0.1\%_{\text{CKM}} \pm 1.5\%_{\text{BR}_{sl}} \pm 0.7\%_{\lambda_2} \pm 5\%_{\text{resolved}}) \times 10^{-7}$$

$$= (17.29 \pm 1.28) \times 10^{-7} \quad [7.4\%] \quad 5.1\%$$

$$\mathcal{B}[> 14.4]_{\text{no QED}} = 2.59 (1\pm8.1\%_{\text{scale}} \pm 1.2\%_{m_t} \pm 1.9\%_{C,m_c} \pm 7.3\%_{m_b} \pm 0.2\%_{\alpha_s} \pm 0.08\%_{\text{CKM}} \pm 1.5\%_{\text{BR}_{sl}} \pm 3.9\%_{\lambda_2} \pm 10\%_{\rho_1} \pm 21\%_{f_{u,s}}) \times 10^{-7}$$

$$= (2.59 \pm 0.68) \times 10^{-7} \quad [26\%] \quad 23.5\%$$

$$\mathcal{B}(14.4)_{\text{no QED}} = 26.02 (1 \pm 1.6\%_{\text{scale}} \pm 1.2\%_{m_t} \pm 0.4\%_{C,m_c} \pm 0.4\%_{m_b} \pm 0.5\%_{\alpha_s} \pm 4.3\%_{\text{CKM}} \pm 0.2\%_{\lambda_2} \pm 1.3\%_{\rho_1} \pm 4.6\%_{f_{u,s}}) \times 10^{-4}$$

$$= (26.02 \pm 1.76) \times 10^{-4} \quad [6.8\%]$$

E. Lunghi

21st Recontres du Vietnam

4.8 %

Inputs

$m_e = 0.51099895 \text{ MeV}$
$m_{\mu} = 105.65837 \; \mathrm{MeV}$
$m_{\tau} = 1.77686 \text{ GeV}$
$\overline{m}_c(\overline{m}_c) = 1.275(25) \text{ GeV}$
$m_b^{1S} = 4.691(37) \text{ GeV}$
$ V_{us}^* V_{ub} / (V_{ts}^* V_{tb}) = 0.02022(44)$
$\arg \left[V_{us}^* V_{ub} / (V_{ts}^* V_{tb}) \right] = 115.3(1.3)^{\circ}$
$ V_{ud}^* V_{ub} / (V_{td}^* V_{tb}) = 0.420(10)$
$\arg \left[V_{ud}^* V_{ub} / (V_{td}^* V_{tb}) \right] = -88.3(1.4)^{\circ}$
$m_{t,\text{pole}} = 173.1(0.9) \text{ GeV}$
C = 0.568(7)(10)
$\mu_0 = 120^{+120}_{-60} \text{ GeV}$
$\lambda_2^{\text{eff}} = 0.111(18) \text{ GeV}^2$
$\lambda_1 = -0.314(56) \text{ GeV}^2$
$\rho_1 = 0.080(31) \text{ GeV}^3$

References for all inputs can be found in: 2007.04191 2404.03517 ($\lambda_{1,2}$ and ρ_1)

Dominant uncertainties at high-q²

Inclusive: experiment

B-factories

- A fully inclusive measurement is possible (opposite side tag + dilepton)
- ullet Current measurements use sum over exclusives: final states containing up to 4 pions are identified and the rest is reconstructed using Isospin and JetSet

• LHCb at low-q²

- $B^{0,+} \rightarrow \mu^+ \mu^- K^+ + n\pi^\pm$ (only charged particles) and use isospin to reconstruct the full inclusive rate [Koppenburg, CERN-THESIS-2002-010]
- $X_b \to K^+ \mu^+ \mu^- X$, use isospin to reconstruct the X_s system and subtract Λ_b and B_s modes [Amhis, Owen, 2106.15943]
- Neural Network search for $B^+ \to \mu^+ \mu^- K^+ + \text{tracks}$ [Graverini]

• LHCb at high-q²

The inclusive rate is dominated by the K, K^* , $K\pi$ and $K\pi\pi$ modes: an inclusive measurement is already at hand! [Isidori, Polonsky, Tinari, 2305.03076] [Huber, Hurth, Jenkins, EL, Qin, Vos, 2404.03517]

BR at high-q² from LHCb

- For $q^2 > 15$ GeV² we have $M_{X_s} < 1.41$ GeV the $\mathcal{B}(B \to X_s \mu^+ \mu^-)$ and the rate is saturated by the $X_s = K^{(*)}$, $(K\pi)_{S\text{-wave}}$, $K\pi\pi$ and $K(n\pi)_{n>2}$ modes with progressively smaller contributions
- Dominant $K^{(*)}$ modes [LHCb, 1403.8044, 3 fb⁻¹]:

$$\mathcal{B}(B^{+} \to K^{+}\mu\mu)[> 15] = (0.85 \pm 0.05) \times 10^{-7}$$

$$\mathcal{B}(B^{0} \to K^{0}\mu\mu)[> 15] = (0.67 \pm 0.12) \times 10^{-7}$$

$$\mathcal{B}(B^{+} \to K^{*+}\mu\mu)[> 15] = (1.58 \pm 0.32) \times 10^{-7}$$

$$\mathcal{B}(B^{0} \to K^{*0}\mu\mu)[> 15] = (1.74 \pm 0.14) \times 10^{-7}$$

$$\mathcal{B}(\bar{B} \to K^{(*)}\mu\mu)[> 15] = (1.72 \pm 0.13) \times 10^{-7}$$

$$\mathcal{B}(\bar{B} \to K^{(*)}\mu\mu)[> 15] = (2.54 \pm 0.14) \times 10^{-7}$$

• $(K\pi)_{S-wave}$ contribution [LHCb, 1606.04731, 3 fb⁻¹]:

$$F_{S} = \frac{\mathcal{B}(B \to (K^{+}\pi^{-})_{J=0}\mu\mu)}{\mathcal{B}(B \to (K^{+}\pi^{-})_{J=0}\mu\mu) + \mathcal{B}(B \to (K^{+}\pi^{-})_{J=1}\mu\mu)} \Longrightarrow F_{S} \begin{pmatrix} 15 < q^{2} < 19 \\ 0.64 < M_{X} < 1.20 \end{pmatrix} = 0.019^{+0.030}_{-0.025} \pm 0.015$$
Using isospin:
$$\mathcal{B}(\bar{B} \to (K\pi)_{J}\ell^{+}\ell^{-}) = \mathcal{B}(\bar{B} \to (K^{+}\pi^{-})_{J}\ell^{+}\ell^{-}) \times \begin{cases} \frac{3}{2} & J = 0 \\ 1 & J = 1 \end{cases}$$

$$\Longrightarrow \mathcal{B}(\bar{B} \to (K\pi)_{S}\mu\mu)[>15] = \frac{3}{2} \frac{F_{S}}{1 - F_{S}} \mathcal{B}(\bar{B} \to K^{*0}\mu\mu)[>15] = (0.05 \pm 0.09) \times 10^{-7}$$
Its become and with the analysis of the same quantity $(0.58 \pm 0.25) \times 10^{-7}$.

[to be compared with the χ_{PT} estimate of the same quantity: $(0.58 \pm 0.25) \times 10^{-7}$]

BR at high-q² from LHCb

• $K\pi\pi$ contribution [LHCb, 1408.1137, 3 fb⁻¹]:

$$\frac{\mathcal{B}(B^+ \to K^+ \pi^+ \pi^- \mu \mu)[14.18 < q^2 < 19]}{\Delta q^2} = \left(0.10^{+0.08}_{-0.06} \pm 0.01\right) \times 10^{-8} \text{ GeV}^{-2}$$

Assuming that the $K\pi\pi$ mode is dominated by $\pi\pi$ in S wave and using isospin we obtain:

$$\mathscr{B}(\bar{B} \to K\pi\pi\mu\mu)[>15] \simeq \mathscr{B}(\bar{B} \to K(\pi\pi)_S \ell^+\ell^-) = \mathscr{B}(B^+ \to K^+(\pi^+\pi^-)_S \ell^+\ell^-) \times \frac{3}{2} = (0.06 \pm 0.04) \times 10^{-7}$$

[we assume a flat differential rate in the [14.18,19] bin to obtain the q2>15 GeV² branching ratio]

• $K(n\pi)_{n>2}$ contribution (rough guess):

$$\mathcal{B}(\bar{B} \to K(n\pi)_{n>2}\mu\mu)[>15] \simeq (0.00 \pm 0.04) \times 10^{-7}$$

where the uncertainty is simply lifted from the $K\pi\pi$ mode.

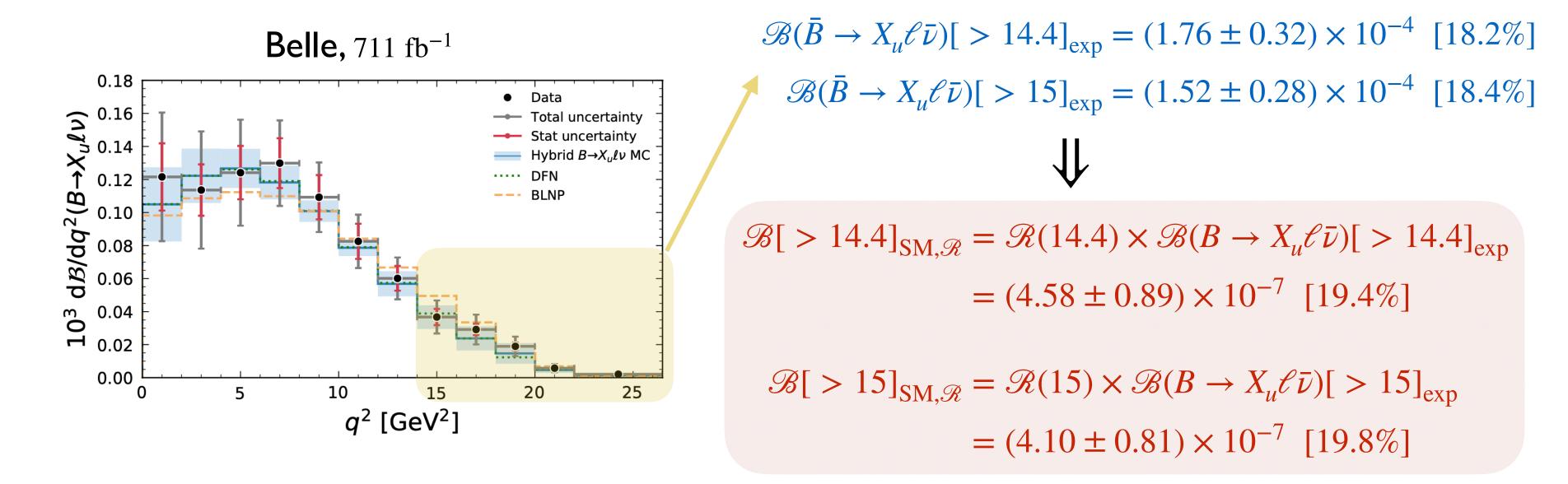
- The complete $K(n\pi)$ contribution is $\mathcal{B}(\bar{B} \to K(n\pi)\mu\mu)[>15] = (0.10 \pm 0.10) \times 10^{-7}$ and accounts for only about 5% of the inclusive rate at high-q²
- Combining $K^{(*)}$ and $K(n\pi)$ modes we finally obtain:

$$\mathscr{B}(\bar{B} \to X_s \mu \mu)[> 15] = (2.65 \pm 0.17) \times 10^{-7}$$

Result obtained in collaboration with G. Isidori, Z, Polonsky and A. Tinari

BR at high-q²: SM

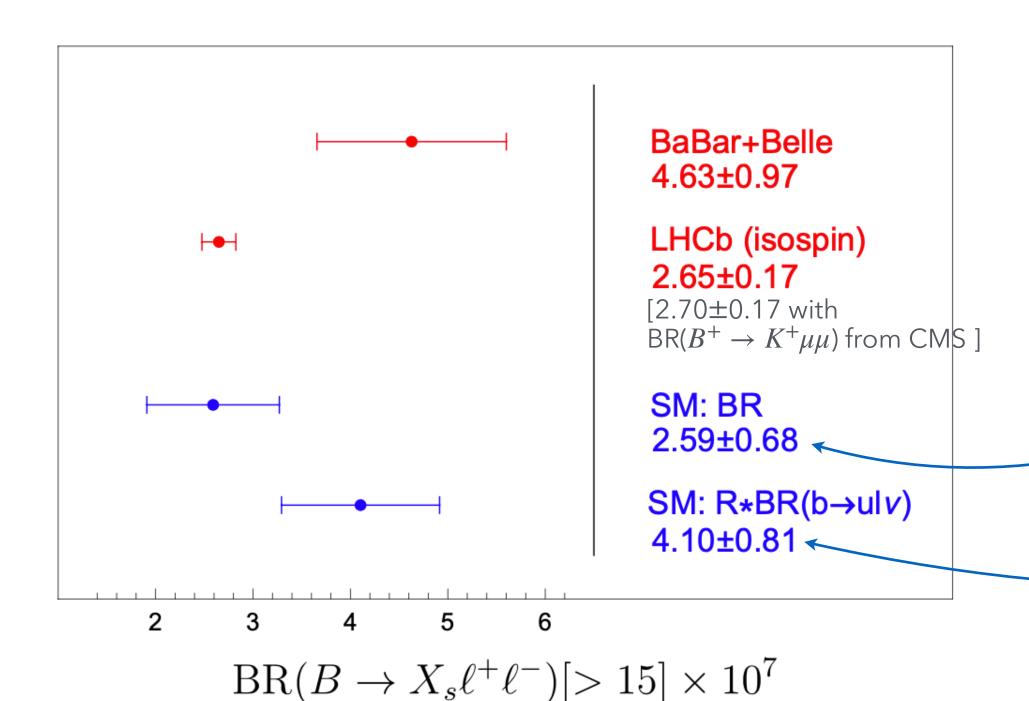
- Using the Belle [2107.13855] measurement of the $B \to X_u \ell \nu \ q^2$ spectrum we can convert our SM prediction for the ratio $\mathcal{R}(q_0^2)$ into a "experiment assisted prediction" for the high-q² branching ratio.
- This SM prediction can be used to discuss compatibility with the exclusive anomalies under the assumption of no New Physics in $B \to X_{\nu} \ell \nu$



• The total uncertainty is dominated by the $B \to X_u \ell \nu$ partial rate

BR at high-q²: SM vs experiment

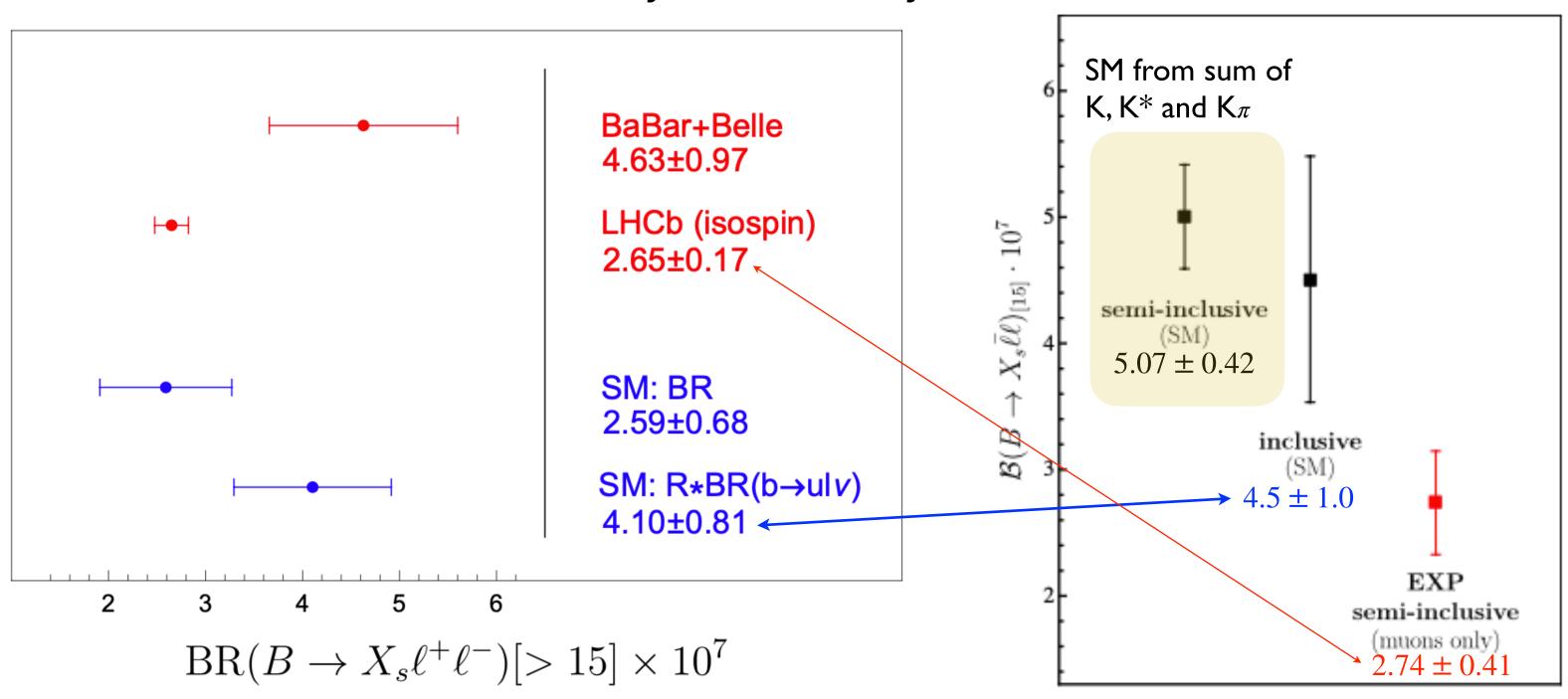
- Let's begin putting all this information together by "rescaling" the BaBar and Belle inclusive measurements to something that can be directly compared to the LHCb one: BaBar (with QED, $q_0^2=14.2$), Belle (with QED, $q_0^2=14.4$), LHCb (no QED, $q_0^2=15$).
- The required rescaling factors are: $\left(\frac{\mathscr{B}[>14.4]_{\text{with QED}}}{\mathscr{B}[>14.2]_{\text{with QED}}}\right)_{\text{SM}} = 0.96 \text{ and } \left(\frac{\mathscr{B}[>15]_{\text{no QED}}}{\mathscr{B}[>14.4]_{\text{with QED}}}\right)_{\text{SM}} = 0.97$



- The picture that emerges is not clear:
 there are tensions between the two experimental and the
 two theoretical determinations!
- The two SM predictions are dominated by power corrections and by the experimental $b \to u\ell\nu$ rate, respectively.

BR at high-q²: SM vs experiment

Comparison with the Isidori, Polonsky, Tinari analysis [2305.03076]

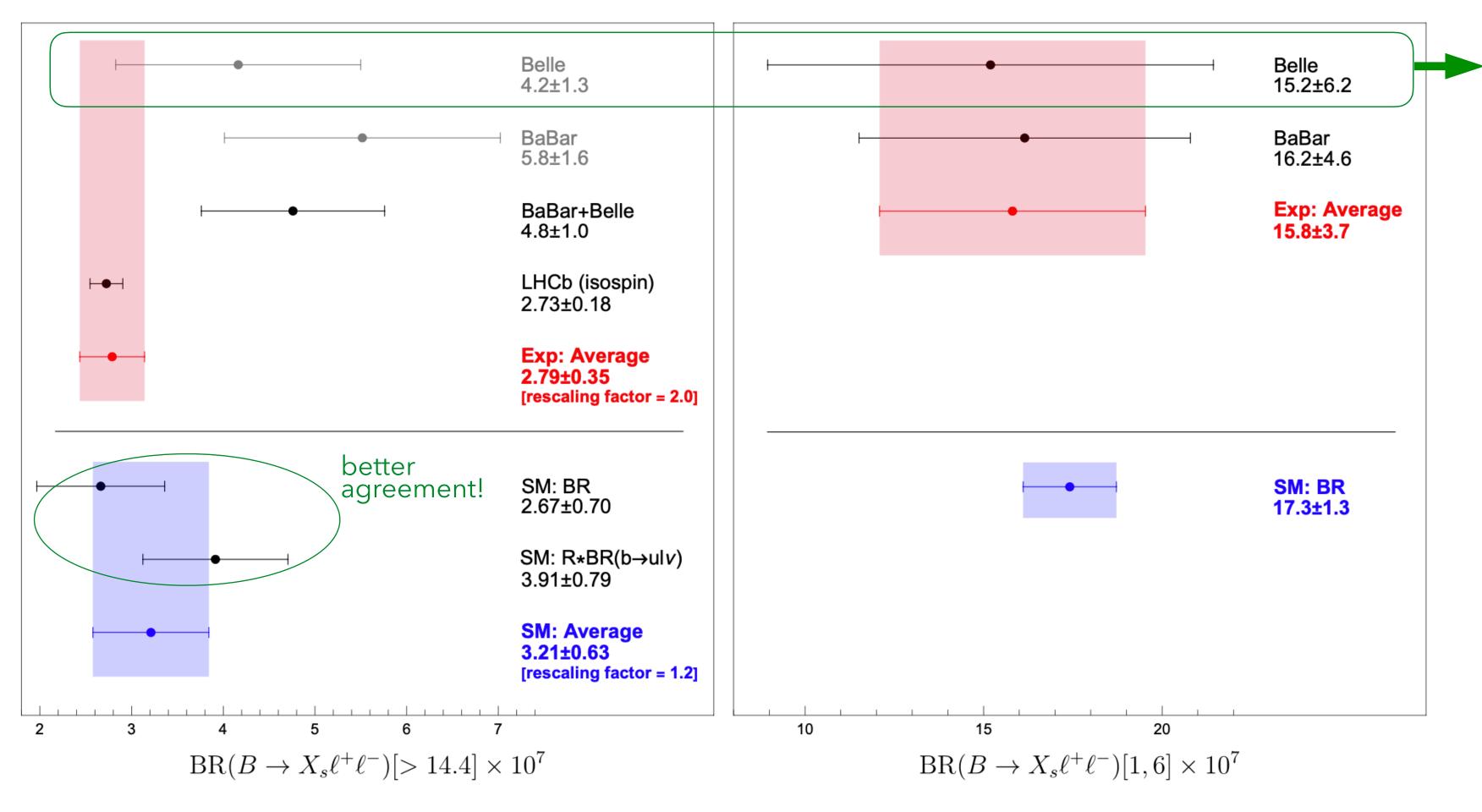


After publication we collaborated and converged on a common determination

- ullet Both analyses find a tension between the LHCb "measurement" and the SM from $\mathscr{R} imes \mathscr{B}_{b o u \ell
 u}$
- The tension between the semi-inclusive (SM) and LHCb is a restatement of the anomalies
- The difference between the $\mathcal{R} \times \mathcal{B}_{b \to u \ell \nu}$ determinations originates from NLO $Q_{1,2} Q_{7,9}$ interference (-9%) contributions and from long distance $c\bar{c}$ effects (-4%).

BR at high-q²: SM vs experiment

- All results corresponding to a cut at $14.4 \, \text{GeV}^2$ (the LHCb "measurement" has been rescaled)
- A lower q^2 cut corresponds to a larger hadronic phase space (implying better OPE behavior)



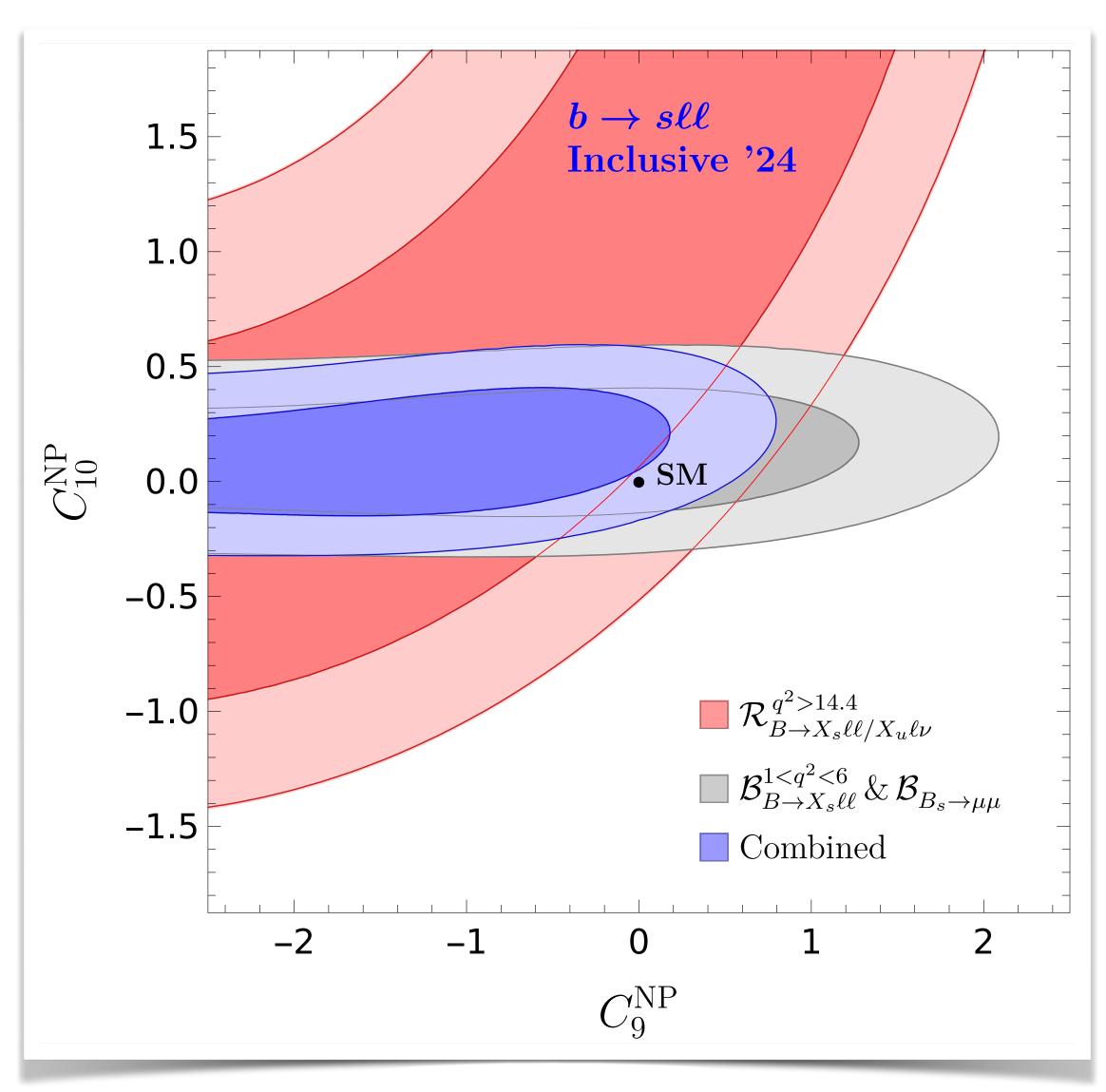
- Based on 140M BB pairs but about 800M have been collected! Imperative to use the whole Belle dataset in Belle+Belle II analyses
- The experimental average requires a PDG rescaling factor of 2!
- The SM average includes a 20% correlation: the $\Re \times BR$ error is dominated by the $b \to u\ell\nu$ experimental rate

E. Lunghi

23/28

21st Recontres du Vietnam

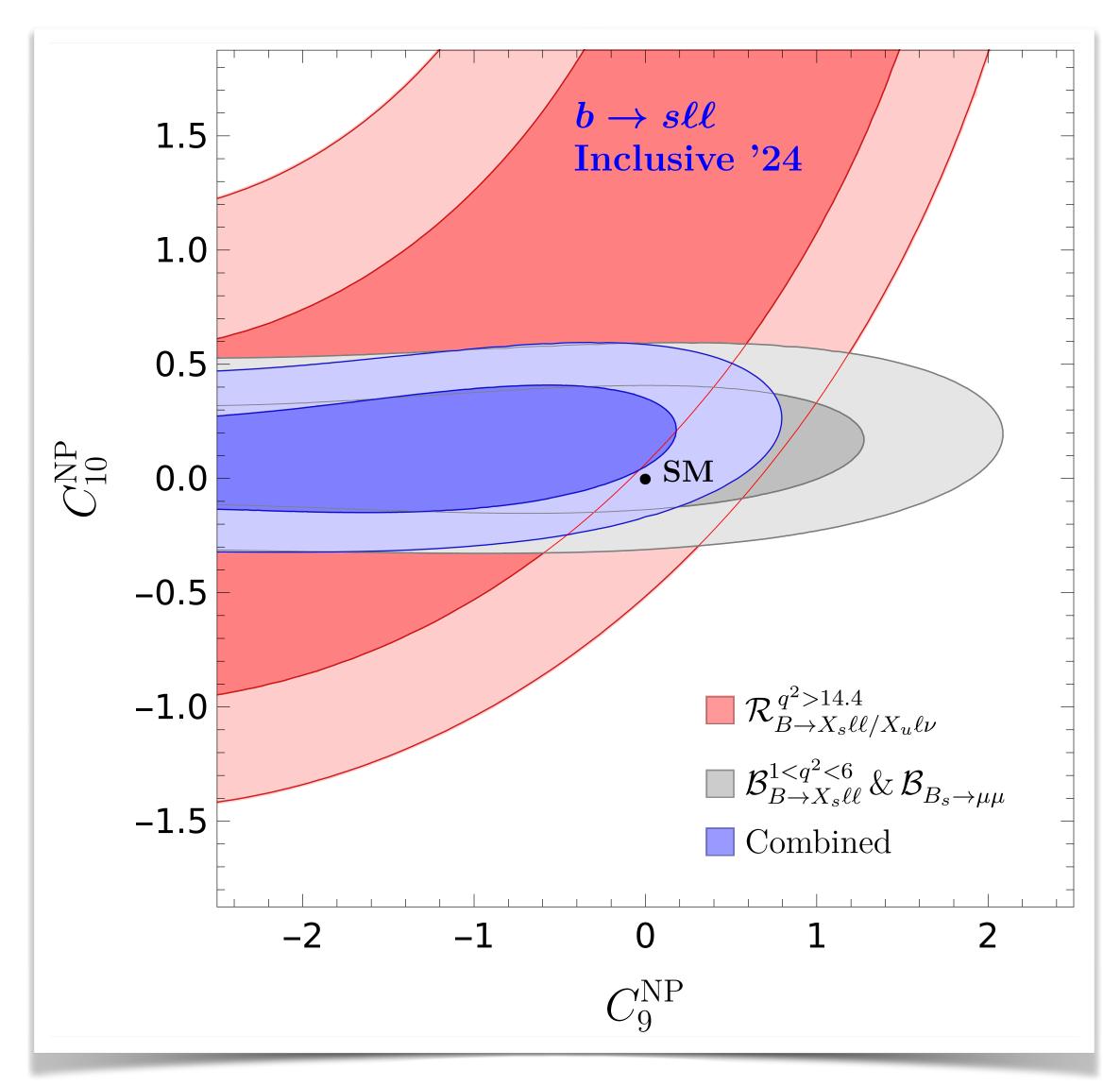
Current constraints

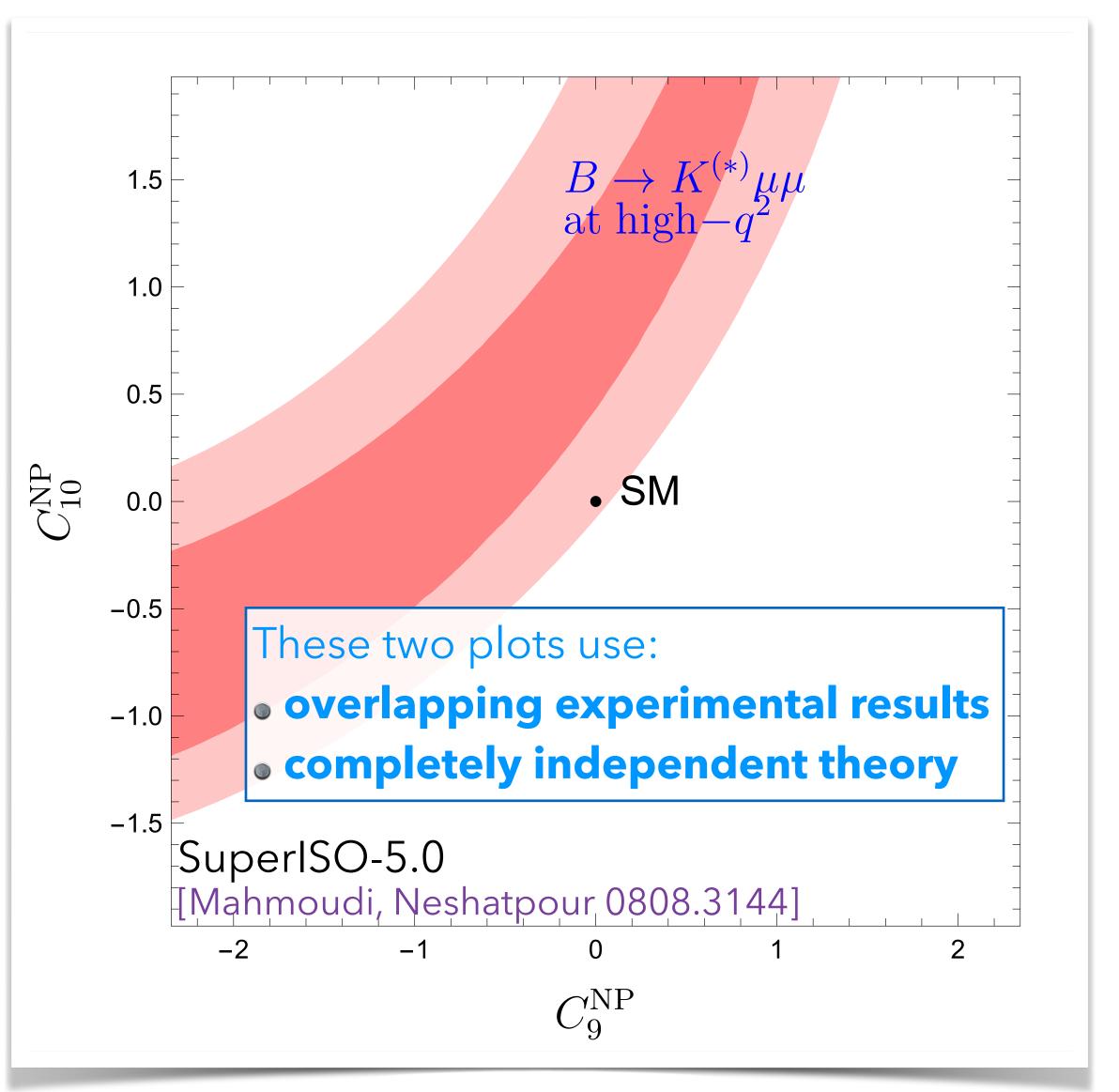


• Inputs:

- $BR(B_s \to \mu\mu)^{LHC}$
- $\bullet BR(B \to X_s \mathscr{E} \mathscr{E})^{B-factories}_{low}$
- $\bullet BR(B \to X_s \mathscr{E} \mathscr{E})^{LHCb}_{high}$
- $\bullet BR(B \to X_u \mathcal{E} \nu)^{\text{Belle}}_{\text{high}}$

Current constraints: inclusive vs exclusive

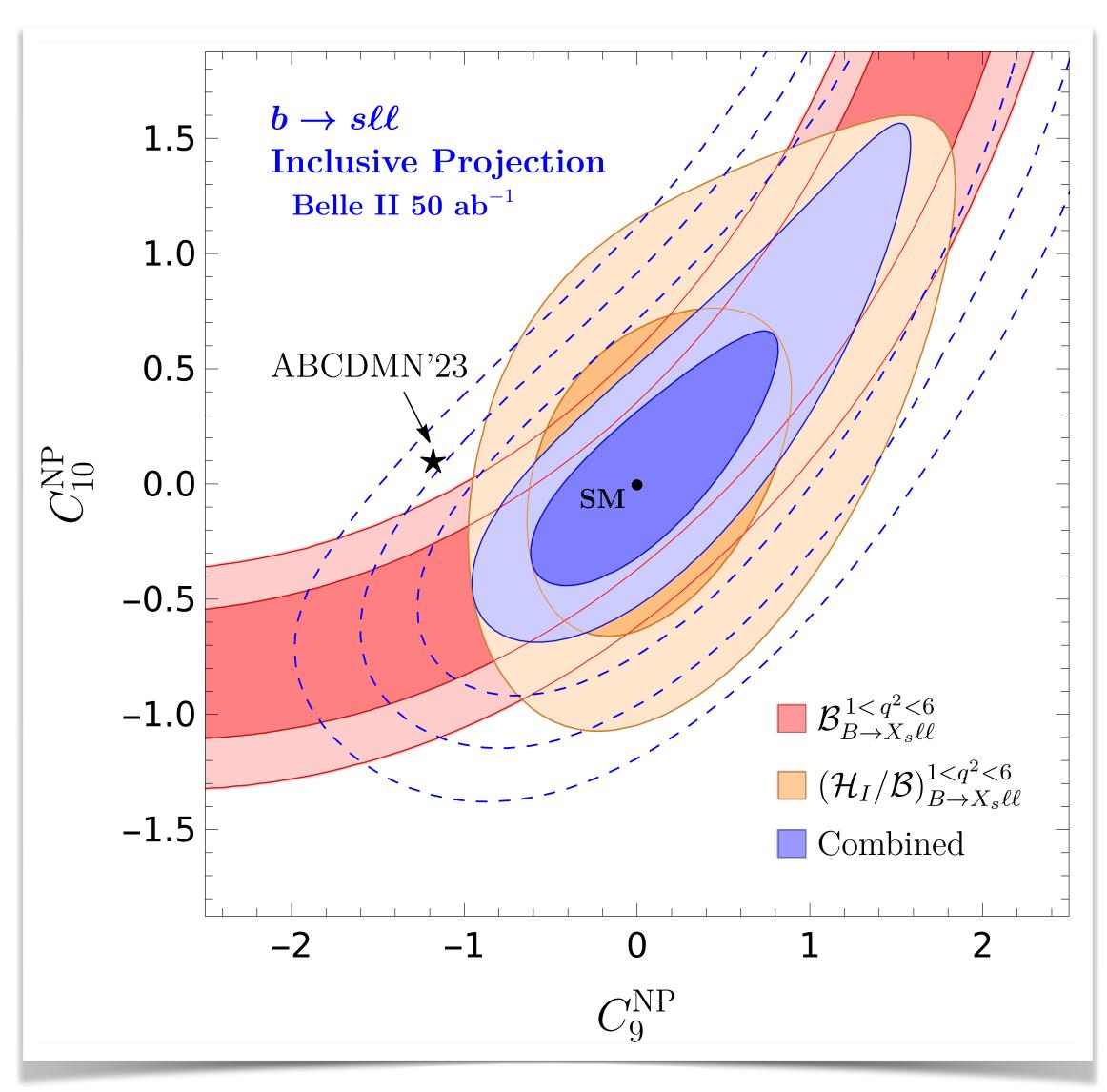




E. Lunghi

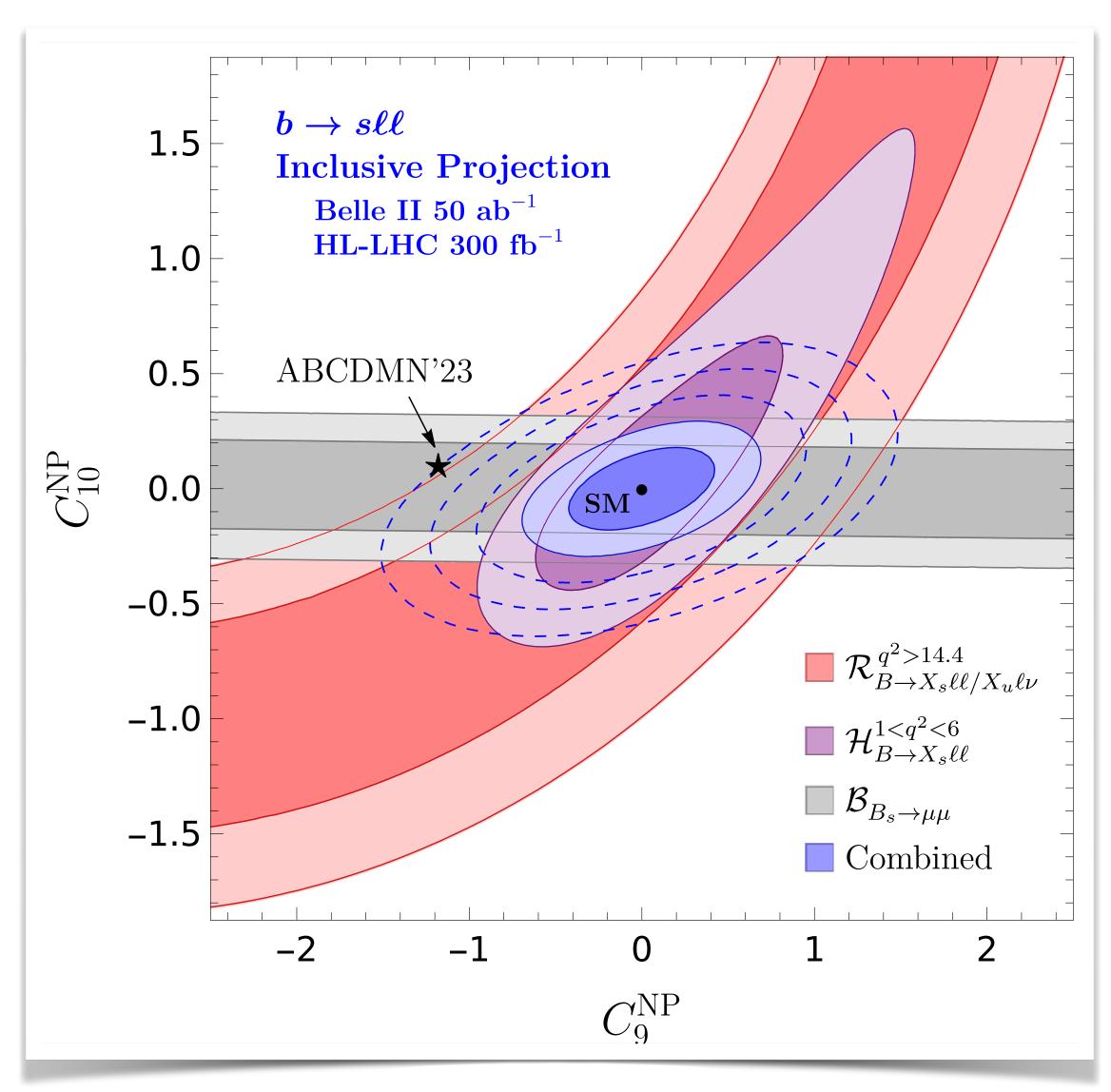
21st Recontres du Vietnam

Projected constraints: Belle II



- Focus on low- q^2 where the inclusive OPE is better
- Use of normalized angular observables (H_I/\mathcal{B}) , lowers impact of the M_X cut in the low- q^2 region
- \bullet Dashed contours correspond to 3σ , 4σ and 5σ
- ★ is the exclusive best fit from ABCDMN'23
- Low- q^2 observables at Belle-II can confirm current anomalies at 4σ

Projected constraints: LHCb & Belle II



- We assume $\delta(B_s \to \mu\mu) = 4.8\,\%$ corresponding to 300 fb⁻¹ at the HL-LHC
- Projected uncertainty on $\mathcal{R}(14.4)$ is obtained combining:

$$\delta \mathcal{B}_{bs\ell\ell}[> 14.4] = \sqrt{(2.6\%_{stat})^2 + (3.9\%_{syst})^2} = 4.7\%$$

$$\delta \mathcal{B}_{bu\ell\nu}[> 14.4] = 5.2\%$$

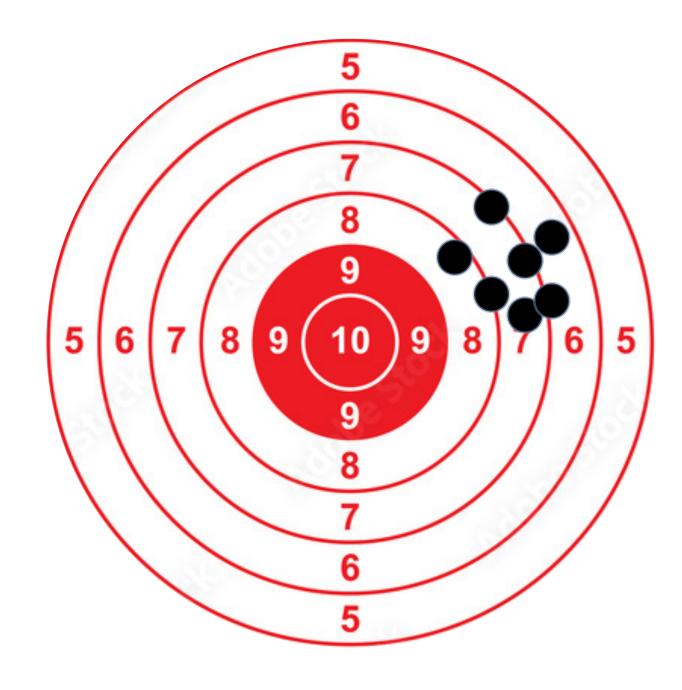
$$\Longrightarrow \delta \mathcal{R}(14.4) = 7.0\%$$

• Inclusion of high- q^2 observables allows to confirm the exclusive anomalies at the 5σ level

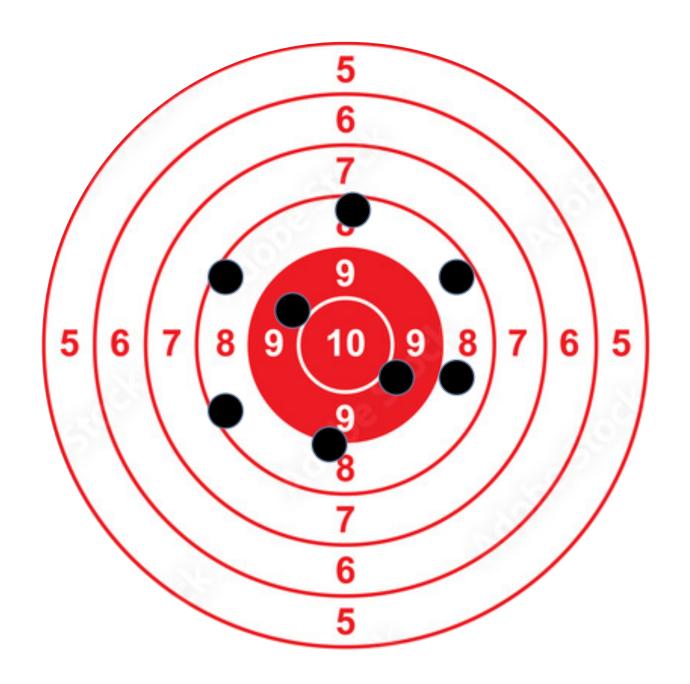
Summary

- Exclusive $b \to s\mu\mu$ modes point to a > 5σ deviation from SM barring anomalously large non-local power corrections at low- q^2
- Inclusive modes probe the exact same New Physics, have "orthogonal" theoretical issues but are experimentally harder to measure
- A precise measurement of the inclusive branching ratio at high- q^2 is already at hand at LHCb
- Steps towards the resolution of the anomalies (< 5 years time horizon):
 - ▶ Inclusive measurements at Belle (800M BB pairs) + Belle-II (currently 400M BB pairs)
 - ▶ Inclusive measurement at high- q^2 at LHCB:
 - Improved measurements of exclusive $B \to (K, K^*, K\pi, K\pi\pi)\mu\mu$ branching ratios at high- q^2 at LHCb.
 - Improved $B o K^{(*)} J/\psi$ measurements at Belle-II are also needed (LHCb can only measure relative rates)
 - ▶ Lattice-QCD determination of charming penguins (even an upper limit would be useful)
 - Possible breakthrough in understanding anomalous thresholds and their impact on non-local power corrections
 - **▶** Inclusive measurement at low- q^2 at LHCB

Summary

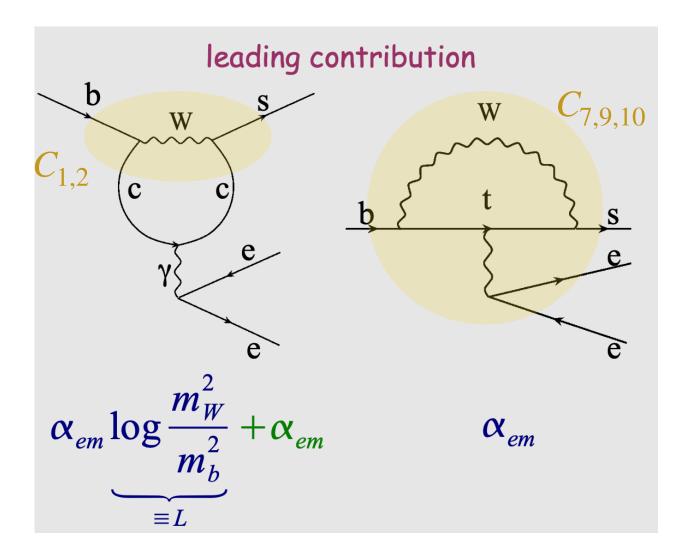


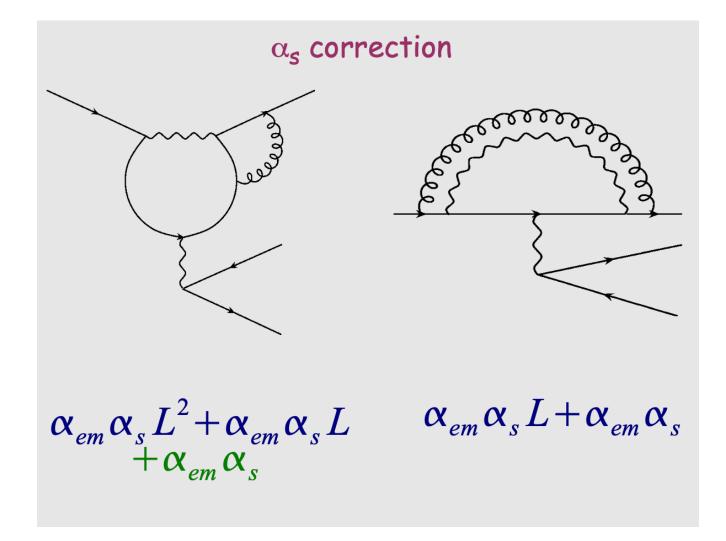
 $b \rightarrow s\ell\ell$ exclusive



 $b \to s\ell\ell$ inclusive

- The perturbative expansion has two peculiar features:
 - the amplitude is proportional to $\alpha_{\rm e}(\mu)$
 - the one-loop matrix element of $O_{1,2}$ is "super-leading"





$$C_1\langle O_1\rangle + C_2\langle O_2\rangle$$
 $C_7\langle O_7\rangle + C_9\langle O_9\rangle + C_{10}\langle O_{10}\rangle$

$$\eta \equiv \frac{\alpha_s(\mu_0)}{\alpha_s(\mu_b)} = 1 + \beta_s^{(00)} \frac{\alpha_s(\mu_0)}{4\pi} \log \frac{\mu_b^2}{\mu_0^2} \sim O(1) \Longrightarrow \log \frac{\mu_b^2}{\mu_0^2} \sim \frac{1}{\alpha_s(\mu_0)}$$
$$\frac{\alpha_e(\mu_0)}{\alpha_e(\mu_b)} = 1 + \beta_e^{(00)} \frac{\alpha_e(\mu_0)}{4\pi} \log \frac{\mu_b^2}{\mu_0^2} \sim 1 + \frac{\alpha_e(\mu_0)}{\alpha_s(\mu_0)}$$

Expansion in α_s and $\kappa = \alpha_e/\alpha_s$

• Structure of the amplitude ($\kappa = \alpha_{\rm em}/\alpha_s$ and $\tilde{\alpha}_s = \alpha_s/4\pi$):

$$A = \kappa \left[A_{\rm LO} + \tilde{\alpha}_s A_{\rm NLO} + \tilde{\alpha}_s^2 A_{\rm NNLO} + \tilde{\alpha}_s^3 A_{\rm N^3LO} + O(\tilde{\alpha}_s^4) \right] \\ + \kappa^2 \left[A_{\rm LO}^{\rm em} + \tilde{\alpha}_s A_{\rm NLO}^{\rm em} + \tilde{\alpha}_s^2 A_{\rm NNLO}^{\rm em} + \tilde{\alpha}_s^3 A_{\rm N^3LO}^{\rm em} + O(\tilde{\alpha}_s^4) \right] + O(\kappa^3)$$
 with $A_{\rm LO}^{\rm em} \lesssim A_{\rm LO} \sim 0.03$ and $A_{\rm NLO} \sim 4$ include only terms enhanced by
$$\frac{m_t^2}{(M_W^2 \sin^2 \theta_W)} \text{ and } \log(m_b^2/m_\ell^2)$$

Decay width:

$$\begin{split} |A|^{2} &= \kappa^{2} \left[A_{\text{LO}}^{2} + \tilde{\alpha}_{s} 2A_{\text{LO}} A_{\text{NLO}} + \tilde{\alpha}_{s}^{2} A_{\text{NLO}}^{2} \right] \\ &+ \kappa^{2} \left[\tilde{\alpha}_{s}^{2} A_{\text{LO}} A_{\text{NNLO}} + \alpha_{s}^{3} \left(2A_{\text{NLO}} A_{\text{NNLO}} + 2A_{\text{LO}} A_{\text{N}^{3}\text{LO}} \right) \right] \\ &+ \kappa^{3} \left[2A_{\text{LO}} A_{\text{LO}}^{\text{em}} + \tilde{\alpha}_{s} \left(2A_{\text{NLO}} A_{\text{LO}}^{\text{em}} + 2A_{\text{LO}} A_{\text{NLO}}^{\text{em}} \right) \right. \\ &+ \tilde{\alpha}_{s}^{2} \left(2A_{\text{NLO}} A_{\text{NLO}}^{\text{em}} + 2A_{\text{NNLO}} A_{\text{LO}}^{\text{em}} + A_{\text{LO}} A_{\text{NNLO}}^{\text{em}} \right) \\ &+ \tilde{\alpha}_{s}^{3} \left(2A_{\text{NLO}} A_{\text{NNLO}}^{\text{em}} + 2A_{\text{NNLO}} A_{\text{NLO}}^{\text{em}} + 2A_{\text{N}^{3}\text{LO}} A_{\text{LO}}^{\text{em}} + 2A_{\text{LO}} A_{\text{N}^{3}\text{LO}}^{\text{em}} \right) \right] + O(\kappa^{4}) \end{split}$$

ullet QCD at NLO ($A_{\mathrm{LO}}, A_{\mathrm{NLO}}$)

WCs: MEs: • QCD at NNLO (A_{NNLO}) WCs: MEs: • QED at NLO (A_{LO}^{em} , A_{NLO}^{em}) WCs: MEs:

Misiak Buras, Münz

Bobeth, Misiak, Urban

Asatrian, Asatryan, Greub Walker Ghinculov, Hurth, Isidori, Yao Bobeth, Gambino, Gorbahn, Haisch de Boer

Bobeth, Gambino, Gorbahn, Haisch

Huber, Lunghi, Misiak, Wyler

33/28

E. Lunghi

Inclusive: : m_b scheme and normalization

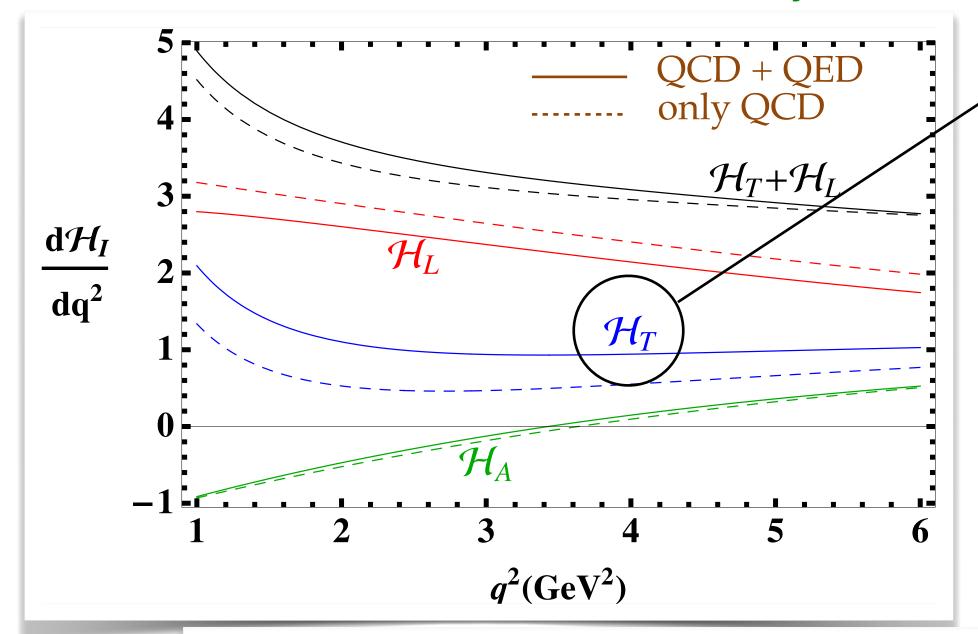
- b quark mass scheme
 - $\Gamma(b \to X_s \ell \ell)$ is a renormalon free observable but m_b^{pole} is not [see e.g.: Beneke Renormalons]
 - These spurious renormalon ambiguities can be removed by analytically converting $m_b^{\rm pole}$ to a short distance scheme (e.g. $m_b^{\rm 1S}$ or $m_b^{\rm kin}$)
 - We adopt the 1S scheme using the Upsilon expansion [Hoan, Ligeti, Manohar]
- Choice of normalization
 - In order to remove an overall m_b^5 prefactor the rate is usually normalized to either the total $B \to X_u \ell \nu$ or $B \to X_c \ell \nu$ rate.
 - We adopt the former:

$$\Gamma(B \to X_s \mathscr{E} \mathscr{E}) = \text{BR}(B \to X_c \mathscr{E} \nu) \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{1}{C} \frac{\Phi_{\ell\ell}}{\Phi_u}$$

where
$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma(B \to X_c \ell \nu)}{\Gamma(B \to X_u \ell \nu)}$$
 and $\Phi_{\ell \ell, u}$ are free of CKM angles.

Inclusive: QED radiation

- •Impact of collinear photon radiation is huge on some observables
- Cross check with Monte Carlo study (EVTGEN + PHOTOS)



Shift on H_T is $\sim 70\%$!

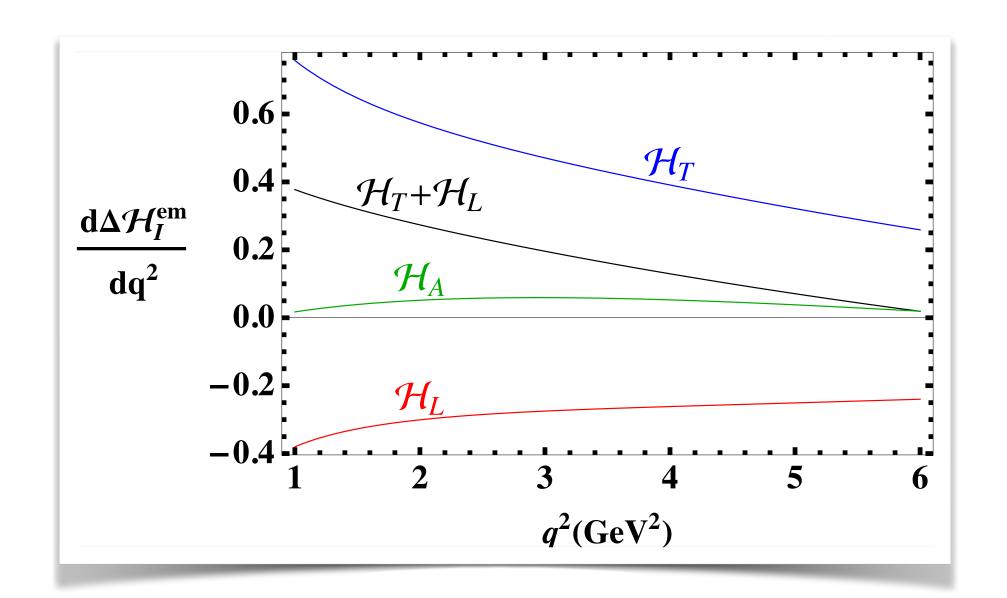
 H_T is smaller than $H_L(\hat{s} < 0.3 \text{ and } C_7 < 0)$:

$$H_T \sim 2\hat{s}(1-\hat{s})^2 \left[|C_9 + \frac{2}{\hat{s}}C_7|^2 + |C_{10}|^2 \right]$$
 $H_L \sim (1-\hat{s})^2 \left[|C_9 + 2C_7|^2 + |C_{10}|^2 \right]$

	$q^2 \in [1,6]~\mathrm{GeV^2}$		$q^2 \in [1,3.5]~\mathrm{GeV^2}$			$q^2 \in [3.5,6]~\mathrm{GeV^2}$			
	$rac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,6]}}{O_{[1,6]}}$	$rac{O_{[1,3.5]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,3.5]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,3.5]}}{O_{[1,3.5]}}$	$rac{O_{[3.5,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[3.5,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[3.5,6]}}{O_{[3.5,6]}}$
\mathcal{B}	100	5.1	5.1	54.6	3.7	6.8	45.4	1.4	3.1
\mathcal{H}_T	19.5	14.1	72.5	9.5	8.8	92.1	10.0	5.4	53.6
\mathcal{H}_L	80.0	-8.7	-10.9	44.7	-4.7	-10.6	35.3	-4.0	-11.3
\mathcal{H}_A	-3.3	1.4	-43.6	-7.2	0.8	-10.7	4.0	0.6	16.2

Inclusive: QED radiation

•We calculated the effect of collinear photon radiation and found large effects on some observables

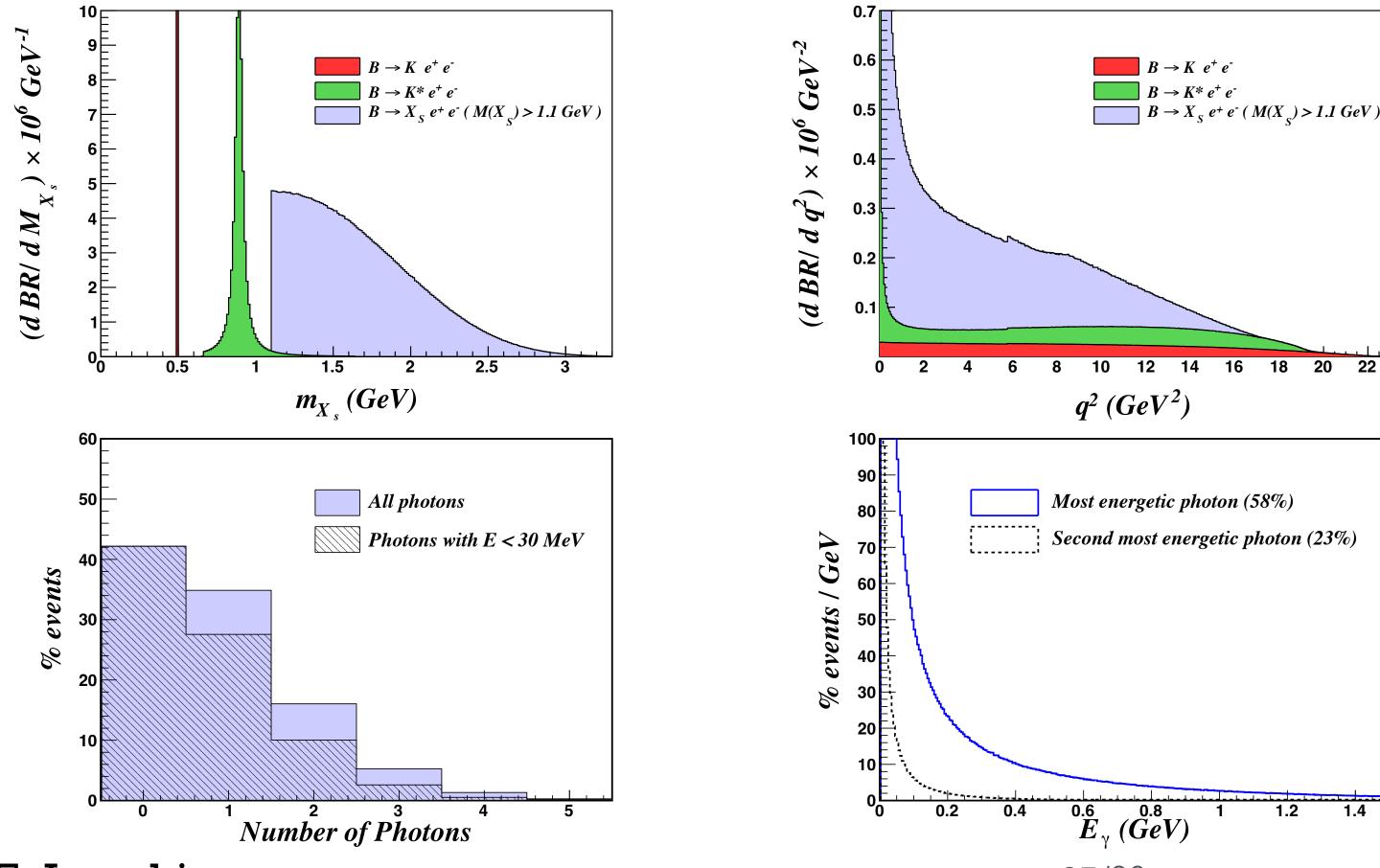


Size of QED contributions to the H_T and H_L is similar

$q^2 \in [1,6]~\mathrm{GeV}^2$			$q^2 \in [1,3.5]~\mathrm{GeV^2}$			$q^2 \in [3.5, 6]~\mathrm{GeV^2}$		
$rac{O_{[1,6]}}{{\cal B}_{[1,6]}}$	$\Delta O_{[1,6]}$			$\Delta O_{[1,3.5]}$	$\Delta O_{[1,3.5]}$	$rac{O_{[3.5,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[3.5,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[3.5,6]}}{O_{[3.5,6]}}$
100	5.1	5.1	54.6	3.7	6.8	45.4	1.4	3.1
19.5	14.1	72.5	9.5	8.8	92.1	10.0	5.4	53.6
80.0	-8.7	-10.9	44.7	-4.7	-10.6	35.3	-4.0	-11.3
-3.3	1.4	-43.6	-7.2	0.8	-10.7	4.0	0.6	16.2
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$ 100 19.5 80.0	$egin{array}{c} O_{[1,6]} & \Delta O_{[1,6]} \ \overline{\mathcal{B}}_{[1,6]} & \overline{\mathcal{B}}_{[1,6]} \ \end{array} \ \ 100 & 5.1 \ 19.5 & 14.1 \ 80.0 & -8.7 \ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccc} O_{[1,6]} & \Delta O_{[1,6]} & \Delta O_{[1,6]} & O_{[1,3.5]} \\ \hline B_{[1,6]} & B_{[1,6]} & O_{[1,6]} & \hline B_{[1,6]} $	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Inclusive: QED radiation (Monte Carlo)

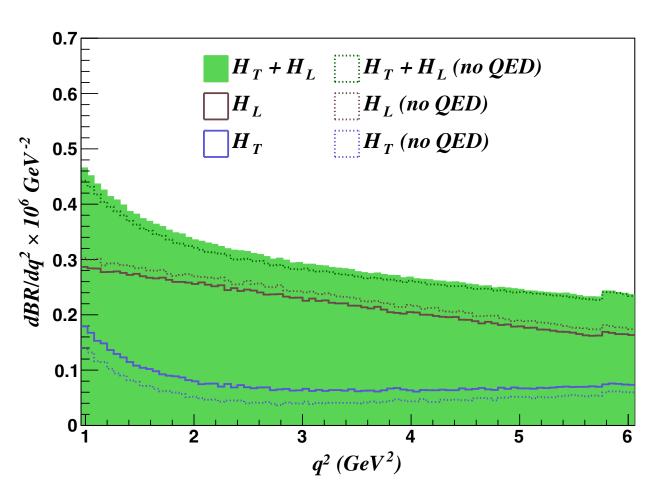
•EM effects have been calculated analytically and cross checked against Monte Carlo generated events (EVTGEN + PHOTOS)
[Many thanks to K. Flood, O. Long and C. Schilling]

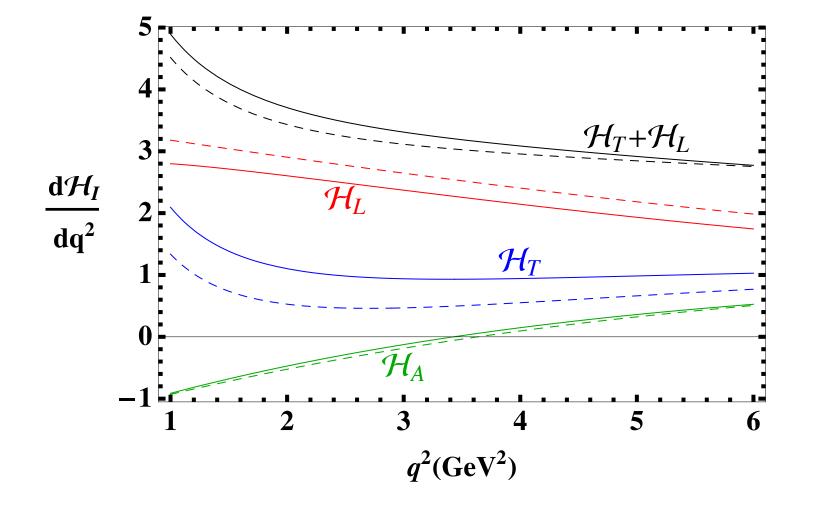


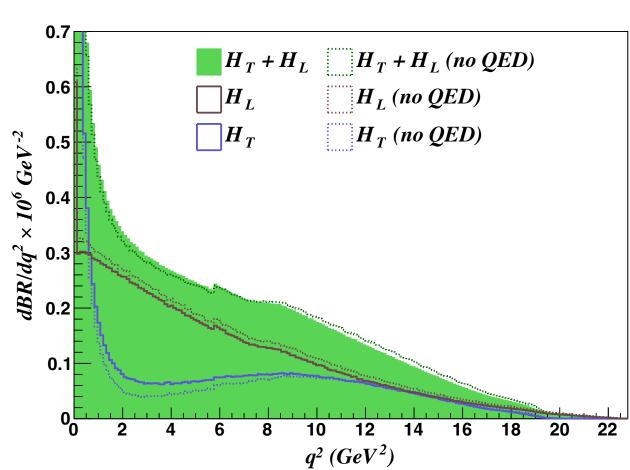
E. Lunghi 21st Recontres du Vietnam

Inclusive: QED radiation (Monte Carlo)

•The Monte Carlo study reproduces the main features of the analytical results







Monte Carlo:

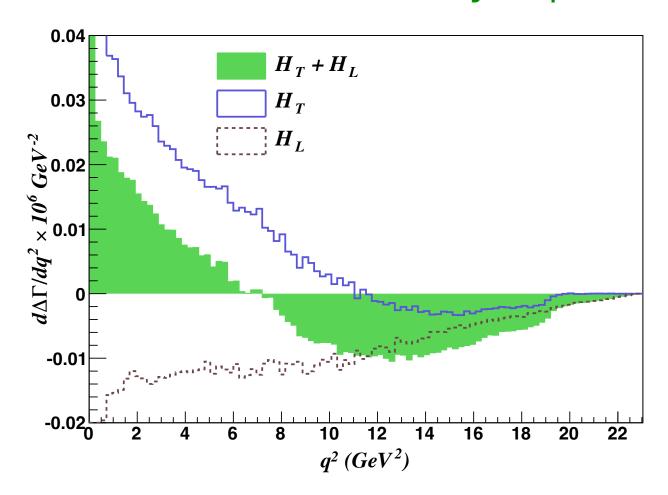
	$q^2 \in [1,6]~\mathrm{GeV}^2$		
	$rac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,6]}}{O_{[1,6]}}$
\mathcal{B}	100	$\frac{\mathcal{D}_{[1,6]}}{3.5}$	3.5
\mathcal{H}_T	19.0	8.0	43.0
\mathcal{H}_L	81.0	-4.5	-5.5

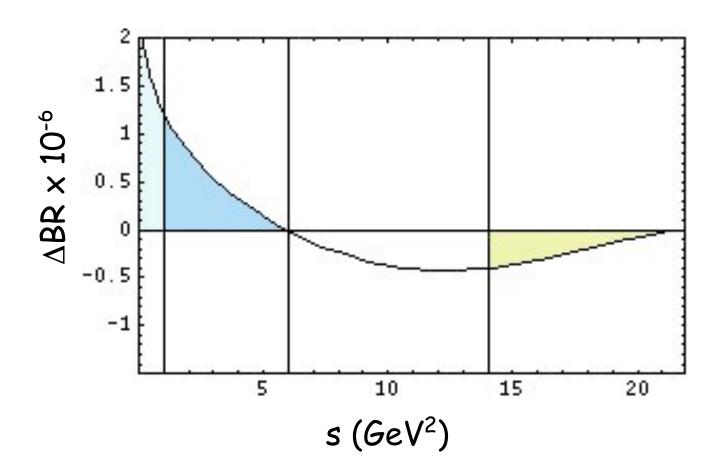
Analytical:

	$q^2 \in [1,6]~\mathrm{GeV^2}$			
	$rac{O_{[1,6]}}{{\cal B}_{[1,6]}}$	$rac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$rac{\Delta O_{[1,6]}}{O_{[1,6]}}$	
\mathcal{B}	100	5.1	5.1	
\mathcal{H}_T	19.5	14.1	72.5	
\mathcal{H}_L	80.0	-8.7	-10.9	

Inclusive: QED radiation (Monte Carlo)

•The Monte Carlo study reproduces the main features of the analytical results:



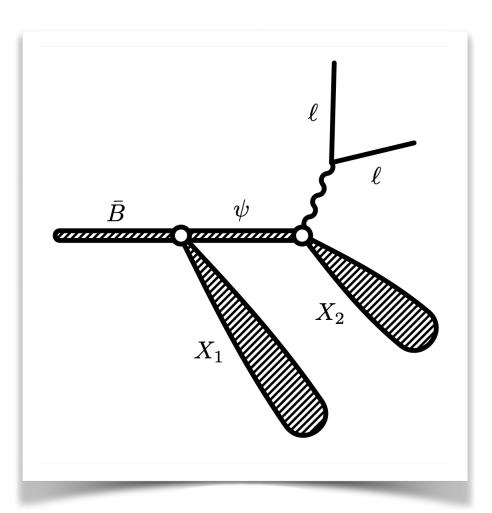


- Take home points on QED radiation and treatment of photons:
 - Large impact (up to 70% for H_T)
 - Strong dependence on the observable (e.g. H_T) and on the shape of the spectrum (as shown by the comparison between theory and EVTGEN+PHOTOS)
- Experimental strategies:
 - be as inclusive as possible (i.e. include photons in X_s system)
 - · "remove" collinear photons effects with PHOTOS (be wary of dependence on the shape of the EVTGEN generated spectrum)

Inclusive: Cascades

- Cascade decays $B \to X_1(\psi \to X_2\ell\ell)$ constitute another long distance effect [Buchalla, Isidori, Rey; Beneke, Buchalla, Neubert, Sachrajda]
- Effects are potentially very large:

	$\mathcal{B} \times 10^3$		$\mathcal{B} \times 10^5$
$\bar{B} \to X_s \psi$	7.8 ± 0.4	$\psi \to \eta \ell^+ \ell^-$	1.43 ± 0.07
$\bar{B} o X_s \psi'$	3.07 ± 0.21	$\psi \to \eta' \ell^+ \ell^-$	6.59 ± 0.18
$\bar{B} o X_s \chi_{c1}$	3.09 ± 0.22	$\psi o \pi^0 \ell^+ \ell^-$	0.076 ± 0.014
$\bar{B} o X_s \chi_{c2}$	0.75 ± 0.11	$\psi' o \eta' \ell^+ \ell^-$	0.196 ± 0.026
$ar{B} ightarrow X_s \eta_c$	4.88 ± 0.97 [111]		
$\bar{B} o X_s \chi_{c0}$	$3.0 \pm 1.0 \ [112]$		
$ar{B} ightarrow X_s h_c$	$2.4 \pm 1.0^{\dagger} \ [53]$		
$ar{B} o X_s \eta_c'$	$0.12 \pm 0.22^{\dagger} \ [113]$		

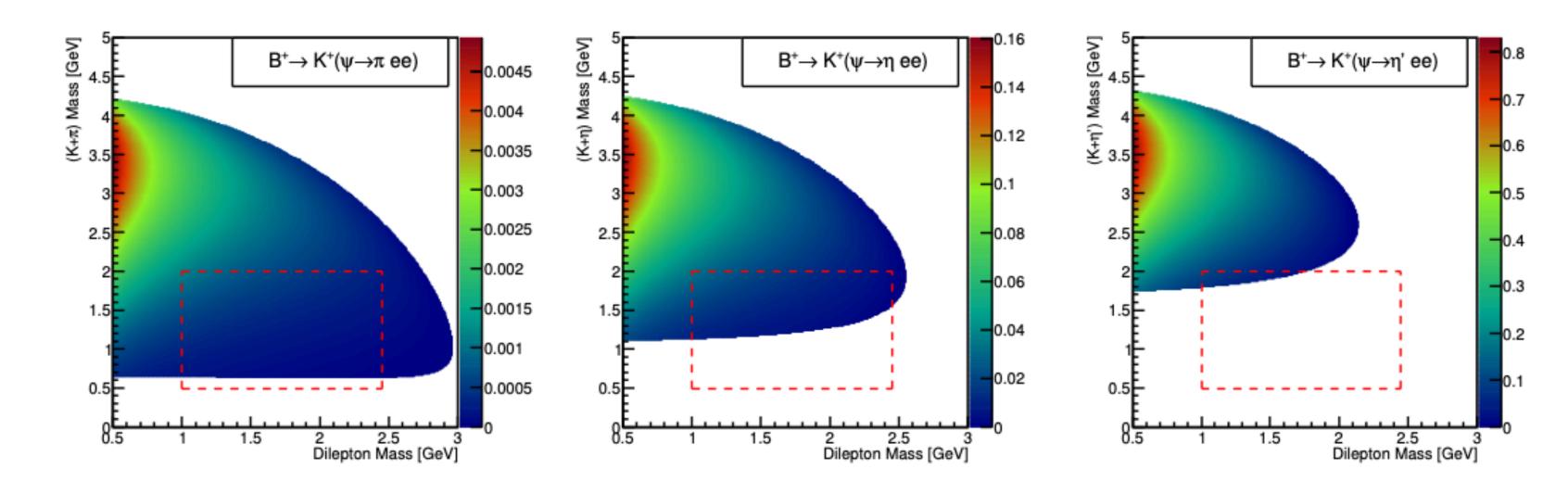


For instance, the η' contribution alone yields a contribution which is of the same order as the short distance $b \to s\ell\ell$:

$$BR(B \to X_s J/\psi)BR(J/\psi \to \eta' \ell' \ell') = 5.1 \times 10^{-7}$$

Inclusive: Cascades

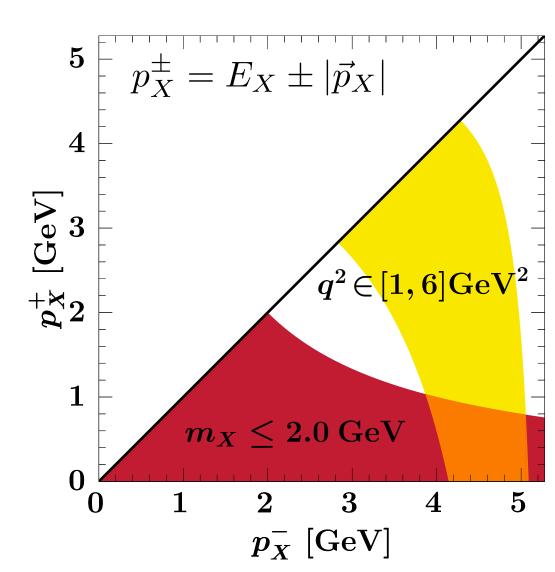
- Even though the inclusive process has not be studied yet, we can study cascade effects as sum over exclusive
- This background is concentrated at low-q2:



• After imposing $m_X < 2$ GeV this background becomes $\ll 1\%$!

Inclusive: m_X cuts

Kinematics:

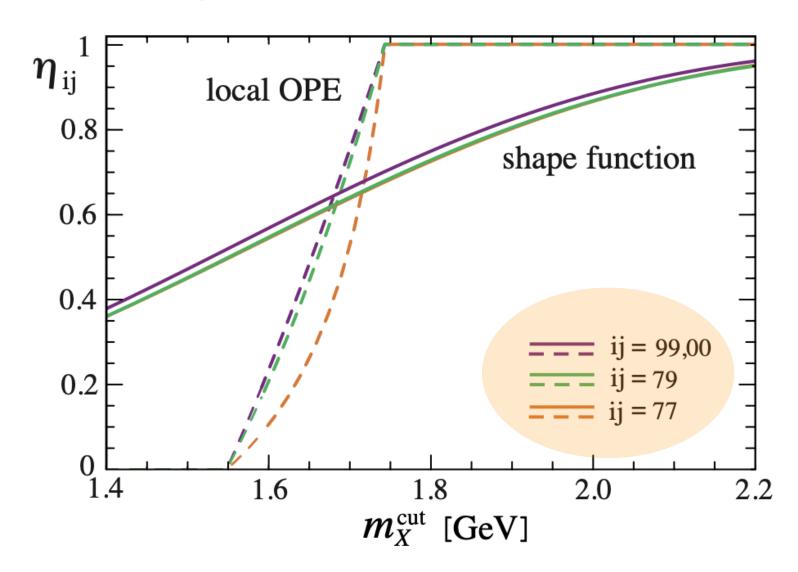


$$p_X^+ \ll p_X^- \Longrightarrow m_X^2 \ll E_X^2$$

X is hard-collinear:

$$\Lambda^2 \ll m_X^2 \sim \Lambda m_b \ll m_b^2$$

• The impact of the cuts is universal ($\eta = \Gamma_{\rm cut}/\Gamma$): [Lee, Ligeti, Stewart, Tackmann]



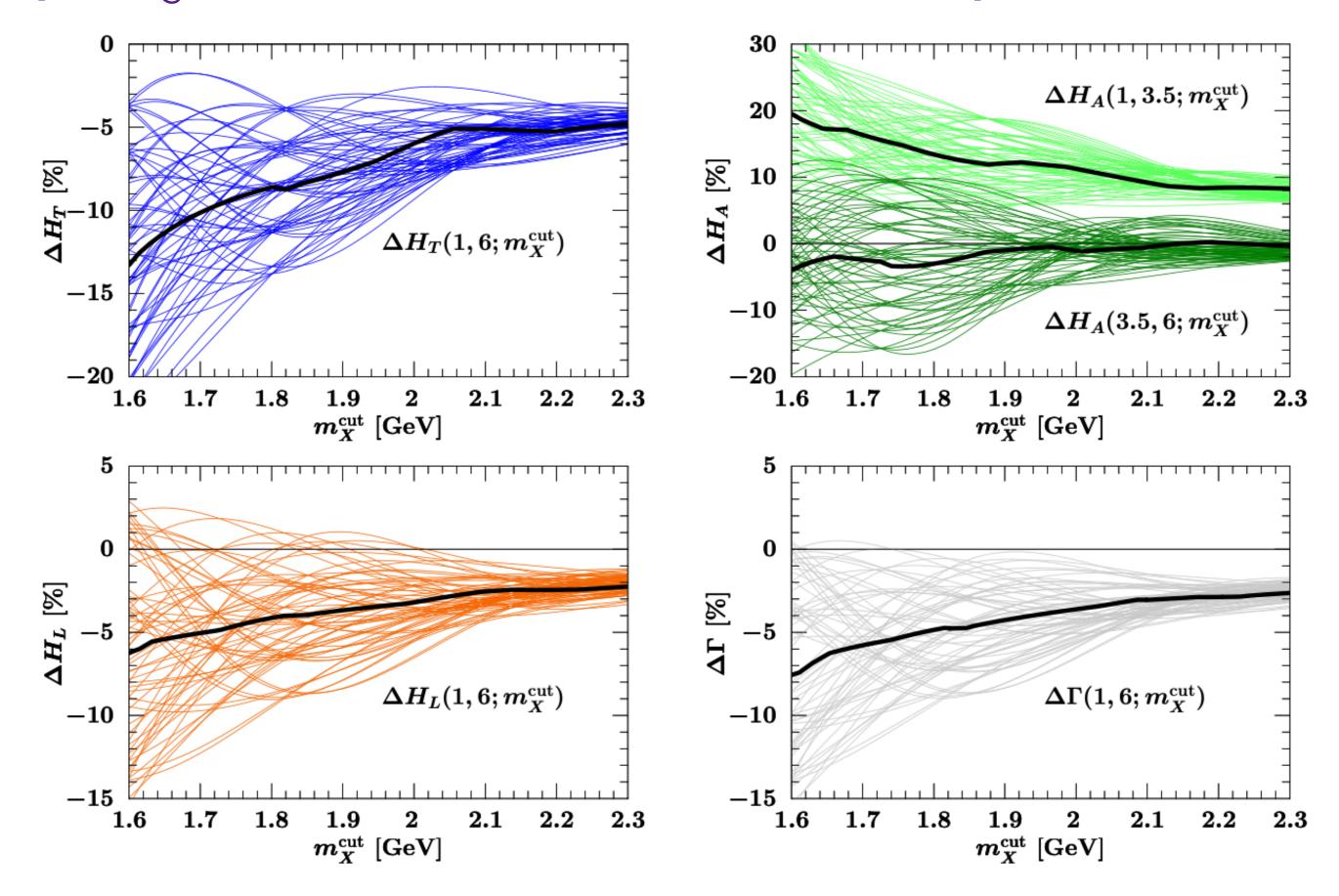
Since the universality of the cuts extends to $B \to X_u \ell \nu$, the following ratio is minimally sensitive to the shape function modeling:

$$\frac{\Gamma(B \to X_s \ell \ell)_{\text{cut}}}{\Gamma(B \to X_u \ell \nu)_{\text{cut}}}$$

[same m_X cut]

Inclusive: m_X cuts (shape function)

Current status of shape function modeling:
 [Lee, Ligeti, Stewart, Tackmann; Bell, Beneke, Huber, Li]



The same-color curves correspond to a sampling of potential shape functions

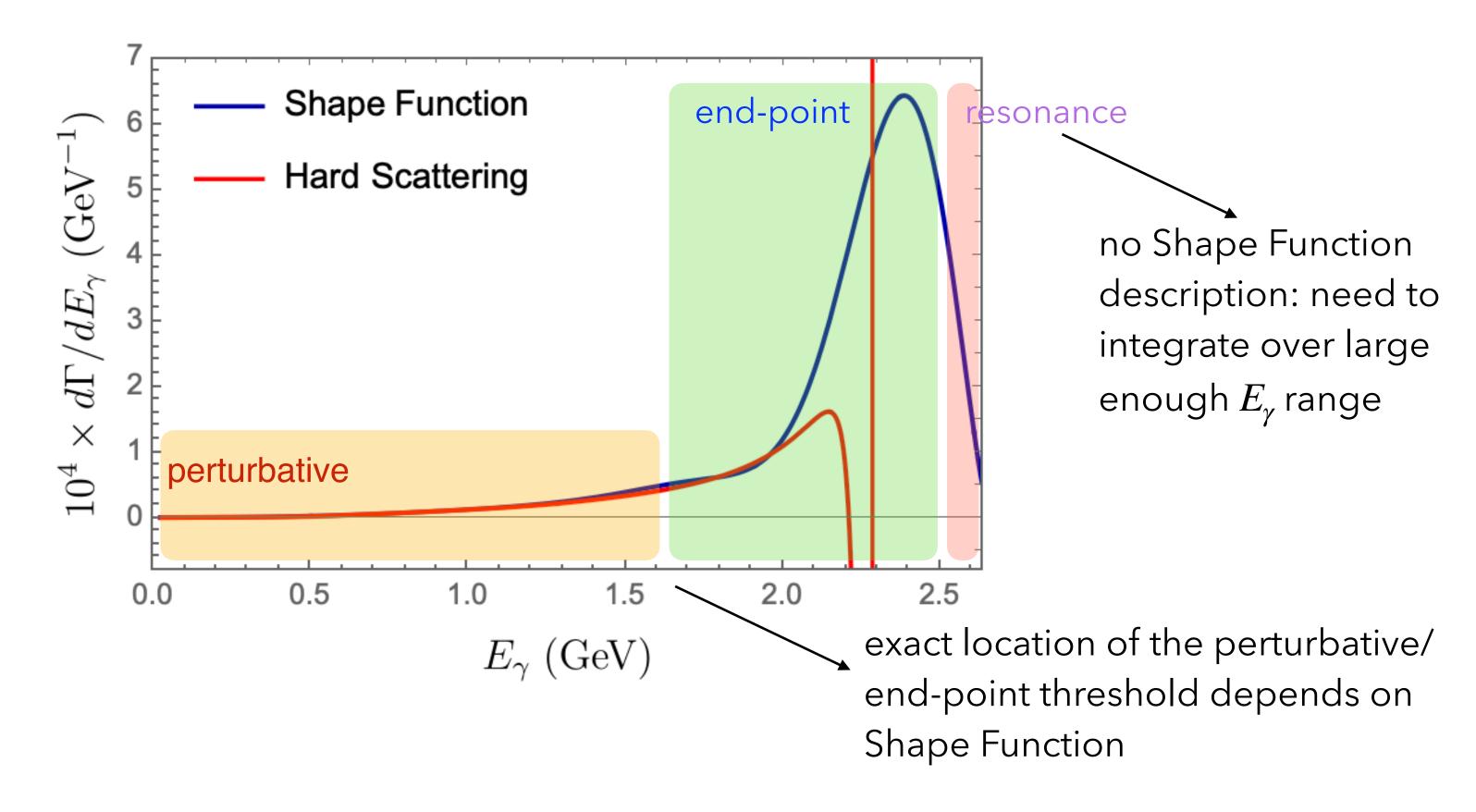
43/28

- SCET at leading power shows that inclusive $b \to s\ell\ell$ and $b \to s\gamma$ depend on a universal shape function
- Subleading effects introduce dependence on subleading shape functions which destroy this universality (in particular the "effective" shape function that appears in $b \to s\ell\ell$ acquires a q^2 dependence
- As an alternative to SCET (and following the kinetic scheme analysis of $B \to X_c \ell \nu$) we write the $b \to s \gamma$ rate with a Wilsonian cutoff ($\mu \sim 1 \text{ GeV}$):

$$\begin{split} \frac{d\Gamma}{dE_{\gamma}} &= \int dk_{+} \, f(k_{+}, \mu) \frac{d\Gamma^{pert}}{dE_{\gamma}} \left(E_{\gamma} - \frac{k_{+}}{2}, \mu \right) & \text{Shape Function in the kinetic scheme} \\ &= \Gamma_{0} \sum_{i \leq j=1}^{8} \frac{C_{i}^{\text{eff}} * (\mu_{b}) C_{j}^{\text{eff}} (\mu_{b})}{C_{j}^{\text{eff}} (\mu_{b})} \int_{-\infty}^{\lambda} d\kappa \, F(\kappa, \mu) W_{ij}^{pert} (\xi - \kappa, \mu, \mu_{b}) \\ & \text{where} \quad F(\kappa, \mu) = m_{b} \, f(m_{b}\kappa, \mu) & \lambda = (m_{B} - m_{b})/m_{b} \\ & m_{b} = m_{b}^{\text{kin}} (\mu) & \Gamma_{0} = \frac{G_{F}^{2} \alpha m_{b}^{2} m_{b}^{\overline{\text{MS}}} (\mu_{b})^{2}}{16\pi^{4}} \left\| V_{tb} V_{ts}^{*} \right\|^{2} \end{split}$$

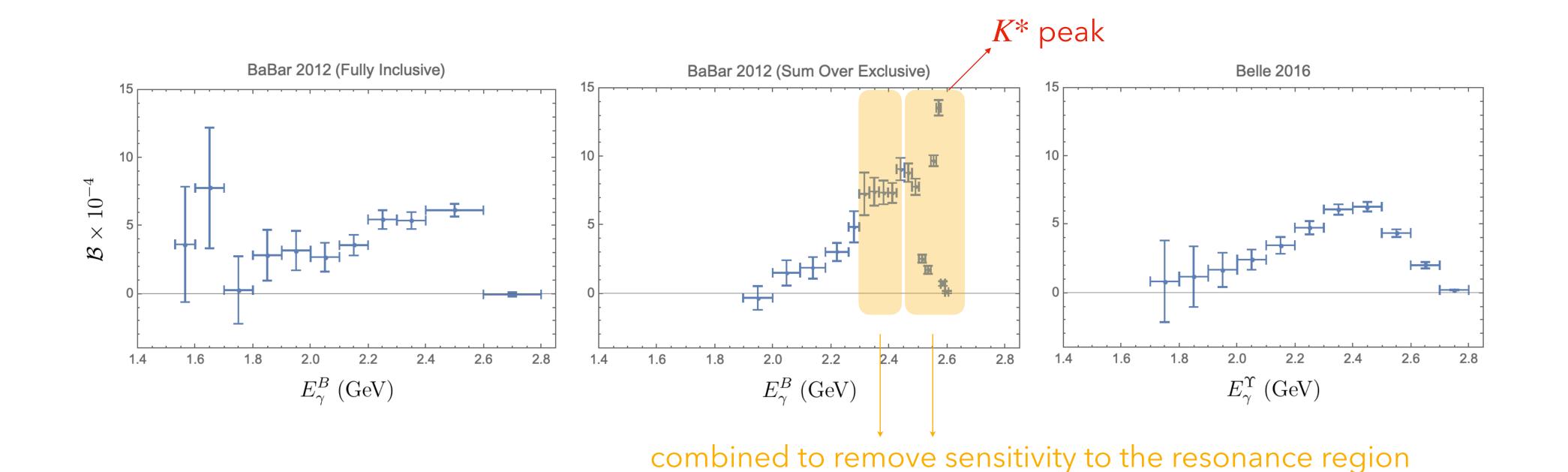
[Gambino, EL, Schacht - Work in progress]

• Shape function vs hard scattering spectra:



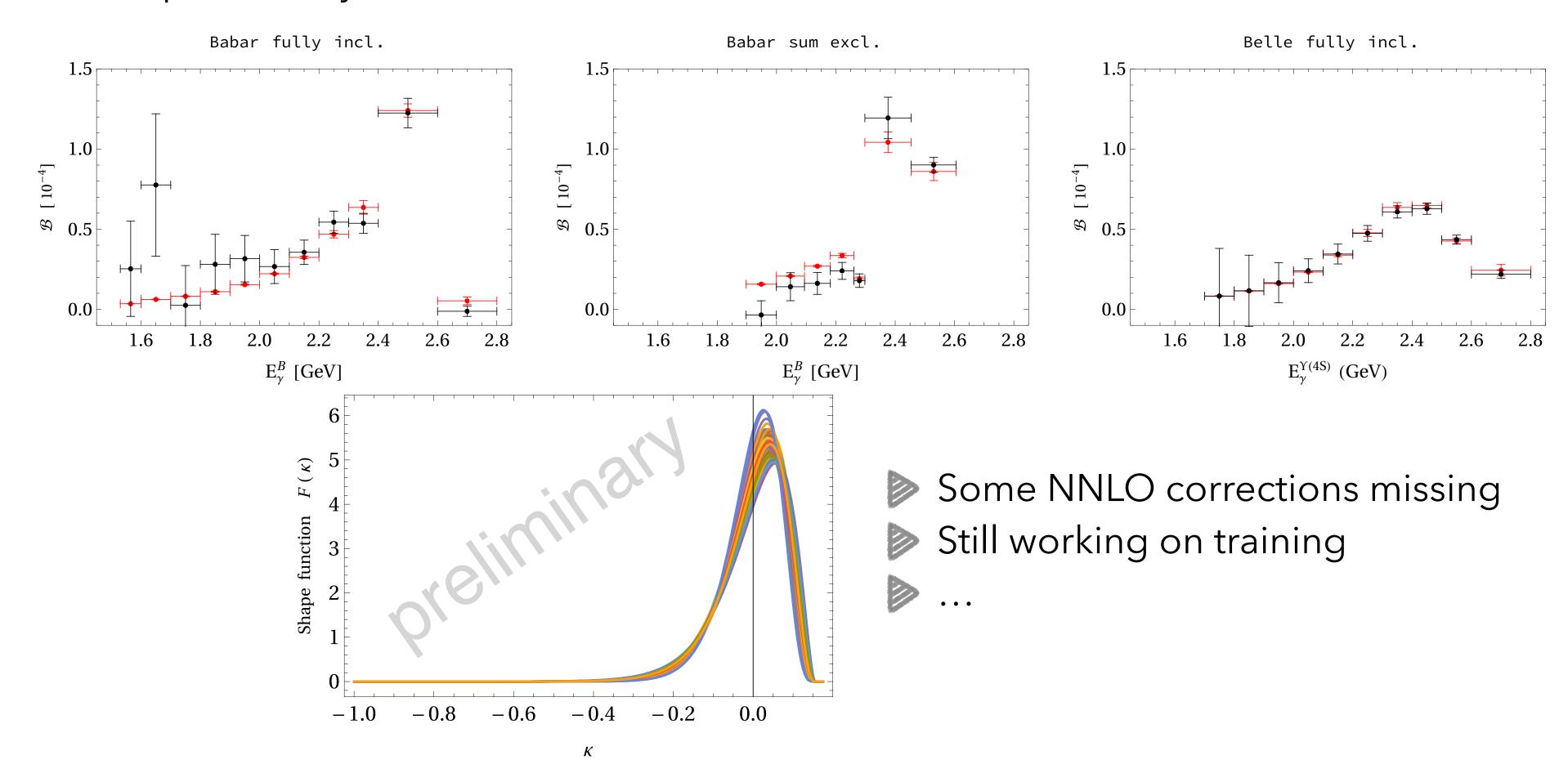
[Gambino, EL, Schacht - Work in progress]

• We considered data from 2012 BaBar fully inclusive and sum over exclusive analyses (in the B rest frame) and 2016 Belle results (in the Y(4S) rest frame):



[Gambino, EL, Schacht - Work in progress]

Some preliminary results:



[Gambino, EL, Schacht - Work in progress]

- Implications for $B \to X_s \ell \ell$:
- SF needed for extrapolation in and to improve the EvtGen Monte Carlo event generator which is the heart of Belle, BaBar and Belle II analyses.

[EvtGen: Ryd, Lange, Kuznetsova, Versille, Rotondo, Kirkby, Wuerthwein, Ishikawa; Maintained by J. Back, M. Kreps and T. Latham at University of Warwick]

Hadronic spectrum is based on the Fermi motion implementation presented in
 Parton level with momentum dependent b mass

$$\frac{d\Gamma_B}{ds \, du \, dp} = \int du' \frac{m_b(p)^2}{m_B} p \left[\frac{4}{\sqrt{\pi p_F^3}} \exp(-p^2/p_F^2) \right] \left(u'^2 + 4m_b(p)^2 s \right)^{-1/2} \left[\frac{d\Gamma_b}{ds \, du} \right]_{m_b \to m_b(p)}^{m_b}$$

- We need to urgently update the code!
- Work in progress on the complete triple differential rate at $O(\alpha_{s})$

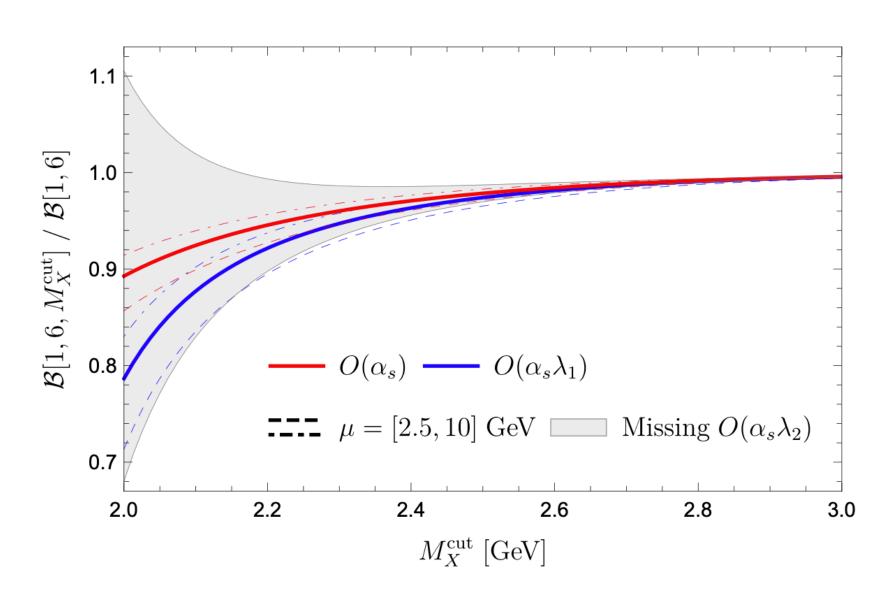
[T. Huber, T. Hurth, J. Jenkins, EL, in preparation] mb = sqrt(mb);

```
pb = _calcprob->FermiMomentum(_pf);

// effective b-quark mass
mb = mB*mB + _mq*_mq - 2.0*mB*sqrt(pb*pb + _mq*_mq);
if ( mb>0. && sqrt(mb)-_ms < 2.0*ml ) mb= -10.;
}
mb = sqrt(mb);</pre>
```

Inclusive: perturbative study of m_X cuts

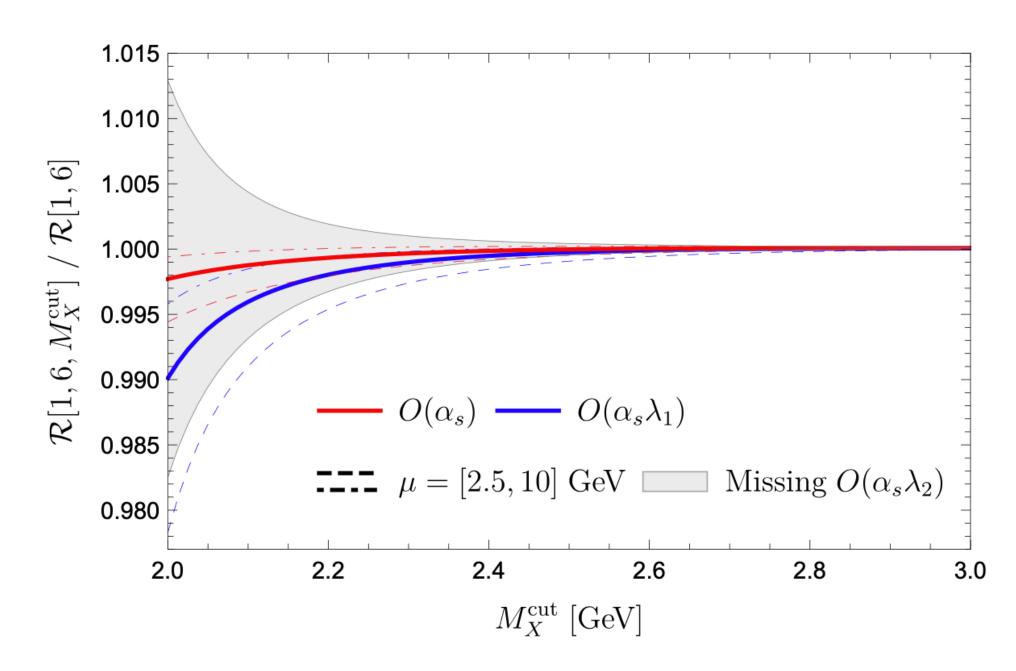
- We calculated the $B \to X_s \ell\ell M_X$ spectrum in perturbation theory at NLO including α_s and $\alpha_s \lambda_1/m_b^2$ [Huber, Hurth, Jenkins, EL, 2306.03134]
- ullet The spectrum deviates develops a tail in M_X at $O(lpha_{\!\scriptscriptstyle S})$
- The $O(\alpha_s \mu_\pi^2)$ correction is necessary in order to asses the breakdown of the OPE
- The aim is to identify the minimum value of M_X^{cut} for which the perturbative calculation still holds (similar to a similar analysis for the photon energy spectrum in $B \to X_s \gamma$).



- A threshold can be tentatively set at $M_X^{\rm cut} = 2.5~{
 m GeV}$
- Experimental cuts are at $M_X^{\rm cut}=2~{
 m GeV}$ and they will require an extrapolation based on a Shape Function approach

Inclusive: perturbative study of m_X cuts

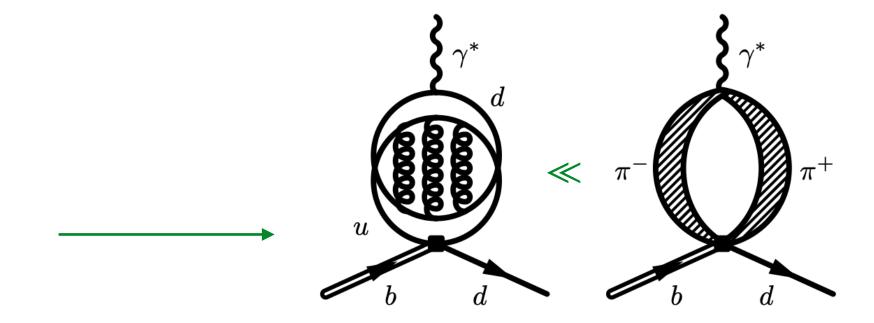
• The ratio of the low- q^2 branching ratio normalized to the $\bar{B} \to X_u \ell \bar{\nu}$ rate measured in the same q^2 range has much smaller power corrections: this suggests that the OPE for this quantity is much better behaved.



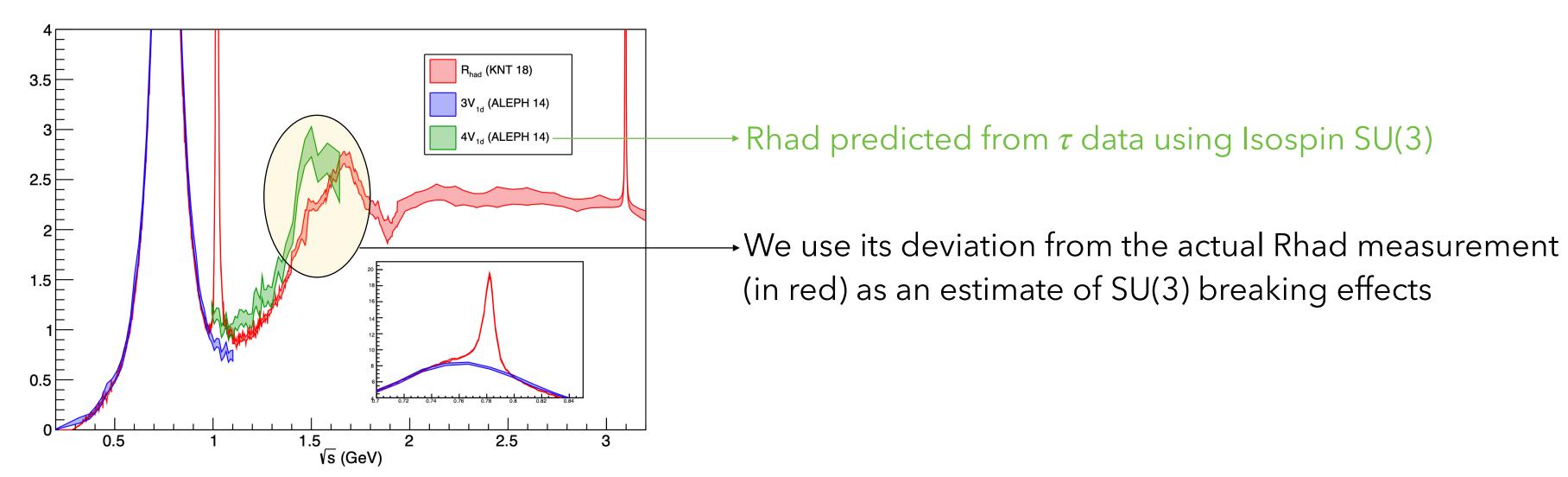
• The next step is to study the interpolation between the Shape Function region at small M_X and the perturbative region for $M_X>2.5~{
m GeV}$

Inclusive: resonant color singlet production

- For $B \to X_d \ell \ell$ we need to include $u\bar{u}$ resonant effects
 - Considerable complications arise because we need to estimate $\langle J_q J_{q'} \rangle$ correlators with q,q'=u,d,s whose relative size at low-q² is not described by perturbation theory at all

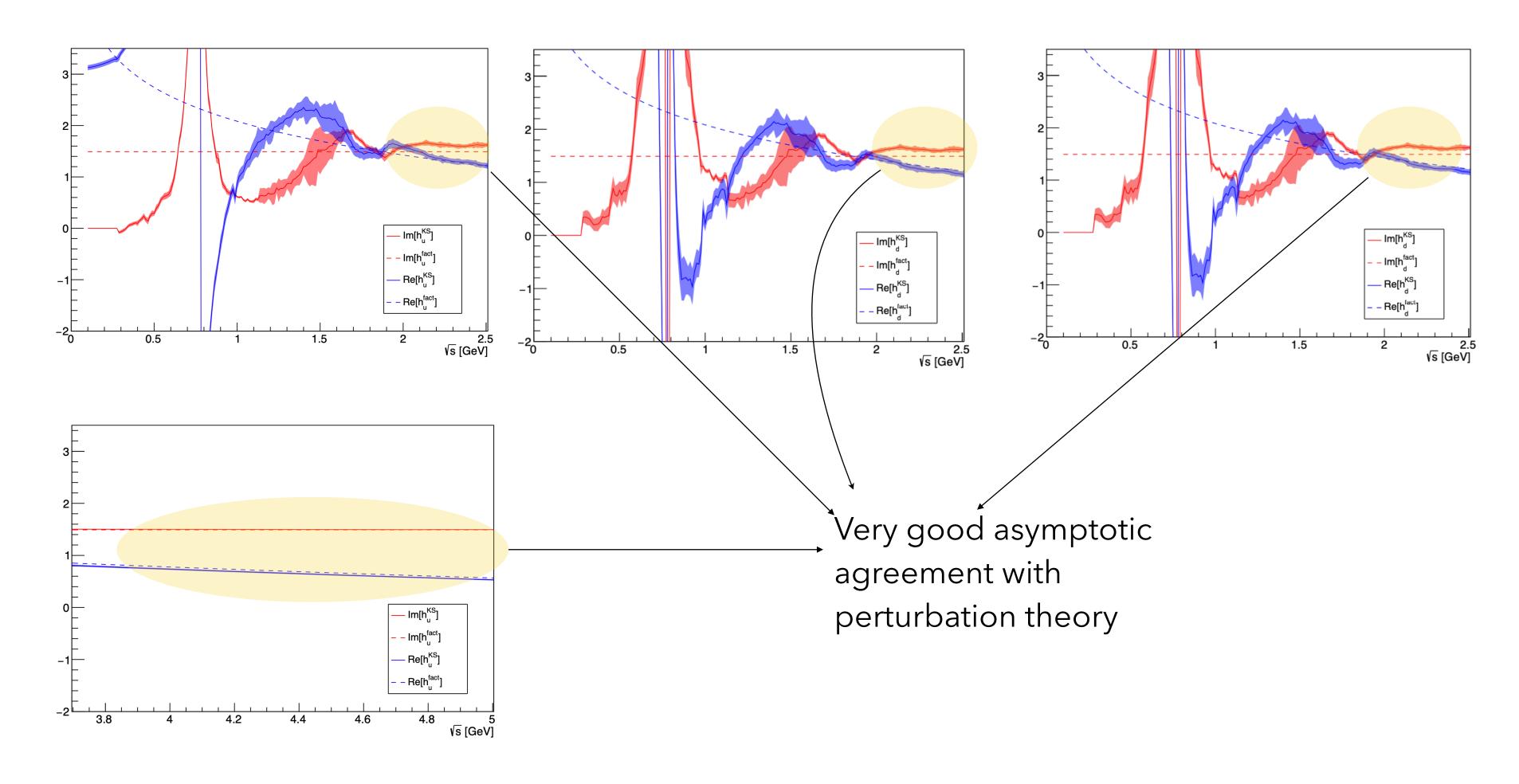


• Using both Isospin SU(2) and SU(3) we were able to express the $u\bar{u}$, $d\bar{d}$ and $s\bar{s}$ Krüger-Sehgal functions in terms of R_{had} and τ decay data only



Inclusive: resonant color singlet production

• For $B \to X_d \ell \ell$ we need to include $u\bar{u}$ resonant effects



Inclusive: $B \to X_d \ell \ell$

Branching ratios

$$\begin{split} \mathcal{B}[1,6]_{ee} &= (7.81 \pm 0.37_{\text{scale}} \pm 0.08_{m_t} \pm 0.17_{C,m_c} \pm 0.08_{m_b} \pm 0.04_{\alpha_s} \pm 0.15_{\text{CKM}} \\ &\pm 0.12_{\text{BR}_{\text{sl}}} \pm 0.05_{\lambda_2} \pm 0.39_{\text{resolved}}) \cdot 10^{-8} \\ &= 7.81 \; (1 \pm 7.8\%) \cdot 10^{-8} \\ \mathcal{B}[1,6]_{\mu\mu} &= 7.59 \; (1 \pm 7.8\%) \cdot 10^{-8} \\ \mathcal{B}[> 14.4]_{ee} &= \; (0.86 \pm 0.12_{\text{scale}} \pm 0.01_{m_t} \pm 0.01_{C,m_c} \pm 0.08_{m_b} \pm 0.02_{\text{CKM}} \pm 0.02_{\text{BR}_{\text{sl}}} \\ &\pm 0.06_{\lambda_2} \pm 0.25_{\rho_1} \pm 0.25_{f_{u,d}}) \cdot 10^{-8} \\ &= 0.86 \; (1 \pm 45\%) \cdot 10^{-8} \\ \mathcal{B}[> 14.4]_{\mu\mu} &= 1.00 \; (1 \pm 39\%) \cdot 10^{-8} \end{split}$$

- \mathbb{Z} Scale and resolved uncertainties dominate at low-q² (hard to improve)
- Power corrections and scale uncertainties dominate at high-q²

Inclusive: $B \to X_d \ell \ell$

• Ratio $\mathcal{R}(s_0)$

$$\mathcal{R}(14.4)_{ee} = (0.93 \pm 0.02_{\text{scale}} \pm 0.01_{m_t} \pm 0.01_{C,m_c} \pm 0.002_{m_b} \pm 0.01_{\alpha_s} \pm 0.05_{\text{CKM}}$$

$$\pm 0.004_{\lambda_2} \pm 0.06_{\rho_1} \pm 0.05_{f_{u,d}}) \times 10^{-4}$$

$$= 0.93 \ (1 \pm 9.7\%) \times 10^{-4}$$

$$\mathcal{R}(14.4)_{uu} = 1.10 \ (1 \pm 6.4\%) \times 10^{-4}$$

Forward-backward asymmetry and zero-crossing

$$\begin{split} H_A[1,3.5]_{ee} &= -0.41 \; (1 \pm 9.8\%) \cdot 10^{-8} \\ H_A[3.5,6]_{ee} &= 0.40 \; (1 \pm 18\%) \cdot 10^{-8} \\ H_A[1,3.5]_{\mu\mu} &= -0.44 \; (1 \pm 9.1\%) \cdot 10^{-8} \\ H_A[3.5,6]_{\mu\mu} &= 0.37 \; (1 \pm 19\%) \cdot 10^{-8} \\ & (q_0^2)_{ee} = 3.28 \pm 0.11_{\text{scale}} \pm 0.001_{m_t} \pm 0.02_{C,m_c} \pm 0.05_{m_b} \\ & \pm 0.03_{\alpha_s} \pm 0.004_{\text{CKM}} \pm 0.001_{\lambda_2} \pm 0.06_{\text{resolved}} = 3.28 \pm 0.14 \\ & (q_0^2)_{\mu\mu} = 3.39 \pm 0.14 \end{split}$$