Neutrinos

with the XENON dark matter experiment

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

> Séminaires du DPhP 03/2025

> > Figure from the Illustris Simulation

What is dark matter?

Massive objects (primordial black holes) Modified gravitational theories New particles (WIMPs, axions ...)

Teresa Marrodán Undagoitia

Saclay, 03/2025 2 / 41

How can we look for dark matter?

Production at LHC

Direct detection

Indirect detection

 $p + p \rightarrow \chi \overline{\chi} + X$

 $\chi N \rightarrow \chi N$

 $\chi \overline{\chi} \to \gamma \gamma, q \overline{q}, \dots$

Teresa Marrodán Undagoitia

Dark matter in our galaxy

- The Milky way is in a 'cloud' of dark matter
- Density: 0,3 GeV/cm³ (1/3 Proton/cm³)

For a 100 GeV WIMP mass: 1 WIMP particle per coffee cup

Dark matter halo from the Bolshoi simulation

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$$

How can we detect dark matter directly?

- Elastic scattering of WIMPs off target nuclei
- The nuclear recoil excites the medium
 - \rightarrow heat, scintillation and/or ionization

Teresa Marrodán Undagoitia

Technologies for direct detection

Figure from R. Hammann

Teresa Marrodán Undagoitia

The worldwide search for dark matter

Teresa Marrodán Undagoitia

Detector requirements

- Requirements for a dark matter detector
 - Large detector mass
 - Low energy threshold
 ~ few keV's
 - Very low background
 - Technology or analysis tools to discriminate signal and background

J. Phys. G: 43 (2016) 1, & arXiv:1509.08767

Result of a direct detection experiment

ightarrow Statistical significance of signal over expected background?

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Positive signal

• Region in σ_{χ} versus m_{χ}

• Zero signal

- Exclusion of a parameter region
- Low WIMP masses: detector threshold matters
- o Minimum of the curve: depends on target nuclei
- High WIMP masses: exposure matters

$$\epsilon = m \times t$$

Cross section

Overview of WIMP search results

Figure from Ciaran O'Hare (2024)

Liquid xenon as detector

- Cryogenic liquid typically operated at 2 bar and -100°C
- High density: 3 g/cm³
- High scintillation and ionization yields
- Scalability
- Employed in particle-, neutrino-, dark matter- and medical physics

Two phase noble-gas TPC

Position resolution to define the innermost radiopure volume for analysis

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination

Teresa Marrodán Undagoitia

Saclay, 03/2025 12 / 41

Signal and background regions based on S1 & S2

Figure from XENON1T data

• ER: background region

 \rightarrow calibrated using a ²²⁰Rn source (β -decays of ²¹²Pb)

- NR: WIMPs and neutrons
 - \rightarrow calibrated using a neutron source

Teresa Marrodán Undagoitia

THE XENON EXPERIMENT

Teresa Marrodán Undagoitia

XENON collaboration

Experiment operated by 30 institutes worldwide

Teresa Marrodán Undagoitia

XENON collaboration

Collaboration meeting - L'Aquila, March 2024

Teresa Marrodán Undagoitia

The last 20 years ...

XENON Experiments

Slide from A. Elykov

Underground location

- Located @ Laboratori Nazionali del Gran Sasso (Italy)
- Shielding from cosmic radiation: below 3 650 m.w.e. (~ 1.5 km rock)

XENON underground

XENONnT water tank and building @LNGS, location underground

Teresa Marrodán Undagoitia

Backgrounds and reduction strategies

- Cosmogenic backgrounds
 - Cosmic muons and muon-induced neutrons
 - \rightarrow Go underground!
 - + Neutrinos
- Radiogenic backgrounds
 - Neutrons from (α, n) and from fission reactions
 - ► External γ's
 - → Screening, shielding, cleaning & vetos
- Internal backgrounds
 - e.g. Radon

Scheme from R. Hammann

Recent results from XENONnT - SR1

- Total exposure: 3.1 t × y
- Fully blinded analysis
- No excess of events over background observed
- Combined SR0 and SR1 result

Recent results from XENONnT

Continuously improving the sensitivity to WIMPs

• No evidence of dark matter yet \rightarrow constrains on the WIMP-nucleon σ

More data from XENONnT is being analyzed

Signal and background regions based on S1 & S2

- NR: search region for WIMPs
- ER: background dominated region
 - \rightarrow Very good knowledge of the background composition
 - \rightarrow Allows to search for candidates that interact with e^-s

Teresa Marrodán Undagoitia

Selecting cleanest materials

- Measurement of the radon emanation
 - Automatized apparatus
 - Measurement with ultra-sensitive proportional gas counters

- Majority of the background (blue) from radon
- → Radon is emanated from all detector materials

Radon separation infrastructure

Teresa Marrodán Undagoitia

Measuring smallest concentrations

- ⁸⁵Kr is a background source
- Kr-removal via distillation
- Sensitivity of the device: 6 ppq ^{nat}Kr in Xe

Equivalent to a glass of wine in the Baltic sea

Teresa Marrodán Undagoitia

XENONnT electronic-recoil science data

- Spectrum still dominated by ²¹⁴Pb at low energies
- Data described very nicely by the background model

Constrains on dark matter candidates

 Best limits on axion-like DM particles and hidden photons (monoenergetic signal model)

ightarrow No limit around 40 keV due to an unconstrained 83m Kr background

Limits and limits Only limits?

The longest half-life ever measured directly

• Above 40 keV, 2nd order weak processes dominate:

- ► Double electron capture 2ν ECEC of ¹²⁴Xe ($t_{1/2} = 1.18 \times 10^{22}$ y) → the longest half-life ever measured directly
- Double beta decay $2\nu\beta\beta$ of ¹³⁶Xe $(t_{1/2} = 2.23 \times 10^{21} \text{ y})$

Neutrinos appearing in the horizon ...

Neutrinos from the Sun

Neutrinos from Supernova

Neutrinos from the atmosphere

Neutrino physics without neutrinos*

* Neutrinoless double beta decay

Solar neutrinos

- pp and ⁷Be- ν 's make 98% of solar neutrino flux
- Borexino has measured pp -flux with 9.5% precision
- ⁷Be, pep and ⁸B measured by Borexino
 - ν -electron elastic scattering $\nu + e^- \rightarrow \nu + e^-$
 - Usually, the recoiling e⁻ is recorded

Borexino Collaboration, Nature 562 (2018) 505

Low ν cross-section \rightarrow huge detectors!

Scheme from R. Hammann

How is a search possible in the 'tiny' XENONnT?

- Coherent Elastic ν -Nucleus Scattering \rightarrow CE ν NS process
 - Nuclear recoil of ⁸B- ν 's \rightarrow like the WIMP
 - ► Coherent → much higher cross section!
- + Lowering the energy threshold of the detector

$CE\nu NS$ from solar neutrinos in the XENON data

Scheme of signal and background regions in XENONnT (see XENONnT, arXiv:2408.02877)

Lower threshold \rightarrow more accidental coincidences

- Required 2 hits in the PMTs (instead of 3)
- Modelling of accidental coincidences mandatory

- Isolated S1 from a regions with no field
- Isolated S2s from artefacts in the detector
- → Combined randomly and fulfilling randomly other selection criteria

Measurement of ⁸B neutrinos over CE_VNS

- Expected bg: 26, expected signal: $12 \rightarrow Observed$: 37 events
- First measurement (2.7 σ) of CE ν NS in xenon
- First measurement of ⁸B solar neutrinos in CE_VNS

 \rightarrow Start of a new era: DM detectors as multipurpose observatories

Teresa Marrodán Undagoitia

Solar pp-neutrinos

Solar neutrinos are about a factor of 2 below the ²⁴¹Pb background

- \rightarrow Radon reduction necessary to measure them
- $\ + \$ Good constrains on the Rn and Kr rates

Teresa Marrodán Undagoitia

Lowering the radon level in XENONnT

Radon distillation in gaseous and liquid mode in SR1

 \rightarrow Factor 2 further reduction achieved!

Multi-physics goals in large liquid xenon detectors

Multiple additional physics channels enable by a large mass, a low energy threshold and a low background

XLZD (XENON-LZ-DARWIN)

80 t LXe (60 t in the target)

We keep looking for dark matter, neutrinos, and for any interesting physics in our data!

THANK YOU!!

Teresa Marrodán Undagoitia

Neutrinos and dark matter

Saclay, 03/2025 41 / 41