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% Black holes formed in the early* Universe (in particular: non-stellar).
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% Black holes formed in the early* Universe (in particular: non-stellar).
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w PBHs are the only dark matter candidate known to exit in Nature!



Drimerbtad Block Holos Formation Mechanisms

% Large density perturbations (inflation)

W Pressure reduction

[Byrnes et al. 2018]
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% Bubble collisions
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[Dvali, FK, Zantedeschi 2021]

% Scalar-field fragmentation, ...
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% Black hole evaporation /eaves the semiclassical regime
at latest at half-mass, possibly much earlier.
[Dvali 2018; Dvali, Eisemann, Michel, Zell 2020]
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% Black hole evaporation /eaves the semiclassical regime
at latest at half-mass, possibly much earlier.
[Dvali 2018; Dvali, Eisemann, Michel, Zell 2020]

% Evaporation rate I' = dM/dt becomes entropy suppressed

[Dvali, Eisemann, Michel, Zell 2020]
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% Black hole evaporation /eaves the semiclassical regime
at latest at half-mass, possibly much earlier.
[Dvali 2018; Dvali, Eisemann, Michel, Zell 2020]

% Evaporation rate I' = dM/dt becomes entropy suppressed

[Dvali, Eisemann, Michel, Zell 2020]
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% This opens up a large mass range for ultra-light PBHs as
(quasi-)remnants!



/[/lmﬂjﬂgw@ Ej@f
k=1, 4. =M/2

; 107°°M, 107*'M, 107'°M, 107''"M, 107°M,
10 I

| T " T T
1 I
107" : i
I
1072 I Iy
E II : l',,
G 10_3 N |I ,' 1
~ \ l A - - BBN
% 10_4 I Tae l“' ll
é 107 eW masi ,,' CMB Anisotropies
Il 6L j
T 10 window ‘\ ,i’ - = Extragalactic y rays
ﬁ 1077+ ol .
g Y - = Galactic y rays
107° !
1079 F 1 — Lensing

107 101! 1015 10" 1023 1027
[Dvali, Valbuena-Bermudez,
MPBH [g] Zantedeschi 2024]

(see also [Alexandre, Dvali, Koutsangelas 2024;
Thoss, Burkert, Kohri 2024] and many more.)
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% This was for:

k= 1’ tburden = M/2

% There are arguments for the memory-burden effect
setting in already at

tburden = M/ \/E or tburden = M/S

w What happens in this case?
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% Most works have utilised a sudden transition from the
semiclassical to the memory burden phase.
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% Most works have utilised a sudden transition from the
semiclassical to the memory burden phase.

w What happens if the transition is smooth? [Montefaicone, Hooper, Freese,

dM
dr

Kelso, FK, Sandick 2025]
[Dvali, Zantedeschi, Zell 2025]
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% Light black holes — if sufficiently abundant — merge frequently.

% They would then R = 10g
reenter a second :
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phase. o
=
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% Power spectra at PBH scales essentially unknown.
* Quantum diffusion seems to lead to exponential tails.

% We have performed the currently largest (one in 10'°)
simulation of spatially-correlated exponential random
fields with power spectra of the form P(k) « k"
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% PBH formation is not instant but takes potentially several e-folds.

Hubble
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% PBH formation is not instant but takes potentially several e-folds.
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% PBH formation is not instant but takes potentially several e-folds.

% no correlation
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% PBH formation is not instant but takes potentially several e-folds.

w moderate correlation
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% PBH formation is not instant but takes potentially several e-folds.

% strong correlation
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% As often as GauB3 distributions occur, as little they are questioned.

% Going back to the Central Limit Theorem:

% Take random variables {A;}Y_, jid, with mean 1 and variance o

. 1
% Define the sample average Sy = ~ Z A,

A : SN — i 2
- |hen ngnooPrOb<\/0'2/N < 5) \/%/ dt exp(—t*)

W Questions: What happens for extrema, like maxima?
Is this still GauBian?



Evtreme - Vilve Distritutions

% Define the sample maxima My = max(A,)
i=1,...,N

% Then if there exists sequences {axy € R}¥_; and {cy > 0}3_, with

lim Prob(MN —ON 5) = H(Y)

N — o0 CN

where H(d) is a non-degenerate CDF, then this function
necessarily belongs to one of the following (GEV) classes

—1/s [Fischer, Tippett 1928]
s 20

()] 6=

s,a and ~ are the shape-, location- and scale parameters.

H;, () = exp

The choicess =0,s < 0and s > 0, correspond to the Gumbel,
Fréchet, and Weibull distributions, respectively.
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% Block-maxima PDF obtained by sampling 10'° blocks
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[Choi, Creswell, FK, Schwarz 2025]
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w PDF within each block
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% PBH mass distribution (see work by Escriva & Yoo 2024)
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Abstract

We investigate the impact of massive primordial black holes (PBHs; mpy ~ 10° M) on the star formation and
first galaxy assembly process using high-resolution hydrodynamical Mé =1100to z ~ 9. We find
that PBH accretion is self-regulated by feedback, suppressing mass growth unless feedback is weak. PBHs
accelerate structure formation by seeding dark matter (DM) halos and gravitationally attracting gas, but strong
feedback can delay cooling and suppress star formation. In addition, the presence of baryon-DM streaming creates
an offset between the PBH location and the peaks induced in gas density, promoting earlier and more efficient star
formation compared to standard ACDM. By z ~ 10, PBH-seeded galaxies form dense star clusters, with PBH-to-
stellar mass ratios comparable to observed high-z active galactic nuclei like UHZ-1. Our results support PBHs as
viable supermassive black hole (SMBH) seeds but do not exclude alternative scenarios. We emphasize that PBH-
seeding provides a natural explanation for some of the newly discovered overmassive SMBHs at high redshift, in
particular those with extreme ratios of BH-to-dynamical (virial) mass that challenge standard formation channels.
Future studies with ultra-deep JWST surveys, the Roman Space Telescope, and radio surveys with facilities such
as the Square Kilometre Array and Hydrogen Epoch of Reionization Array will be critical in distinguishing PBH-
driven SMBH growth from other pathways.

Unified Astronomy Thesaurus concepts: Dark matter (353); Early universe (435); Galaxy formation (595);
Population III stars (1285); Supermassive black holes (1663)
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% Stellar densities in PBH-seeded galaxies at z ~ 9
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% Stellar mass assembly histories for PBH-seeded galaxies
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% Stellar mass assembly histories for PBH-seeded galaxies
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% Co-evolution of the PBH and its host system
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A critical analysis of the recent OGLE limits on stellar mass primordial
black holes in the halo of the Milky Way

M. R. S. Hawkins * J. Garcia-Bellido 2+

Unstitute for Astronomy (IfA), University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
2 Instituto de Fisica Teérica UAM/CSIC, Universidad Auténoma de Madrid, Nicolds Cabrera 13, Madrid 28049, Spain

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
This paper is a response to recent claims that a population of primordial black holes in the Galactic halo has been ruled out
by the OGLE collaboration. This claim was based on the latest results from the OGLE microlensing survey towards the Large
Magellanic Cloud which failed to detect even the number of events expected from known stellar populations. In particular, their
results are completely inconsistent with the results of the MACHO survey which detected a population of compact bodies in the
Galactic halo which could not be accounted for by any known stellar population. The discrepancy between the results of these
two groups has a long history, and includes problems such as different choice of photometric passbands, quality of light curves,
microlensing event selection, detection efficiency, self lensing and halo models. In this paper it is demonstrated that these issues
not only account for the discrepancy between the OGLE and MACHO results, but imply that the OGLE observatlons can put no

meamngful constramts on a populatlon of pr1mord1a1 black holes in the Galactlc halo. ‘ —

Key words: quasars: general grav1tat10na1 lensing: micro — dark matter
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