Measuring the dynamical evolution of the Milky Way's Disk

Neige Frankel
Canadian Institute for Theoretical Astrophysics
News From The Dark 10

The Milky Way is a model organism

Generic disk galaxy (mass, size, morphology)

Scale length = 3 kpc (kiloparsec)

Solar radius = 8 kpc

To trace large-scale processes, we need large-scale datasets

7000 stars with:

- 3D Positions
- 3D velocities
- metallicities [Fe/H]
- Ages precise to 30% (Ness+16, Ting+19)

from the SDSS-IV APOGEE red clump catalog (DR14) x Gaia

Mapping the mass distribution in the Milky Way

Unseen mass interacts gravitationally.

$$abla^2\phi=4\pi G
ho.$$

Gravitational Potential

mass density

'We can just measure it'

Only present-day snapshot
--> no time-series of motion
No (few) acceleration measurement

'We can just map the baryons'

No.

non-axisymmetries short-lived

Periodically change angular momentum and energy
Permanently change angular momentum and energy

non-axisymmetries short-lived

Periodically change angular momentum and energy
Permanently change angular momentum and energy

non-axisymmetry longer-lived change pattern speed?

Periodically change angular momentum and energy
Permanently change angular momentum and energy

non-axisymmetries short-lived

Periodically change angular momentum and energy
Permanently change angular momentum and energy

non-axisymmetry longer-lived change pattern speed?

Periodically change angular momentum and energy
Permanently change angular momentum and energy

small clumps

Scatter/heat the orbits of stars

non-axisymmetries short-lived

Periodically change angular momentum and energy
Permanently change angular momentum and energy

non-axisymmetry longer-lived change pattern speed?

Periodically change angular momentum and energy Permanently change angular momentum and energy

small clumps

Scatter/heat the orbits of stars

External perturbations

Large-scale heating events

Periodically change angular momentum and energy
Permanently change angular momentum and energy

Periodically change angular momentum and energy
Permanently change angular momentum and energy

Scatter/heat the orbits of stars

Large-scale heating events

Scattering, heating, gravitational friction, large & small scale perturbations

189 stars Geneva-Copenhaen survey D < 100 pc

189 stars Geneva-Copenhaen survey D < 100 pc

To trace large-scale processes, we need large-scale datasets

7000 stars with:

- 3D Positions
- 3D velocities
- metallicities [Fe/H]
- Ages precise to 30% (Ness+16, Ting+19)

from the SDSS-IV APOGEE red clump catalog (2019)

Tight [Fe/H] – R at birth,

$$p($$
 data & their uncertainties $|\theta)$ Frankel+2020

position $p(\vec{x},\vec{v},[Fe/H], au| heta)$ Frankel+2020

position velocity
$$p(\vec{x},\vec{v},[Fe/H], au| heta)$$
 Frankel+2020

position velocity metallicity
$$p(\vec{x},\vec{v},[Fe/H], au| heta)$$
 Frankel+2020

position velocity metallicity age
$$p(\vec{x},\vec{v},[Fe/H], au]$$
 Frankel+2020

position velocity metallicity age model
$$p(\vec{x}, \vec{v}, [Fe/H], \tau | \theta)$$
 Frankel+2020

position velocity metallicity age model
$$p(\vec{x}, \vec{v}, \lceil Fe/H \rceil, \tau \mid \theta)$$
 Frankel+2020

• When and where were stars born?

position velocity metallicity age model
$$p(\vec{x}, \vec{v}, [Fe/H], \tau | \theta)$$
 Frankel+2020

• When and where were stars born? $p(\vec{x_{birth}}, \tau | \theta)$

position velocity metallicity age model
$$p(\vec{x},\vec{v})$$
, $[Fe/H]$, $\tau \theta$ Frankel+2020

- When and where were stars born? $p(x_{birth}, \tau | \theta)$
- How did they move afterwards? $p(\vec{x}|\vec{x_{birth}}, \tau, \theta)$

position velocity metallicity age model
$$p(\vec{x},\vec{v})$$
, $[Fe/H]$, $\tau | \theta)$ Frankel+2020

- When and where were stars born? $p(\vec{x_{birth}}, \tau | \theta)$
- How did they move afterwards? $p(\vec{x}|\vec{x_{birth}}, \tau, \theta)$
- Overall, how did that affect the shape of the Milky Way?

Stars inherit their composition from their birth sites

Frankel+18

Birth radii See also: Minchev+18 Lu, Yuxi+22,24

And then stars change orbits

Stars orbit the Milky Way in 3 dimensions

Stars live in 3 dimensions:

- go around the galactic center
- go in and out
- go up and down

Stars orbit the Milky Way in 3 dimensions

Stars live in 3 dimensions:

- go around the galactic center
- go in and out
- go up and down

Orbits can change shape

By getting random kicks

$$J_R = \frac{1}{2\pi} \oint_{orbit} v_R dR$$

« Heating»

Orbits can change shape

By getting random kicks

$$J_R = \frac{1}{2\pi} \oint_{orbit} v_R dR$$

« Heating»

Orbits can change size

by jumping between circular orbits

$$L_z = R v_{\phi}$$

« Cold torquing»

Orbits can change size

by jumping between circular orbits

Most processes change the eccentricity of the orbit. What process can make an orbit change size, but not shape?

How do stars change orbit in the Milky Way?

Did they change shape?

Or did they change size?

How do stars change orbit in the Milky Way?

Did they change shape?

Or did they change size?

Dynamical memory loss!

What sets the radial structure of the Milky Way disk?

$$p(\mathsf{data} \& \mathsf{their} \, \mathsf{uncertainties} \, | \, \theta)$$
 Frankel+2020

What sets the radial structure of the Milky Way disk?

position velocity metallicity age model
$$p(\vec{x},\vec{v},[Fe/H], au]$$
 Frankel+2020

- When and where were stars born? $p(x_{birth}, \tau | \theta)$
- How did they move afterwards? $p(\vec{x}, \vec{v}|\vec{x_{birth}}, \tau, \theta)$
- Overall, how did that affect the shape of the Milky Way?

Fitting the model to APOGEE red clump stars

$$\prod p(\vec{x}, \vec{v}, [Fe/H], \tau | \theta)$$

Fitting the model to APOGEE red clump stars

$$\prod p(\vec{x}, \vec{v}, [Fe/H], \tau | \theta) \times S_{APO}(\vec{x})$$

Fitting the model to APOGEE red clump stars

$$\prod p(\vec{x}, \vec{v}, [Fe/H], \tau | \theta) \times S_{APO}(\vec{x}) \propto p_{pos}(\theta)$$

The cold migration was strong

Angular momentum diffusion

$$\sqrt{\langle (L_z - L_{z0})^2 \rangle} = \frac{1}{3} L_{zSun} (\tau / 6 Gyr)^{0.5}$$

~ 3 kpc

The heating process was weak

Angular momentum diffusion

$$\sqrt{\langle (L_z - L_{z0})^2 \rangle} = \frac{1}{3} L_{zSun} (\tau/6 Gyr)^{0.5}$$

~ 3 kpc

Radial heating

$$\sqrt{\langle (J_R - J_{R0})^2 \rangle} = \frac{1}{30} L_{zSun} (\tau/6 \, Gyr)^{0.6}$$

The dynamical evolution was cool

Angular momentum diffusion

$$\sqrt{\langle (L_z - L_{z0})^2 \rangle} = \frac{1}{3} L_{zSun} (\tau / 6 Gyr)^{0.5}$$

~ 3 kpc

Radial heating

$$\sqrt{\langle (J_R - J_{R0})^2 \rangle} = \frac{1}{30} L_{zSun} (\tau / 6 \, Gyr)^{0.6}$$

- formed from inside-out (40% growth)
- with a tight relation between stellar metallicities and birth radius (assumption)
- and those stars subsequently radial migrated by surfing spiral arms, with minor heating (10x less)

- formed from inside-out (40% growth)
- with a tight relation between stellar metallicities and birth radius (assumption)
- and those stars subsequently radial migrated by surfing spiral arms, with minor heating (10x less)

	This talk (2020)	Near Future
# stars	7,000	millions
Star population	Red Clump	All giants
Chemical enrichment	3 parameters	More flexible
surfing spiral arm process	the same at all times everywhere in the disk	See C. Hamilton's talk in 30 min

	This talk (2020)	In progress (Zhang+in prep)
# stars	7,000	15,000
Star population	Red Clump	Subgiant stars
Chemical enrichment	3 parameters	More flexible
surfing spiral arm process	the same at all times everywhere in the disk	A function of time and position in the disk

Hanyuan Zhang + in prep (IoA Cambridge)

Hanyuan Zhang + in prep (IoA Cambridge)

Hanyuan Zhang + in prep (IoA Cambridge)

Summary of radial migration estimates

Model complexity

Measuring the dynamical evolution of the Milky Way's disk

We can probe Galaxy evolution only indirectly (1 snapshot, DM is dark)

To be quantitative, we need forward models and a stringent data-model comparison method.

Long-term, slow evolution was mostly "cold".

The Sun was probably born on an orbit 1 kpc closer to the Galactic center.

What can we now learn about the drivers of orbit evolution?

Measuring the dynamical evolution of the Milky Way's disk

We can probe Galaxy evolution only indirectly (1 snapshot, DM is dark)

To be quantitative, we need forward models and a stringent data-model comparison method.

Long-term, slow evolution was mostly "cold".

The Sun was probably born on an orbit 1 kpc closer to the Galactic center.

What can we now learn about the drivers of orbit evolution?

How can orbit evolution be cool at all radii?

Radial migration is 10x more efficient than radial heating

