Modelling DM with AGAMA

James Binney

Rudolf Peierls Centre for Theoretical Physics

University of Oxford

Outline

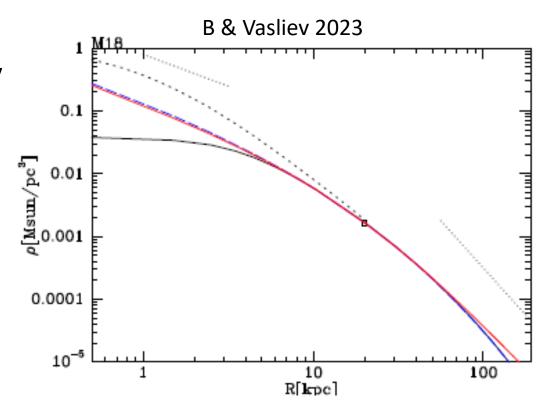
- Why f(J) modelling?
- Application to Fornax & MW
- DFs for spheroidal components
- A new version of AGAMA
- Application to stellar streams
- Valuable contributions from 2nd → 3rd yr UG Tom Wright

Why f(J) modelling?

- DM can only be mapped by its contribution to the grav field
- We map the grav field by its effect on stars
- For now this requires the assumption of a statistical steady state
- Traditionally use Jeans eqs but these suboptimal because
 - 1) F(x) estimates dominated by $\rho(x)$, which is obscured by dust
 - 2) Jeans eqs don't exploit shape of v-distributions, which are not affected by dust

f(J) modelling

- Adopt parametrised forms for f(J) for DM, & stars of various pops
 - (age, chemistry)
- Choose $\Phi_{gas}(x)$
- Make reasonable guess of $\Phi(x)$, solve for $\rho(x)$ by integrating over v
- Solve for new $\Phi(x)$ and iterate to convergence
- DM-only simulations provide better guidance re $f_{DM}(x,v)$ than $\rho_{DM}(x)$
- ρ_{DM} materially modified by gravity of baryons

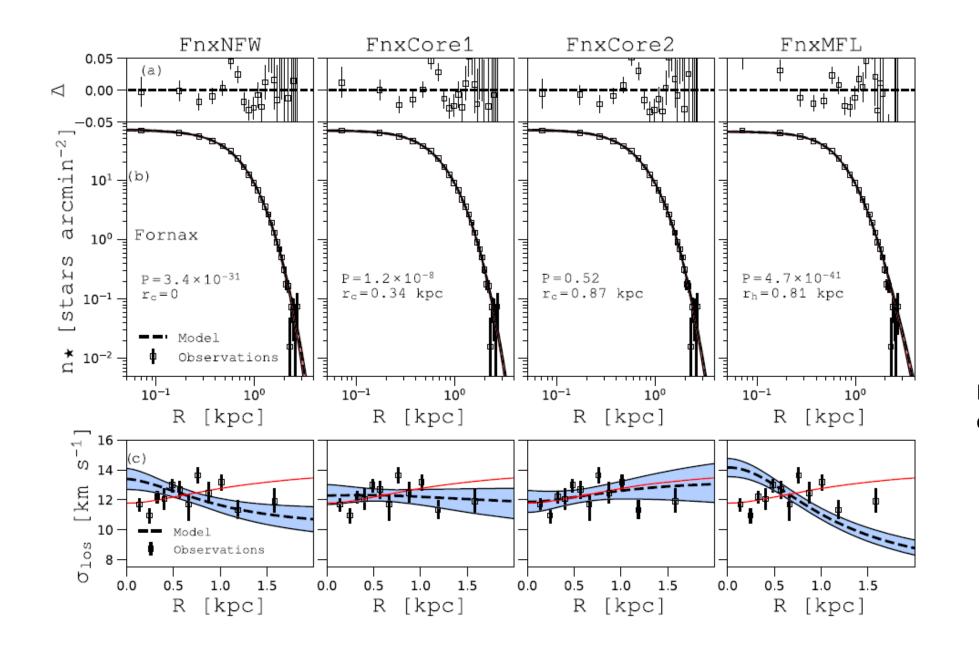


Connection to Schwarzschild modelling

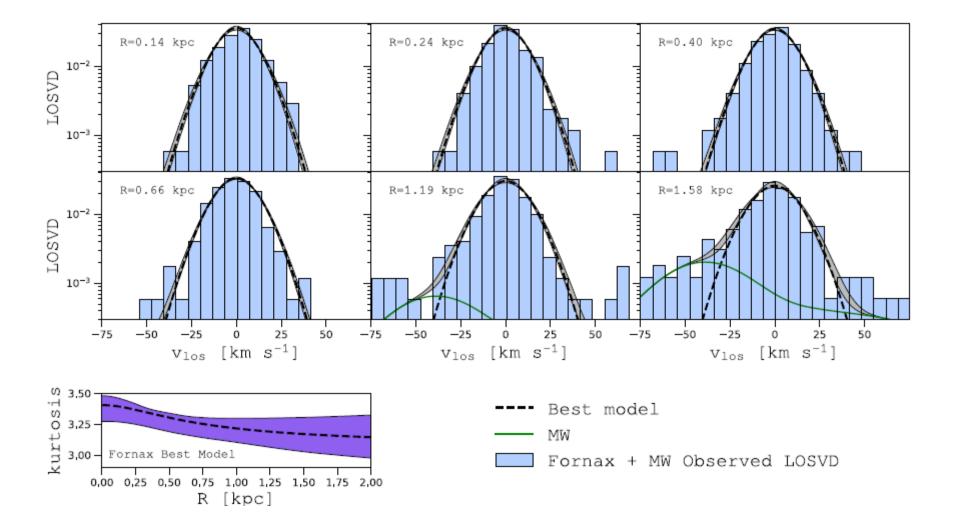
- f(J) models adopt analytic functions f(J|a,b,c..) of actions with parameters a,b,c..
- But one could assign orbits labelled by J weights w in the same way that Schwarzschild modellers weight orbit labelled by i.c.s
 - Then it wouldn't be necessary to fix $\Phi(x)$ up front
- Analytic f(J) assures DFs are smooth functions (is this an advantage?)
 and limit the # of parameters, facilitating parameters searches
 - But the real DF probably isn't reachable by the chosen forms....

Applications

- Pascale+ (2018,19) used f(J) to model dSph galaxies
 - Argued that cored f_{DM} required
- Piffl+ (2015), Cole & B (2016), B & Vasiliev (2023,24) used f(J) to model MW
 - Argued that circular speed is falling at R_0 , estimated ρ_{DM} everywhere

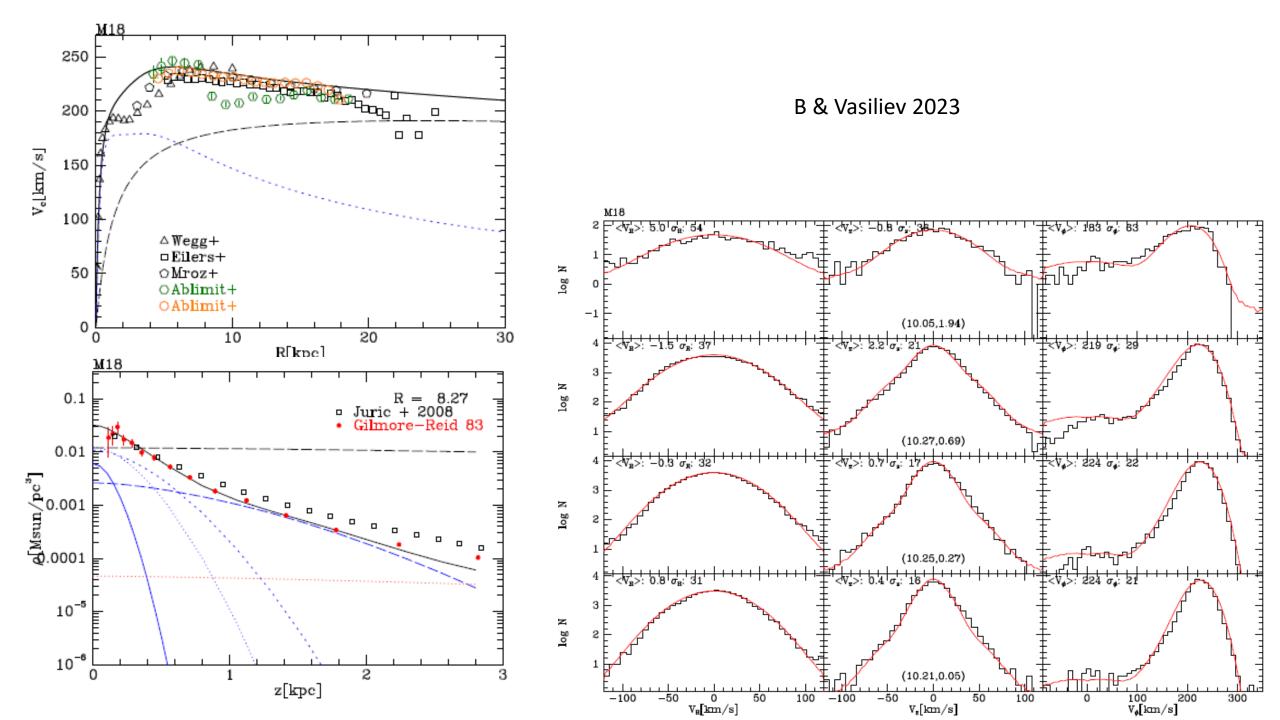


Pascale+ 2018 on Fornax



Applications

- Pascale+ (2018,19) used f(J) to model dSph galaxies
 - Argued that cored f_{DM} required
- Piffl+ (2015), Cole & B (2016), B & Vasiliev (2023,24) used f(J) to model MW
 - Argued that circular speed is falling at R_0 , estimated ρ_{DM} everywhere

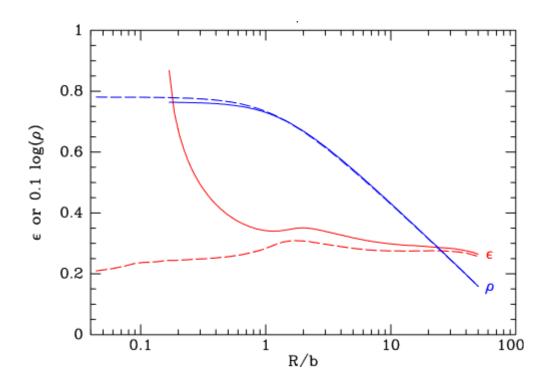


A serious limitation

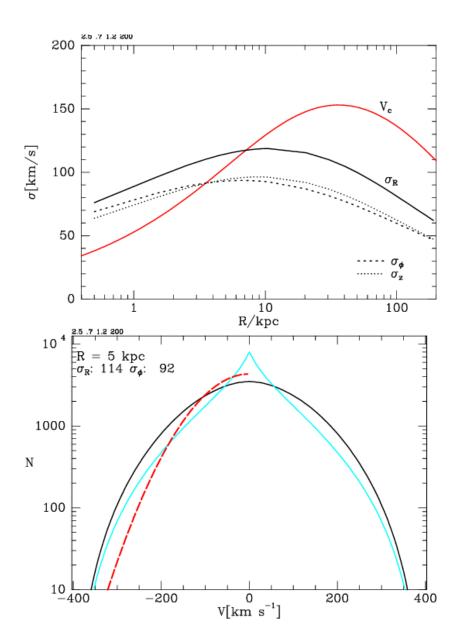
- Pascale+ produced only spherical models
- Work on MW avoided DFs for DM and stellar halo with the required degree of velocity anisotropy

DFs for spheroids

- Henon's isochrone has known f(H) and H(J) so we can write down f(J) for the ergodic isochrone
- Binney (2014) produced flattened isochrones by changing the weights on J_r and J_z in f(J)
 - Radial anisotropy produced by lowering weight on J_r
 - Flattening produced by increasing weight on J₇
- But
 - Resulting models had unphysical shapes near centre
 - Piffl & B (2015) encountered unphysical N(v_{ϕ}) when using this technique to make stellar halo radially biased



- NFW-type dark halo
- (Posti+ 2015)

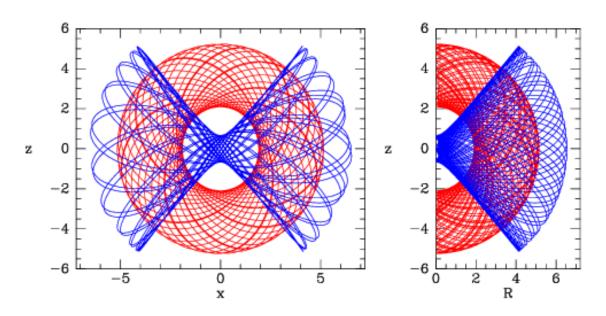


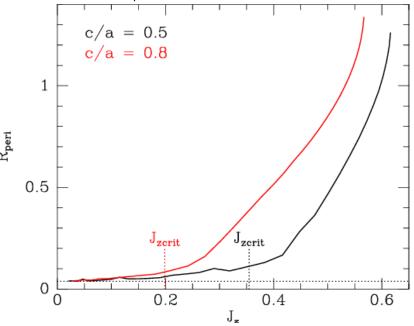
The problem

- At r = 0 of spherical system, all directions equivalent so N(v) must be isotropic
 - They are all determined by $f(J_r, L=0)$ so isotropy guaranteed
 - At $x=\epsilon$, $N(v_x)$ determined by $f(J_r, L=0)$ but $N(v_v)$ depends on L-dependence
 - So L-dependence has to align with J_r dependence as $L \rightarrow 0$
- At R=0 of flattened system $N(v_x) = N(v_y)$ on z axis
 - Both determined by J_r or J₂ dependence of f(J) when on axis
 - But J_{ϕ} dependence important for $N(v_{v})$ when $x = \epsilon$
 - So J_{ϕ} dependence has to align with J_r or J_z dependence as $J_{\phi} \rightarrow 0$

Orbits at low J_{\phi}

- Orbits with J_{ϕ} = 0 move in (x,z) plane in a barred Φ
- Orbits divide into boxes $(J_z < J_{zcrit})$ & loops $(J_z > J_{zcrit})$
- This hard distinction vanishes at $J_{\phi} = \epsilon$ but a distinction remains
- At J < J_{zcrit} , J_r dependence has to align with J_{ϕ} dependence as $J_{\phi} \rightarrow 0$
- At $J > J_{zcrit}$, J_z dependence has to align with J_{ϕ} dependence as $J_{\phi} \rightarrow 0$





A way to arrange this

- As $J_{\phi} \to 0$ we require $0 = \frac{\partial f}{\partial v_{\phi}} = \frac{\mathrm{d}f}{\mathrm{d}H} \left(\Omega_r \frac{\partial J_r}{\partial v_{\phi}} + \Omega_z \frac{\partial J_z}{\partial v_{\phi}} + \Omega_{\phi} R \right)$
- So cancellations are required
- Consideration of ergodic DF shows cancellations iff

$$\frac{\partial f/\partial J_z}{\partial f/\partial J_\phi} \to 1 \text{ as } J_\phi \to 0 \text{ with } J_z > J_{z\text{crit}}$$
$$\frac{\partial f/\partial J_r}{\partial f/\partial J_\phi} \to 2 \text{ as } J_\phi \to 0 \text{ with } J_z < J_{z\text{crit}}.$$

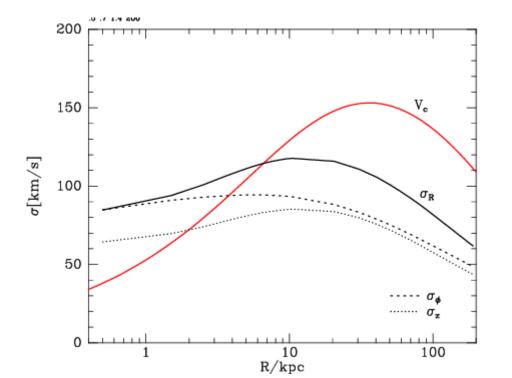
Define auxiliary DF

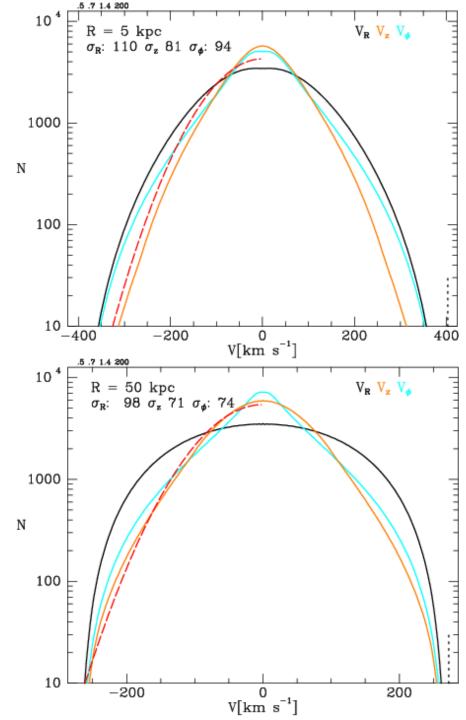
$$f'(\mathbf{J}) \equiv \begin{cases} f(J_r + \frac{1}{2}(|J_{\phi}| - \epsilon), J_z, \epsilon) & J_z < J_{z \text{crit}} \\ f(J_r, J_z + (|J_{\phi}| - \epsilon, \epsilon)) & J_z > J_{z \text{crit}} \end{cases}$$

• Use DF $f''(\mathbf{J}) = wf'(\mathbf{J}) + (1-w)f(\mathbf{J})$. where $\lim_{J_{\phi} \to 0} w(\mathbf{J}) = 1$ and $\lim_{J_{\phi} \to 0} \nabla_{\mathbf{J}} w = 0$,

An example

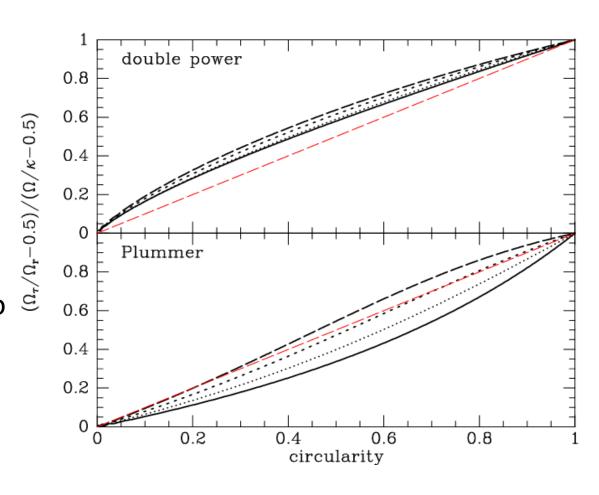
- NFW type $\Phi(R,z)$ from $\rho(R,z)$ flattened to c/a = 05
- DF Posti type f($0.7J_r + 1.4J_z + |J_{\phi}|$.)

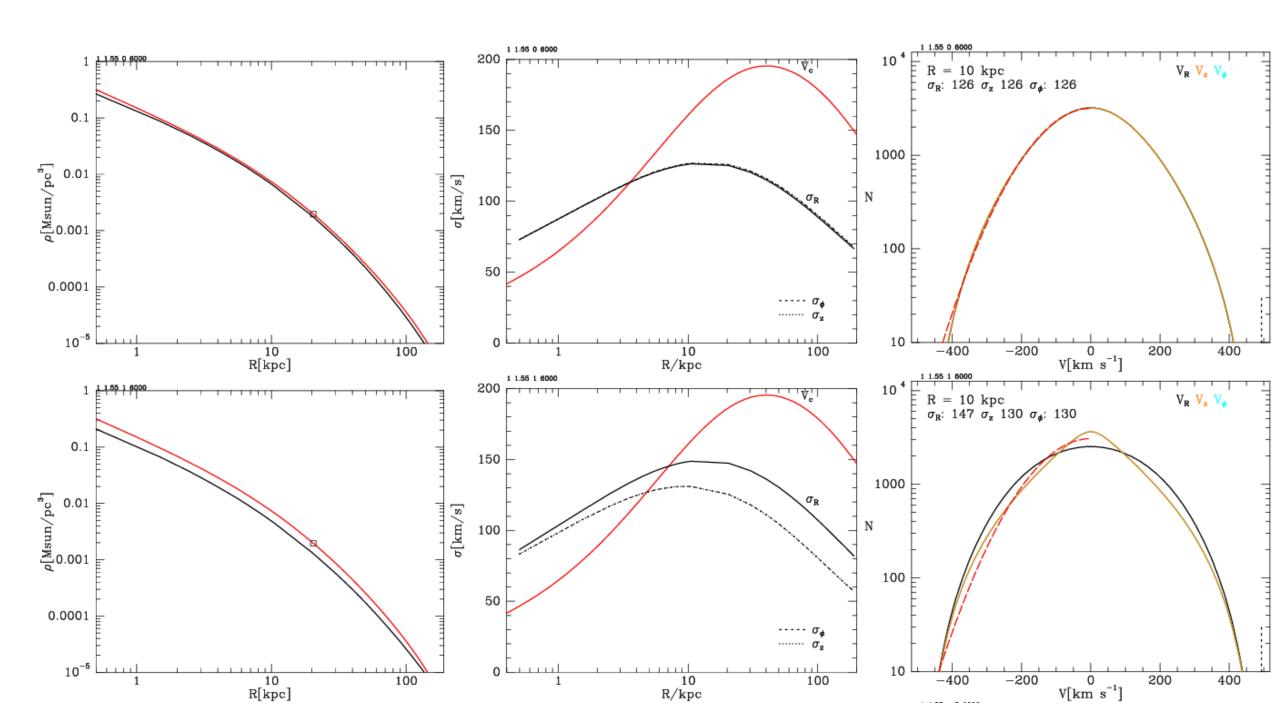




Spherical models

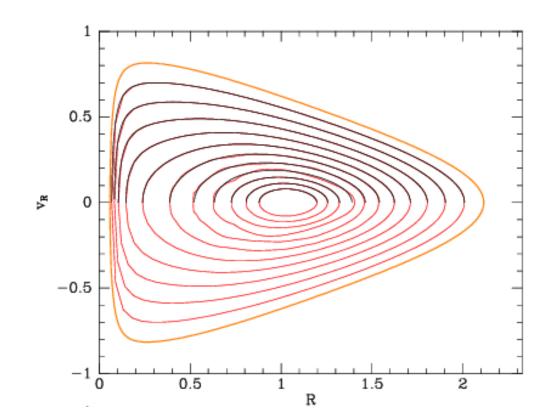
- Ergodic DF f(E) always available by Eddington
- But H(J) rarely available
- Can compute good approx. to H(J) by using approx. to $\Omega_{\rm t}/\Omega_{\rm r}$
- Integrate $0 = dH = \Omega_r dJ_r + \Omega_t dL$ from (J_r, L) to $\stackrel{\circ}{\leq}$ $(0, L_c)$ and use $E(L_c)$
- Modify procedure to generate anisotropic models



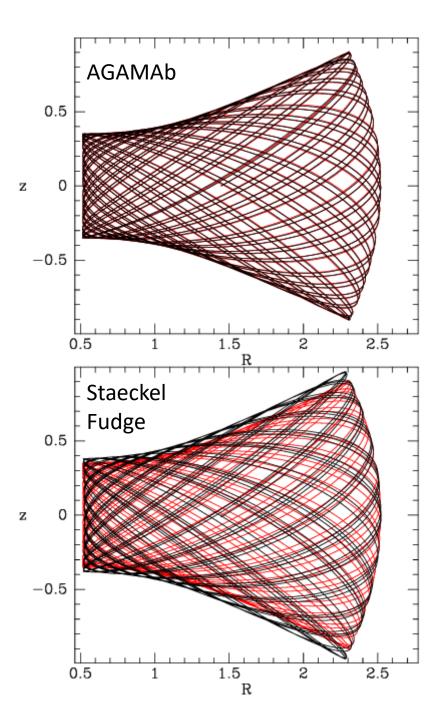


A new AGAMA

- Facilities for handling obs data
 - Sky coordinates (RA, dec) or (I, b) proper motions, Vlos, etc
 - Obscuration by dust
 - Luminosity functions of pops with given DF
 - Line of sight sampling
- Function to compute J_{zcrit} as func of E or J_r
 - New DFs
- Native torus mapper that can
 - handle highly eccentric orbits
 - Interpolate seamlessly
 - Includes an action finder $(x,v) \rightarrow (\theta,J)$
 - Windows & Linux versions
 - New Python interface

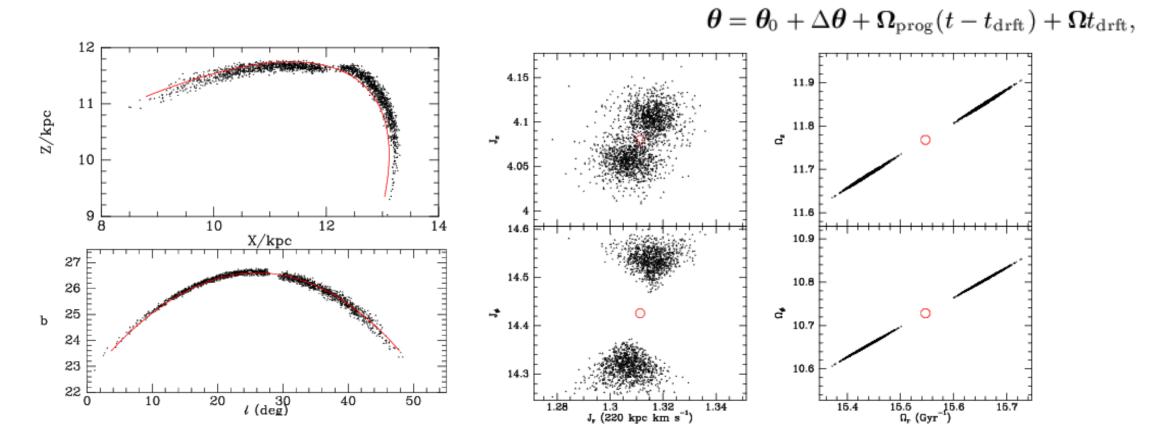


Action finder



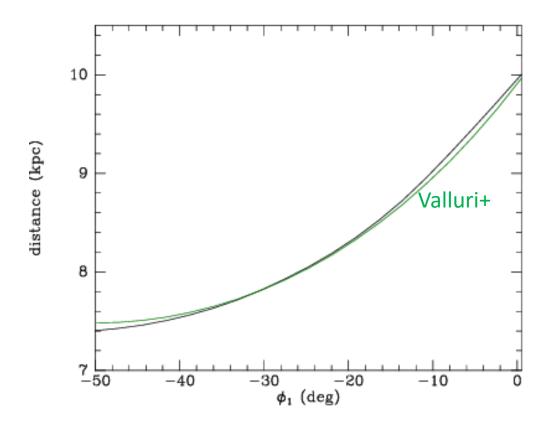
A stellar stream created in 11 seconds

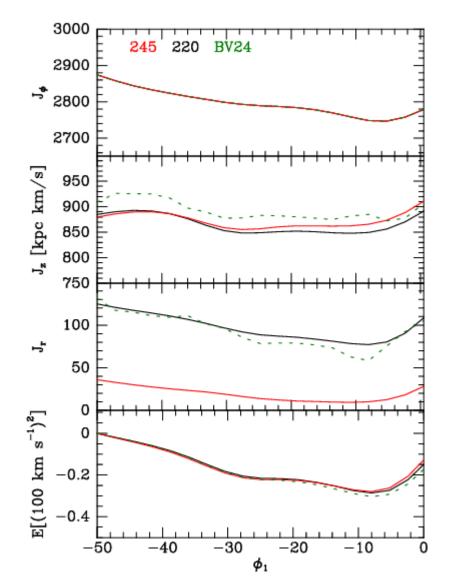
- Create 5³ grids of tori ahead/behind progenitor
- Place 2,000 stars by Gaussianly sampling action and using



Application to GD1

- Actions should vary little (& systematically) along stream
- Tiny correction to distances of Valluri+ 2025 hold J_{ϕ} constant





Conclusions

- Forward modelling of stellar systems mandatory
- N-body models are very hard to taylor to specific galaxies
- Can map DM only by assuming steady state
 - → exploitation of Jeans thm
- Actions are by far the best constants of motion
- Natural to start with f(J) analytic or free-form
- Fornax & MW modelled using analytic f(J)
- DFs for spheroidal cpts lack required velocity anisotropy
- This problem now understood & resolved
- AGAMA provides powerful tools for f(J) modelling
- A more powerful release will appear soon
- We'll use it to explore shape of MW's dark halo