

The Mochima simulation

Satellite properties,

the role of baryonic physics and star formation history in shaping dark matter cores/cusps

Arturo Núñez-Castiñeyra

Collaborators:

Emmanuel Nezri, Pol Mollitor, Leo Michel-Dansac, Julien Devriend and Romain Teyssier

P1:arXiv:2004.06008, P2:arXiv:2301.06189 and P3: 2509.07470 (submitted)

News from the dark - Montpellier 2025

All dark matter

Galaxy: dark matter, stars, gas, black holes, radiation.

What are the right ingredients?

feedback

Galaxy: dark matter, stars, gas, black holes, radiation.

What are the right ingredients?

Galaxy: dark matter, stars, gas, bij k noies, radiation.

What are the right ingredients?

feedback

What are the right ingredients?

dark matter, stars, gas

Collisionless limit of the Boltzmann equation:

$$\frac{Df}{Dt} = \frac{\partial}{\partial t} f(\mathbf{x}, \mathbf{v}, t) + \mathbf{v} \frac{\partial}{\partial \mathbf{x}} f + \mathbf{a} \frac{\partial}{\partial \mathbf{v}} f = 0$$

Liouville theorem: number of particles is conserved in phase-space. The gravitational acceleration is given by **Poisson equation**:

$$\Delta\Phi(\mathbf{x},t) = 4\pi G m \left(n(\mathbf{x},t) - \bar{n}\right) \qquad n(\mathbf{x},t) = \int f(\mathbf{x},\mathbf{v},t) d^3 \mathbf{v}$$

Gas is a highly collisional system with a Maxwell distribution function.

A system of three conservation laws + EoS (hydro)

$$\partial_t \rho + \nabla \cdot \mathbf{m} = 0 \tag{mass}$$

$$\partial_t \mathbf{m} + \nabla \cdot (\rho \mathbf{u} \times \mathbf{u}) + \partial_x P = 0$$
 (momentum)

$$\partial_t E + \nabla \cdot \mathbf{u}(E+P) = 0$$
 (energy)

Add gravity and heating and cooling rates. (this can be expanded to include magnetic fields as well)

Plus:

- Clever computing strategies
 - heating/cooling rates
 - Star formation strategies
- Feedback energy injections,

Starting from IC that resemble the early universe

Realistic galaxies
that we can learn from

What is a Galaxy and how to simulate it

Star formation

Turbulence

We need an effective model at the scale of the spatial resolution:

$$\dot{\rho}_{\star} = \epsilon_{\mathrm{ff}} \frac{\rho_g}{t_{\mathrm{ff}}} \quad for \quad \rho_g > \rho_{\star}$$

Ruled by the star formation efficiency -

What is a Galaxy and how to simulate it

Gas – DM Stars

We need an effective model

$$\dot{\rho}_{\star} = \underbrace{\epsilon_{\mathrm{ff}}}_{t_{\mathrm{ff}}} \rho_{g} \quad for \quad \rho_{g} > \rho_{\star}$$

Ruled by the star formation efficiency

- Constant efficiency galaxy wide
- Environmental dependent efficiency

$$\epsilon_{\rm ff} = \epsilon_{\rm ff}(\mathcal{M}, \alpha_{\rm vir})$$

Multi-freefall star formation (Federrath & Klessen (2012))

Dark matter content

Full access to the DM distribution position and velocity

- Density profiles
- Phase space distribution
- Assembly history

If you trust your baryonic physics you can trust your dark matter.. Right?

All dark matter

Then you can compare with observations.. Right?

Dark matter content

Cusp-Core problem (Diversity)
 When it comes to dark matter halos
 Simulations predict one thing (mostly cusps)
 Observations infer other (mostly cores)

De Blok (2009), Del Popolo & Le Delliou (2021)

Missing satellites situation(?)
 Simulations predict higher number of satellites than what is observed.

Then you can compare with observations.. Right?

Dark matter cusp core transformation

Dark matter density profile after repeated cycles of gas inflow (slow, adiabatic) and rapid gas removal (impulsive).

- if the central potential fluctuates faster than the dynamical time, changes are impulsive and irreversibly transfer energy to the collisionless DM.
- Repeated episodes of gas inflow, star formation, and supernova-driven blowout → repeated potential fluctuations → DM orbits migrate outward → cusps flatten into cores.

Baryons complicate the story but could solve the problems

- stellar feedback can't alter inner dark matter, so the galaxy remains cuspy.
- feedback expands dark matter, creating cored profiles.
- Central stars deepen gravity enough to counter expansion, resulting in cuspier profiles.

NIHAO: Cores are likely created by a very strong FB

APOSTLE and Auriga: do not find evidence of core formation at *any* mass or any correlation between the inner slope of the DM density profile and temporal variations in the SFH

Baryons complicate the story but could solve the problems

Central stars deepen gravity enough to counter expansion, resulting in cuspier profiles.

New Horizons: Cores form through supernova-driven gas removal, which alters the central gravitational potential, inducing dark matter to migrate to larger radii.

Similar to what was proposed by Governato et al. 2012; Pontzen & Governato 2012;

NIHAO: Cores are likely created by a very strong FB

APOSTLE and Auriga: do not find evidence of core formation at *any* mass or any correlation between the inner slope of the DM density profile and temporal variations in the SFH

Hints on: Stars vs central DM density

■ FDGF1

- Single blowout is insufficient. (Gnedin & Zhao 2002)
- Repeated, bursty star formation cycles drive core formation. (Pontzen & Governato 2012)
- Early, rapid star formation (concurrent with halo collapse) is inefficient at creating cores. (Chan 2015 FIRE, Jackson 2023 Newhorizons)
- There seems to be a link between extended SFHs and lower central densities. (Oñorbe et al. (2015), Mun et al 2025)

Hints on: Stars vs central DM density

"Our findings suggest that baryonic processes may play a significant role in shaping the central dark matter structures and could account for much of the observed diversity, although some discrepancies still remain"

- Oman et al. (2015): large diversity in dwarf galaxy rotation curves at fixed stellar mass, suggesting another parameter (likely SFH) matters.
- Read et al. (2019): extended SFHs→ lower central DM densities.
- Bouché et al. (2022); Collins & Read (2022): correlation between prolonged SF and shallower cores.
- Hayashi et al. (2025): 115 SPARC galaxies, from cores (γ ≈ 0) to cusps (γ ≈ 2). Scatter is larger than in simulations, suggesting baryonic assembly and SF/FB histories drive the diversity.

The Mochima simulations

Stellar mass ~5e10 Msun
Total mass ~1.5e12 Msun
5 simulations with baryons + 1 DMO
done using AMR code Ramses (Teyssier et al 2002)

DM is cold dark matter (~2e4 Msun collisionless particles)

Zoom-in technique Resolution 35 pc In a 36 Mpc box

Nunez-Castineyra et al (2020) Same galaxy, same initial conditions, different baryonic physics (SN and SF) (arxiv:2004.06008)

Delayed Cooling (Dubois et al 2015)

Kennicutt-Schmidt SF

Kennicutt-Schmidt SF:

 $\epsilon_{
m ff}$ is constant and calibrated to reproduce KS law.

Delayed cooling SN feedback:

Inject directly a non-thermal energy corresponding to the SN explosion

$$\rho \frac{D\epsilon_{turb}}{Dt} = \dot{E}_{inj} - \frac{\rho\epsilon_{turb}}{t_{diss}}$$

The energy corresponds to the fraction of massive stars expected to be more massive than 8 Msun assuming a universal IMF.

Nunez-Castineyra et al. 2020

Turbulent SF (multi-ff KN Hennebelle & Chabrier 2011)

Turbulent SF:

Environment dependent efficiency: $\epsilon_{\rm ff} = \epsilon_{\rm ff}(\mathcal{M}, \alpha_{\rm vir})$

$$\epsilon_{\rm ff} = \frac{\epsilon}{2\phi_t} \exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + \operatorname{erf}\left(\frac{\sigma_s^2 - s_{\rm crit}}{\sqrt{2\sigma_s^2}}\right)\right]$$

where: $\sigma_s^2 = \ln\left(1 + b^2 \mathcal{M}^2\right)$ $\mathcal{M} = \frac{\sigma_{\mathrm{T}}}{c_{\mathrm{s}}}$

$$ho_{
m crit} \propto lpha_{
m vir} \mathcal{M}^2$$
 $ho_{
m crit} \simeq rac{\sigma_{
m T}^2}{G
ho_0 \Delta^2}$

Hennebelle & Chabrier 2003

Delayed cooling SN feedback:

Inject directly a non-thermal energy corresponding to the $\rho \frac{D\epsilon_{turb}}{Dt} = \dot{E}_{inj} - \frac{\rho \epsilon_{turb}}{t_{diss}}$ SN explosion

Teyssier et al. 2013, Dubois et al. 2015.

Nunez-Castineyra et al. 2020

Delayed Cooling (Dubois et al 2015)

luminosity

(Kimm et al. 2015)

Turbulent SF (multi-ff KN Hennebelle & Chabrier 2011)

Turbulent SF:

Environment dependent efficiency:

$$\epsilon_{\rm ff} = \epsilon_{\rm ff}(\mathcal{M}, \alpha_{\rm vir})$$

$$\epsilon_{\rm ff} = \frac{\epsilon}{2\phi_t} \exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + \operatorname{erf}\left(\frac{\sigma_s^2 - s_{\rm crit}}{\sqrt{2\sigma_s^2}}\right)\right]$$

Mechanical FB:

Model the two phases of the SN explosion and inject the corresponding momentum

$$p_{\rm SN,snow} \approx 3 \times 10^5 \, {\rm km \, s^{-1} \, M_{\odot}} \, E_{51}^{16/17} n_{\rm H}^{-2/17} Z'^{-0.14}$$

$$p_{\rm SN} = \begin{cases} p_{\rm SN,ad} = \sqrt{2\chi \, M_{\rm ej} \, f_e \, E_{\rm SN}} & (\chi < \chi_{\rm tr}) \\ p_{\rm SN,snow} & (\chi \ge \chi_{\rm tr}) \end{cases}$$

$$\chi \equiv dM_{\rm swept}/dM_{\rm ej}$$
 $\chi_{\rm tr} \equiv 69.58 \, E_{51}^{-2/17} n_{\rm H}^{-4/17} \, Z'^{-0.28}$

Kimm & Cen 2014. Kimms et al. 2015.

Nunez-Castineyra et al. 2020

Nunez-Castineyra et al (arxiv:2004.06008)

Same galaxy, same initial conditions, different baryonic physics (SN and SF)

Stellar mass

SFR

Stellar bulge density profile

Nunez-Castineyra et al (2020) (arxiv:2004.06008)

Dark matter distribution

	run	c
6	DMO	9.9
4	KSlaw-DCool	20.4
2	$\mathrm{Mff}\epsilon_{009} ext{-}\mathrm{DCool}$	26.0
5	$\mathrm{Mff}\epsilon_{100}\text{-}\mathrm{DCool}$	16.3
1	$\mathrm{Mff}\epsilon_{009}\text{-MecFB}$	29.5
3	$\mathrm{Mff}\epsilon_{100}\text{-MecFB}$	20.7

The DM halos are very cuspy. They suffer adiabatic contraction which intensities are related to the bulge size.

Dark matter distribution

The DM halos are very cuspy. They suffer adiabatic contraction which intensities are related to the bulge size.

Subhalos In the Mochima runs

All dark matter

Galaxy halo conexion

Subhalo survival

Baryons alter this spectrum:

- **Deep central potentials** show strong depletion of massive subhalos.
- Runs with shallower potentials retain more subhalos, especially at intermediate masses.
- Runs with lower concentration retain more subhalos, especially at low masses.

Stellar content matters:

- Subhalos hosting stars are more resilient: their deeper potentials make them harder to disrupt.
- Low-mass dark subhalos (no stars) are preferentially destroyed by tides.

With protostellar parameter •~0.1

With **no** protostellar parameter €~1

run

 $Mff\epsilon_{009}$ -MecFB

 $Mff\epsilon_{009}$ -DCool

 $Mff\epsilon_{100}$ -MecFB

KSlaw-DCool

 $Mff\epsilon_{100}$ -DCool

DMO

The SFH

Lets take subhalos with 10 ⁸ < M/Msun<5x10¹⁰
And in particular two halo examples E and F.

They show a slight variability in the orbits and an important ona in SFH

A subhalo with an easy life

A subhalo with a harsh life

A subhalo with an easy life

A subhalo with a harsh life

To relate inner slope of dark matter subhalos today with the SFH we define

 $t_{90\%}$

The lookback time at which a dwarf galaxy (or subhalo) has formed 90% of its total stellar mass

- t90% ≥ 7 Gyr invariably exhibit cusps profiles and show minimal evolution in γ over time.
- In contrast, galaxies with t90% ≤ 7 Gyr show a wide spread in γ and are characterized by significant temporal fluctuations.

Conclusions

Subhalo survival depends on host concentration and stellar binding; early SFHs preserve cusps,

While extended and/or recent SFHs drive fluctuating cores.

- Subhalo survival set by host potential depth and concentration
- Stellar mass in subhalos increases resilience to disruption
- Low-mass, dark subhalos are preferentially destroyed (resolution?)
- Cumulative mass function shallower than DMO; too-big-to-fail alleviated
- Inner slopes show wide diversity (cusps and temporary cores)
- t90% correlates with slope: early → cusps, late → cores

The observed diversity in inner dark matter structure -often viewed as a challenge to cold dark matter models- can arise naturally from the interplay between star formation history and environmental context.

