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News from the Dark 10

Topics related to simulations of axions 

1. Idealised model for interference in DM filaments 
2. Emulator for the non-linear matter power-spectrum in mixed DM models 



Introduction

• Ultra light axions is a dark matter candidate (a free scalar field) whose mass is, as the name suggests, very light: <~1e-22 
eV and has many intriguing signatures in the cosmic web: cores inside halos, interference patters in the DM distribution 
and many more. 

• Many of these signatures require simulations to study, but these are very expensive to perform. Main problem in that the 
Schrödinger equation determining its evolution is first order in time and second order in space so we need to satisfy the 
stability constraint dt < dx^2. 

• The characteristic size we need to resolve is the so-called de-Broglie scale which is very small (~kpc) for typical axion 
masses studied. Together this means we require very small time steps and often very small simulation boxes. 

• Some methods are faster than others and can do larger volumes (e.g. SPH, but it can’t do interference). There have been 
many developments in hybrid method that can solve some of these issues. 

• Simulations of axions are great… and even though the title said I’d speak about it I will today instead talk about some 
works that are related to it. Still numerically though, but just some things we can do without having to perform full-
fledged simulations explicitly to study these models.



Paper I : 

• Extended interference fringes in cosmic filaments is one 
key signature of ultra light axions / fuzzy dark matter 
(FDM) 

• A detailed understanding of this may strengthen existing 
limits on the boson mass but also break the degeneracy 
with warm dark matter, and provide a unique fingerprint of 
interference in cosmology. 

• Aim of this work is to we build a theoretically motivated 
steady-state approximation for filaments and express the 
equilibrium dynamics of such in an expansion of FDM 
eigenstates 

• Allows us to study filaments and interference without 
having to run expensive simulations



Self-consistent FDM Interference in Steady-State Systems

• FDM is governed by the Schrödinger-Poisson equation: 

• We assume the detailed dynamics of ψ(x, t) take place in a smooth 
gravitational potential that is effectively static in time 

• Integrating in time then reduces to diagonalising the Hamiltonian and 
expanding ψ(x, t) in the eigenbasis ψj(x) with energy eigenvalues Ej 

• Interference emerges as the cross-terms in the time-dependent 
density! Important for later: even if each eigenstate obeys the same 
symmetries as the steady-state background (cylindrical for our 
filaments) |ψ(x, t)|, the interference term on the right does not. 

• Given a static density profile ρBG(x) we need to find complex 
coefficients aj such that the time-independent term recovers this 
static background density ρBG(x). 



Idealised model for filaments

• As always in physics, we start with choosing the simplest 
approach: filaments are mathematically modelled as infinite long, 
isolated and isothermal cylinders.  

• Quasi-virialized: in it each cross section we assume a steady-state 
is attained, virial equilibrium and dynamics along the longitudinal 
direction are suppressed 

• These kinds of filaments are consistent with some observations of 
filaments and also a good model (for certain things related to 
filaments) in CDM simulation. 

• Importantly: it is also consistent with what is found in FDM 
simulations!



Real space density

• On scales larger than λdB the Schrödinger-Vlassov correspondence allows us to 
treat FDM as collisionless particles. We let the behaviour of these particles be 
described by a velocity dispersion tensor of the form 

• Isothermal assumption: the radial moment, ⟨vr^2⟩, the azimuthal moment, ⟨vϕ^2⟩, 
and the anisotropy parameter β are constant throughout the filament 
 

• From the cylindrical Jeans equation we can then derive a closed form, analytic 
solutions for the density  
 

• Consistent with simulations. May & Springer 2022 find filaments have cuspy profiles. 
This can be achieved by assuming a radially biased velocity anisotropy β > 0.

Our density profile

FDM simulations



Phase space distribution

• According to Jeans’ theorem, we may assume that a 
steady-state DF is a function of three isolating integrals 
of motion only (the specific energy contribution of the 
longitudinal, Ez, and  transversal motion, E, and the 
specific angular momentum L) 

• Jeans theorem then suggests the ansatz 

• The real-space density is then given by (assuming a 
constant anisotropy): 

• We know V, and the density profile and can then invert 
this to obtain the distribution function f



Eigenstate library

• We may realise an infinitely long, cylindrical geometry by 
solving the Schrodinger-Poisson system in cylindrical 
symmetry. Factorizing it in eigenmode we need to solve: 

• Solving this numerically results in a dense matrix 
representation of the Hamiltonian 

• More tricky than the spherical case, but doable. To fully 
characterise the wave-function we need 100-1000 
eigenstates so its quite a bit of computation.



Wave-function reconstruction

• Now that we have the density profile, the distribution function and a large 
set of eigenmodes we can finally perform a wave-function reconstruction 
from 

• There exist multiple approaches for computing the coefficients anl (e.g. 
WKB, numerical fitting, …). E.g. |anl|^2 may be interpreted as the probability 
of finding state |ψnl|^2. The value of the distribution function represents this 
classical probability so we should expect (and WKB indeed gives us this): 

• How we did all this in practice is technical so I will skip it due to time-
constraints, but Tim found a way of significantly reduce the amount of 
modes needed and still get accurate results.



Results

Interference modulates the density comparable to the magnitude 
of the background density leading to a concentric ring pat- 

tern for the radially biased case (right) and a more mixed 
interference fringe configuration under isotropic conditions (left).
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Statistical distribution

• The final step is to go from our effectively two-
dimensional, single cylinder to a three dimensional 
filament population. 

• For this we need to know the distribution of 
filaments with mass/size. 

• We use ellipsoidal collapse. A filament is 
identified as an object for which two out of the 
three principal axes are frozen 

•  Allows us to construct the filament mass function 
which we can then sample from to generate a 
simulation box of realistic filaments



3D distribution of the filaments

• An example realisation of our filament population 
assuming cylinder locations and random orientations. 

• Samples are accepted if no cylinders overlap 
(otherwise violates our assumption of all filaments 
being gravitationally isolated) 

• Currently shortcoming: ignores any large scale 
filament-filament cross-correlation (which, like for the 
halo model, at leading order should be given by the 
linear power spectrum). More refined placement 
techniques (e.g. peak-patch description by Bond & 
Myers 1996) may be used to alleviate this 
shortcoming.



Matter power-spectrum

• Motivated by the halo-model we compute the 1-term filament power-spectrum 

• The FDM spectrum detaches from the CDM at some wavenumber k-detach 
where we start to probe scales interior to the filament.  

• We have a cut-off scale k-cut which we interpret as a non-linear extension of 
the linear Jeans suppression scale set by the uncertainty principle. 

• Full cosmological simulations of FDM have found an excess correlation in the 
FDM matter power spectrum compared to its CDM counterpart for highly non-
linear k > O(100) h/Mpc (Veltmaat & Niemeyer 2016; Mocz et al. 2020; May & 
Springel 2021, 2022; Laguë et al. 2024). Conjectured to originate from 
interference fringes. Consistent with what we see in our model!



Summary

• We have created an idealised model for cosmic filaments 
in model with an ultra light axion / fuzzy dark matter. 

• Even though its simplicity, the model has most of the 
features we expect to see like interference and quantum 
vortices and looks consistent with simulations. 

• Just a first model. Many ways it can be extended or 
improved. 

• The model can be used to study filaments in FDM, but 
also as a post-processing tool for CDM simulations of 
steady-state objects (i.e. as a way of injecting FDM into 
CDM).



Paper II : 

• The axion mass and axion fraction (in mixed CDM + axion model) can be 
constrained by combining many cosmological datasets (CMB, LSS, SN, …) 

• For LSS, current and future weak-lensing surveys will probe the non-linear 
regime and help narrow down the allowed regime. 

• For the theoretical predictions we need to know the non-linear matter power-
spectrum down to k ~ O(1-5) h/Mpc. 

• For LCDM many high quality emulators for this quantity have been created (also 
including effects of baryons). 

• For axions the main tools are axionCAMB (linear - Hlozek et al. 2015) and 
axionHMcode (a semi-analytical method for non-linear clustering - Vogt et al. 
2022, Dome et al. 2024). 

• Our goal was to make a simulation based emulator for axion-like models where 
the axion has a mass m_axion and contributes a fraction f_axion of the DM 
budget (the rest is CDM)

Hlozek et al. 2015



Effect of axions on P(k)



• Problem: simulations are too expensive. We do the simplest thing and only keep the 
axion physics in the IC. Big approximation, but allows us to run very fast simulations (PM). 

• Results from some simulations suggest that this is an “ok” approximation for global 
clustering statistics atleast at higher redshifts (but still remains to be checked in more 
detail for a wider range of masses / axion-fractions) 

• We choose to emulate the ratio P(k, z | params) / PLCDM(k, z | params). Factors out 
some of the non-linearity. Allows us to piggy-back on the work done for high quality LCDM 
emulators. 

• Steps: 
- Figure out what parameters we are sensitive to 
- Generate samples of the parameters 
- Run simulations for each set of parameters (plus corresponding LCDM) 
- Estimate the power-spectrum boost P(k, z | params) / PLCDM(k, z | params) 
- Run the machine learning and ensure the result is accurate  

• All these steps are included in the package SESAME (Mauland-Hus and HAW 2024)

Approach

Nori & Balid 2019

Full sims

Only IC

Full sims

Only IC

May & Springel 2022



Cosmological parameter dependence

• The power-spectrum ratio P/PLCDM is only 
sensitive to the axion parameters and the 
main parameters determining the 
clustering in LCDM (ΩCDM and As) 

• We therefore choose to only sample the 4 
parameters m_axion, f_axion, ΩCDM and As 
and sample them inside the given range 
and run PM simulations for each choice of 
parameters



Machine learning

• We employ a simple Feed Forward Neural 
Network architecture with 2 hidden layers. 

• The input layer accepts 6 parameters 
(ΩCDM, log10 As, f_ax, log10 m_ax, z and 
k) and outputs a single value: the 
prediction for the power-spectrum ratio 
for the given input values. 

• The training may take between ∼15 CPU 
minutes and 3 CPU hours to train. Very 
fast and achieves high accuracy



Results

• Comparison to other approaches: 
 
- axionCAMB (linear only) 
 
- HMcode (“fitting formula” to go from  
linear -> non-linear for LCDM) 
 
- axionHMcode (HMcode with axion physics 
included and tuned to simulations) 

• Tests with full simulations *should* be performed 
and would be the ultimate test to see if this method  
is accurate enough, but we have not been able to do this test yet.



Summary

• We have created a neural network emulator for mixed axion models using fast approximate 
simulations (PM) where the axion physics is only injected only in the initial conditions (i.e. 
provides the suppression of power of small scales). 

• Advantages:  
- Very cheap: a total cost of ~5000 CPU hours. Can be done on any local cluster. Compare this 
to the cost of one high-resolution axion simulation in a O(Mpc) box which is often O(100k - 1M) 
CPU hours. 
- Gives us an alternative non-linear prescription to axionHMcode. 

• Caveats: 
- We don’t have much of the axion physics (quantum pressure), everything is in the initial 
conditions, so we have to compare to simulations to get an estimate for this “theoretical error”. 
- This test will have to be performed in the future.


