

Study of point-like absorbing defects in large mirrors for gravitational wave detectors

Maxime LE JEAN

Laboratoire des Matériaux Avancés (LMA)

Supervisor : Jérôme DEGALLAIX

Direct way to decrease shot noise

- Comes with drawback :
 - Wavefront distortion
 - Radiation pressure
- We have possibilities to counterbalance the drawback
 - Quantum Squeezing
 - Thermal compensation systems

Virgo Attempts

Period	Input Power
Aug 2017 (O2)	14W
Nov 2017	26W
Apr 2018 (After monolithic installation)	12W
Jul 2018 (Increased power)	25W
Nov 2018	18W

Still problematic until now

Increase of power attempts at 04

not completely succesfull

Point absorbers (PA)

- ✤ A punctual site of excess absorption
- Wide range of diameters [10 500] μm
- Wide range of local absorption expected
- There can be several PA's per mirrors (2018 : LHO ITMY → « Constellation of PAs »)
- Generally of metallic nature (Al)
- The more power is in the ITF, the more problematic the PAs become -> limits improvements of the detectors
- Critical for arm cavity mirrors

Detecting them at LMA

- Originate from deposition process
 - Embedded in the coating
 - Small particules from mounts, walls, protective sheets
- Detecting them before their installation in the ITF. (Corrective treatments, preparing compensations ...)
- Virgo cannot detect PAs before mirror installation
- A joint study LIGO/LMA has already allowed to reduce the population of PA's
- Benefitial for other projects high optical power experiments

Expanding the Caltech bench (TM-HPAD) Test mass Hartman PA Diagnostic

- CW laser at **1064 nm (200 W)**
- Will be able to holds 62 cm diameter and
 > 300kg test masses
- Same power density than in AdV ~3kW/cm²
- Shack-Hartman wavefront sensitivity \rightarrow (λ /100)

Bonus :

Scattering measurement with CCD camera

Principle scheme of measurement

L<mark>es 2 infin</mark> Lyon

Numerical simulations

Finite element simulation (FEM)

- Discretization of the geometry and linearization of equations
- ***** Finds approximate solutions for fields (T, u, θ_{ij} , ...)
- Compute for stationary solution or transient evolution
- Point absorbers are simulated by declaring nodes as heat sources

COMS

ightarrow Simulation of an AdV test mass in the ITF configuration

Absorption Uniforme

- Silica cylinder **φ = 35cm**
- Parameters from Suprasil material
- Incident Power 100kW (AdV+)
- Uniform Absorption $\alpha = 0.2$ ppm
- Below Shack-Hartman sensitivity
- Stationnary solution

Results on uniform absorption are convincing enough to use COMSOL model to simulate point absorbers

Point absorbers

• Conditions of our setup P = 200W, ω_0 = 2,5mm

 PA properties : Radius : 10 μm, Abs = 1 mW

LYON

$$\Delta OPL(r) = \beta \int_0^L \Delta T(r, z) dz + 2 (n - 1) \Delta L(r)$$

Few comparable ressources for point absorption

Transient evolution

- We observe a convergence of the transient evolution to the stationary value
- For point absorbers we expect to have more than 70% of the effects after 20s of pump time duration
- The cooling dynamics could also be used to improve the detection accuracy

Theoretical capabilities of our setup

- A size limit we could choose is one dictated by the dark field microscope
- Even in defavorable cases we'll be able to detects Pas of larger size
- May be improved by a deeper analysis of the wavefront or the dynamical evolutions
- Similar to Caltech's bench sensitivity

Status of the setup

(Installed in the cleanroom)

Upcoming work

- Enhancing the sensivity by reducing vibrations, optimizing optical alignment
- Design of the large mount and adaptations
- Collecting datas over test samples (relatively long scan time, provide feedback for coating R&D processes)
- Develop an analysis pipeline for theses datas
- Testing Virgo test masses ?

- Remote-Controlled Elements :
- Laser 200W
- 2x Piezo-mounts
- 4x Linear Stages
- Power-meter
- Wavefront sensor

Experimental study of point-like absorbing defects in large mirrors for gravitational wave detectors

Maxime LE JEAN

Laboratoire des Matériaux Avancés (LMA)

Supervisor : Jérôme DEGALLAIX

Computation details

COMSOL

- Thermo-elastic effects
 - $\bullet \quad \theta_{ij} = \delta_{ij}(\lambda E \nu \Delta T) + 2\mu E_{ij}$
- Thermo-optical effects

$$\diamond \quad \Delta W(\mathbf{r},\theta) = \frac{dn}{dT} \int_0^h \Delta T(r,\theta,z) dz$$

Elasto-optic effects

•
$$\Delta W(r,\theta) = -\alpha p_{11} \int_0^h \Delta T(r,\theta,z) dz$$

Small mounts

The large mount takes time to design and manufacture so I ordered a solution to scan smaller mirrors

100 diameter samples :
 30 min scan time duration

OPTIC PT	P _{abs}	ΔP _{arm} or P _{HPAD}	ABS* Dependent on measurement system	Relative or absolute intensity	Circular diameter	REF
H1-ETMX [A]	5.5mW	~90kW	~60ppb	Unknown [80%]	24µm	G2102068
L1-ETMX [a]	19.5mW	~210kW	~93ppb	~30%	49µm	aLOG <u>46090</u>
L1-ETMX [β]	13.7mW	~210kW	~65ppb	~28%	42µm	aLOG <u>46090</u>
L1-ETMY [main]	~5mW	~113kW	~45ppb	~60%	24µm	aLOG <u>54361</u>
H1-ITMX [01/02]	25.5mW	~137kW	~190ppb	17 ± 7 W/mm ²	44 + [13,-7] μm	aLOG <u>34900</u> , <u>LDAS</u>
H1-ITMY [1] (01/02)	2.3mW	~137kW	~17ppb	2.6 ± 1.6 W/mm ²	39 ± 15 μm	G2200069
H1-ITMY [2] (01/02)	8.2mW	~137kW	~60ppb	10.8 ± 1.3 W/mm ²	31 ± 2 μm	G2200069
H1-ITMY [3] (01/02)	2.0mW	~137kW	~15ppb	4.3 ± 2.1 W/mm ²	27 ± 8 μm	G2200069
H1-ITMY [4] (01/02)	4.1mW	~137kW	~30ppb	8.7 ± 2.2 W/mm ²	25 ± 4 μm	G2200069
H1-ITMY [5] (01/02)	1.5mW	~137kW	~11ppb	$1.8 \pm 1.3 \text{ W/mm}^2$	40 ± 18 μm	G2200069
H1-ITMY [6] (01/02)	1.1mW	~137kW	~8ppb	4.5 ± 2.1 W/mm ²	20 ± 6 μm	G2200069
ITM11 - i [HPAD]	0.47mW	95W	4.9ppm	1.2 - 2.4W/mm ²	16 - 22µm	G2200069
ITM11 - b [HPAD]	51µW	95W	0.54ppm	1.2 - 2.4W/mm ²	5 - 7µm	G2200069
ITM11 - g [HPAD]	48µW	95W	0.51ppm	1.2 - 2.4W/mm ²	5 - 7μm	G2200069