







100

50.0

3.817 x10<sup>22</sup>

3.00

2.00

-1.00

0.000



### A\_RD\_25: Continued Effort Towards Ultimate Performance for Accelerator Cavities



2025 FKPPN - FJPPN joint Workshop, Nantes 14-16 May 2025

### **COMPOSITION OF TEAMS**

| ID1:                         | Title: A_RD_25 Continued effort towards ultimate performance for accelerator cavities |       |                   |                           |       |                   |
|------------------------------|---------------------------------------------------------------------------------------|-------|-------------------|---------------------------|-------|-------------------|
|                              | French Group                                                                          |       |                   | Japanese Group            |       |                   |
|                              | Name                                                                                  | title | lab. <sup>2</sup> | name                      | title | lab. <sup>2</sup> |
| PIs:<br>Members <sup>:</sup> | (Family name, First name)                                                             |       |                   | (Family name, First name) |       |                   |
|                              | Yasmine KALBOUSSI                                                                     | Dr.   | Irfu              | Takayuki KUBO             | Dr.   | KEK               |
|                              | e-mail:                                                                               | 1     |                   | e-mail:                   | 1     |                   |
|                              | yasmine.kalboussi@cea.fr                                                              |       |                   | kubotaka@kek.jp           |       |                   |
|                              | Claire ANTOINE (Emeritus)                                                             | Dr.   | Irfu              | Ryo KATAYAMA              | Dr.   | KEK               |
|                              | Thomas PROSLIER                                                                       | Dr.   | ltfu              | Takeyoshi GOTO            | Dr.   | KEK               |
|                              | Enrico CENNI                                                                          | Dr.   | lrfu              | Hayato ITO                | Dr.   | KEK               |
|                              | Théo DEJOB                                                                            | Dr.   | ltfu              | Yasuhiro FUWA             | Dr.   | KEK               |
|                              | Ivana CURCI                                                                           |       | ltfu              | Takayuki SAEKI            | Dr.   | KEK               |
|                              | Grégoire JULLIEN                                                                      |       | Irfu              | Yoshihisa IWASHITA        | Dr.   | Osaka Univ.       |
|                              | Fabien EOZENOU                                                                        |       | Irfu              |                           |       |                   |

FY 2024 Exchange program:

- KEK side: Visit of R. KATAYAMA in September 2024
- Irfu side: Visit of C. ANTOINE & G. JULLIEN in January 2025

FY 2025 Exchange plans:

- KEK side: Visit of Y. FUWA and/or T. GOTO in September 2025
- Irfu side: Visiting candidate under discussion

## **Continued Effort Towards Ultimate Performance for Accelerator Cavities**

## **Japan Part**

- **1. Progress in theory**
- 2. Experimental effort for TF
- 3. 3GHz cavity
- 4. Vertical & HF free EP

T. Kubo R. Katayama Y. Fuwa T. Goto

### **Electromagnetic response to a weak rf superposed on a dc bias:** tackle the problem head-on using the Keldysh-Eilenberger theory of nonequilibrium superconductivity

This long-standing and tough problem—belong to nonequilibrium superconductivity and relevant to many superconducting devices, including the Q-slope in SRF cavities—had not been solved correctly.



## **Plan of 2025**

Apply the Keldysh-Eilenberger (or Keldysh-Usadel) theory of nonequilibrium superconductivity to superconducting devices—including SRF cavities—to gain deeper insights beyond what has been achieved so far.

#### Some new findings have already been obtained.

In dirty superconductors under combined dc and ac fields, there exists a frequency range where the superconducting Higgs mode drives the imaginary part of the conductivity (i.e., the superfluid density) negative, leading to instability.



## **Continued Effort Towards Ultimate Performance for Accelerator Cavities**

## **Japan Part**

- **1. Progress in theory**
- 2. Experimental effort for TF
- 3. 3GHz cavity
- 4. Vertical & HF free EP

T. Kubo R. Katayama Y. Fuwa T. Goto

# **Clean-booth for Sputtering System**

#### View of 2024.03



View of 2025.05



- A DC magnetron sputtering apparatus was installed on March 19, 2024 at KEK COI building.
- This Fiscal year, we constructed a clean booth surrounding the sputtering system.
- We evaluated the cleanliness of the clean booth by measuring the number of particles, which was found to be 20 particles per 28.3 liters of air.

# Simulation Study



- Sputtering simulation was performed to understand what film formation condition is optimal especially for Nb3Sn coating method.
- We used the software modules developed by PEGASAS software inc., in order to perform the sputtering simulation.
- Current status of simulation study:
  - Ar+ generation rate, number of superparticles of e- and Ar+, DC magnetron sputtering can be simulated.
  - Uniformity of films looks not ideal.
- The simulation study is ongoing for optimization.

## Flat samples preparations









- We have prepared more than 100 silicon substrates for the thin-film study.
- The φ20 mm silicon substrates were cut from a φ300 mm silicon wafer coated with a protective resist layer.
- At present, we have successfully performed DC magnetron sputtering on these substrates.

# Plan for 2025

- We are creating Nb3Sn and AIN thin films on silicon substrates and evaluating the superconducting properties of these samples.
- More detailed sputtering simulations will be conducted.
- Sputtering will also be applied to a 3 GHz coupon cavity and a 3 GHz cavity.

## **Continued Effort Towards Ultimate Performance for Accelerator Cavities**

## **Japan Part**

- 1. Progress in Theory
- 2. Experimental effort for TF
- 3. 3GHz cavity
- 4. Vertical & HF free EP

T. Kubo R. Katayama Y. Fuwa T. Goto

## **3GHz Cavity preparation**

Previous treatment applied on cavity #1 (see 2024 Meeting): BCP treatment

Nb-flange with pure-AL hexagon seal, 158 µm BCP, no-EP, no-anneal, with 120degreeC baking







f=2.992172GHz at 2K



Cavity observation



Inner surface 85 degree equator close to the heating point 90degree. 12 No defect found.

## EP processing for 3GHz elliptical cavities (FY2024) In FY2024, EP (electropolishing) process for 3GHz single-cell elliptical cavity was performed.



For EP process, a vertical EP setup dedicated to 3 GHz cavities was used.

EP treatment was performed in two stages:

- EP1 (100 µm) with the cavity temperature below 50°C (increased removal rate)
- (annealing at 900°C was performed for 3 hours)
- EP2 (30  $\mu$ m) with the cavity temperature below 20°C



Inner surface after EP (left: equator region, right: iris region)

### Vertical test of 3GHz elliptical cavities (FY2025)

Vertical test (VT) will be performed to measure RF performance of 3 GHz cavities at KEK-STF.



Preliminary test result of VT in April 2025 For a 3GHz cavity after EP2 process  $-E_{acc} \sim 22 \text{ MV/m}$  $-Q_0 > 1 \times 10^9 \quad (@ 2K)$ 

Established measurement system for 3 GHz cavities will be tuned in order to measure the performance of cavities with various treatments in the future: thin-film coating, mid-T baking, etc...

## **Continued Effort Towards Ultimate Performance for Accelerator Cavities**

## **Japan Part**

- 1. Progress in Theory
- 2. Experimental effort for TF
- 3. 3GHz cavity
- 4. Vertical & HF free EP

T. Kubo R. Katayama Y. Fuwa T. Goto

### Development of HF free EP of Nb with organic solvents (Report FY2024)

- Hydrofluoric acid (+ sulfuric acid) is very dangerous as gas and liquid. >> high cost of EP process
- In the EP reaction, hydrogen atoms derived from water molecules in the electrolyte are absorbed into Nb. >> Nb-H is formed in Nb, and the SRF performance of the cavity is very limited (especially,  $E_{acc}$ ). >> These problems can be solved by developing an EP process that uses organic solvents containing less water

molecules in the electrolyte.

2023: sample area 1 cm<sup>2</sup> - 1 M NH<sub>4</sub>F in ethylene glycol









- For a larger sample area, the reaction conditions were optimized.
- The conditions under which the difference between the front and back of the substrate becomes small were investigated.

### Development of HF free EP of Nb with organic solvents (Plan FY2025)

#### - 1 M NH<sub>4</sub>F in ethylene glycol 2024: ~10 cm<sup>2</sup>



2025: ~1000 cm<sup>2</sup> (assuming EP treatment of cavity)

- Large samples (~1000 cm<sup>2</sup>) will be tested.
- The effect of small cathode area relative to anode will be examined

-

The effect of increasing the distance between electrodes will be examined.

- For a larger sample area, the reaction conditions will be more optimized.
- In 2025, the suitable conditions for larger sample area (~1000 cm<sup>2</sup>) will be investigated.

## **Continued Effort Towards Ultimate Performance for Accelerator Cavities**

### **French Part**

- 1. Vertical electropolishing
- 2. Multilayers

F. Eozénou Y. Kalboussi

### **ELECTROLYTE INVESTIGATION**

- HF concentration 0.5% vs 3% for standard EP process
- Effect of depleted HF concentration on performance?
- Thicker oxyde might act as a barrier for Hydrogen?

Benefits of decreased HF concentration:

- Toxicity lowered compared to standard mixture (skin contact H310 Vs H311)
- No storage limitation constraint at Saclay

- A new acid will be tested with theoretical HF concentration divided by 2: 'SF10-1'
- The acid has been purchased and received
- The efficiency of the acid will be tested on single cell 1300MHz cavity



Blueish color obtained after VEP on ESS 704 MHz single cell cavity

### **INVESTIGATION WITH 'SF 10-1' ON SAMPLES**

Investigation on samples: I(V) plot





- > A clear 'plateau' is noticed for a wide range of potentials
- Sudden Intesity rise for U>70 V
- A dedicated 500V power supply will be used to investigate U>70V. Similar to Plasma ElectroPolishing ?



### **NEXT STEP: APPLICATION ON SINGLE CELL CAV**

- The cavity RI01 has been purchased
- Test with 'standard' recipe for reference test
- $\geq$  ~240 µm bulk EP (0.15µm/min)



RESULTATS RIO1 APRES EPV BAIN STANDARD @2K



RI01 tested twice with standard recipe: Field emission

I(t) EP RI01 19V 9.5°C 5L/min 50 45 40 35 30 25 20 15 10 5 0 1000 200 400 600 800 temps (s)

Typical current oscillations during standard VEP



Strong degassing during HT after standard recipe

- > Performance of RI01 limited by Field Emission (presence of a large defect at the surface?)
- Addition 50 µm have been removed with standard recipe/parameters prior to VT

21

## **Continued Effort Towards Ultimate Performance for Accelerator Cavities**

### **French Part**

- 1. Vertical electropolishing
- 2. Multilayers

F. Eozénou Y. Kalboussi

### **The lab – Deposition Lab**







- Two ALD deposition systems:
- Research scale: small samples (Φ = 5 cm , L = 40 cm) New chemistries
- Development scale: Macroscopic objects (Φ = 49 cm , L = 110 cm).
   1.3, 0.7 GHz cavities
- Future:
- HIPIMS deposition system for A15 on 1.3 GHz cavities and large coupons.
- Thematic:
- Superconductors (cavities, QuBits), multipacting, Corrosion, Filtration...



#### **The Lab - Characterization**







- Tunneling spectroscopy (Superconducting properties: gap, local Tc, Mapping – 1,5 K – 1x1 cm<sup>2</sup>)
- Transport measurements (Tc, RRR)
- Projects:
- Collaboration USA (thesis, measurements)
- Collaboration with CERN (Nb<sub>3</sub>Sn/Cu...)
- Research area:
- Qubits, cavities, ALD...



### **Multilayers**





- A theoretical approach proposed by A. Gurevich (2006) to improve RF cavities through depositing a superconducting multilayer to screen the magnetic field.
- The thickness of the superconductor must be lower than its penetration depth.
- The superconducting layer must have higher T<sub>c</sub> than Nb.

### **Multilayers: NbTiN**



To enhance the superconducting performances of NbTiN films, several thermal treatments have been tested. The best results on Nb coated samples were obtained with:

- ➤ A first ramp of 6 °C/ minute up to 800°C
- A second ramp of 18°C/minute up to 900°C

NbTiN (45 nm) – AIN (10 nm) – Niobium NbTiN (45 nm) – AIN (10 nm) – Sapphire Plateforme MPBT 2,0×10<sup>-4</sup> covered 8 · Bare 7 · 0,0



T<sub>c</sub> is similar on Niobium and Sapphire substrate.



#### **ALD on SRF cavities and multilayers**

> The Niobium ellipsoid was coated and annealed with the optimized NbTiN-AIN bilayer recipe.



- Enhancement of first penetration field demonstrated.
- Thicker layer (~ 200 nm) to determine ξ and the predicted optimal thickness

### **NbTiN-AIN Multilayer on 1,3 GHz cavity**

- The Niobium cavity was coated with the optimized AIN- NbTiN bilayer recipe



- Coating had a bright golden and uniform colour.
- The cavity was annealed @ 900°C.
- Vacuum degradation during the annealing step on the first test.
- (P>10<sup>-5</sup> mbar)
- Observed delamination in the beam tubes after annealing.

#### **Delamination studies**

- Leak detected and fixed.

- Upscaling of the samples with tubes and curve plate



- Presence of film confirmed by XRD, EDS, MEB
- No delamination observed



- Tc ~ 14.5 15 K (42 nm)
- New multilayer diffusion barrier.

### PURSUE THE EFFORT TOWARDS ULTIMATE GRADIENTS AND QUALITY FACTORS FOR SRF CAVITIES.

|               | <u>CEA Saclay</u>                                                                                                                                                                                | KEK                                                                                                                                                                                                                     |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VEP           | <ul> <li>VEP with a depleted HF concentration<br/>(&lt;0.5%) with Ninja cathode: ongoing</li> <li>Single-cell 1300MHz cavities prior to<br/>ALD deposition</li> <li>704MHz activities</li> </ul> | New VEP facility for 1.3GHz 9-cell cavity, in<br>addition to HEP facility.<br>The Ninja cathode dedicated for the VEP process<br>for cavity<br>Hydrofluoric acid-free EP process<br>Plasma electrolytic polishing (PEP) |
| Thin-<br>film | A multilayer Nb/AlN/NbTiN<br>ALD layers deposition on 3000MHz Cu<br>and Nb cavities.                                                                                                             | AlN-NbN thin-film: coupon analysis<br>AlN-NbN thin-film grown on single-cell<br>3000MHz Nb cavities.<br>The cavities will be tested at 4K and 2K.<br>Theoretical study of multilayer structure.                         |

### **THANK YOU FOR YOUR ATTENTION**