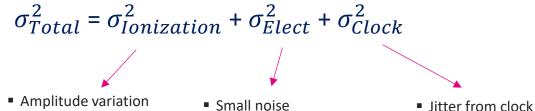
Evaluation of Temporal Resolution in Monolithic Pixel Sensors using Time-Structured X-rays at Synchrotron Facility

*F. Orsini*¹ (*RIKEN PI*), *P. Schwemling*² (*CEA IRFU PI*), *Y. Degerli*², *JP. Meyer*², *F. Guilloux*², *A. Baron*¹, *Y. Yoda*³, *N. Nagasawa*³

¹RIKEN SPring-8 Center ²CEA IRFU ³JASRI

2025 Joint Workshop of FKPPN and TYL/FJPPN 14th - 16th May 2025, Nantes

Context and initial motivation RIKEK


'TIMING' detector with HV-CMOS / Depleted Monolithic Active Pixel Sensors

CACTµS (Cmos Active Timing µSensor) is a monolithic sensor chip optimized for the timing measurement of charged particles for future large-scale timing detectors (upgrades of timing detectors at HL-LHC, and/or future high-energy physics detector projects)

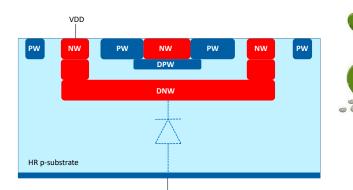
distribution

Time resolution ingredients

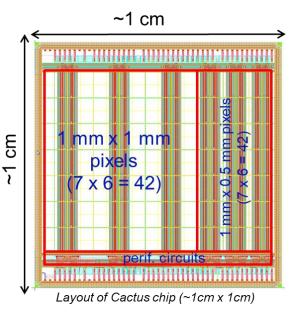
- Amplitude variation (Time Walk correction)
- Non-homogeneous energy deposition (minimized by design)
- Small noise
- Large dV/dt (sensor with internal gain)
- Depend on collected signal

HGTD within ATLAS detector Hybrid DC-LGAD: sensor choice for ATLAS forward timing layers

Context and initial motivation



'TIMING' detector with HV-CMOS / Depleted Monolithic Active Pixel Sensors


IRFU development

[Y. Degerli, Meeting ATLAS HGTD, 2017]

- □ Designed in a standard LFoundry 150nm HV-CMOS process without a dedicated amplification layer (LF-CPIX chip architecture-like, a CMOS option for ATLAS Inner Tracker upgrade) → lower material budget and cheaper than hybrid solutions
- High-resistivity, fully depleted substrate, fast-rise time, HV tolerance
- □ Active array of deep n-well/p-substrate diodes, front-ends (FEs) <u>initially inside the</u> <u>charge collected diode</u>, a slow control interface, and bias circuitry programmable through internal DACs
- Optimized guard-rings surrounding the whole chip, more than -350 V can be applied on the high-resistivity substrate, allowing fast charge collection
- $lacksymbol{\square}$ Baseline pixel dimensions are 1.0 imes 1.0 mm and 0.5 imes 1.0 mm
- □ Time over Threshold correction is offline
- □ Low power consumption < 500 mW/cm2, compatible with cooling infrastructure available at LHC experiments, and making integration of this concept viable in future high-energy physics experiments

Cross section of a typical pixel implemented in LF 150 nm HV-CMOS process (not to scale)

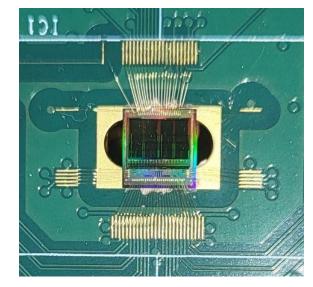
CACTUS development timeline

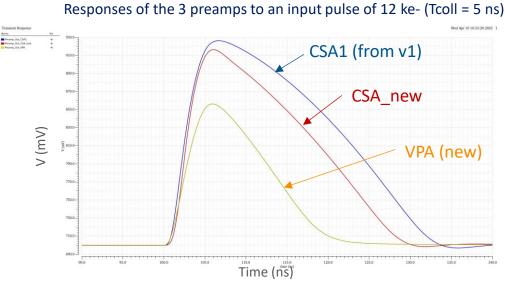
[Y. Degerli et al, IEEE TNS vol 70, no11, 2023]

2017-2020 2020-2023 2023-2025- ... MiniCACTUS v2 **CACTUS demonstrator** MiniCACTUS v1 ~1 cm Designed to address the *low S/N issue* observed on previous CACTUS Front End integrated at the column level ≈ 4.6 mm ≈2.5 mm *********** mr pixels 4 x 6 = 42ШШ S 2 6 Layout of Cactus chip (~1cm x 1cm) Good yield High breakdown voltage < -300 V ~ 2 times larger than MiniCACTUS v1 Homogeneous charge collection, deep Previous positive points achieved depletion depth Time resolution with MIPs < 70 ps Improved layout for better mixed-Chip very sensitive to incoming and @ HV bias < -250 V signal coupling rejection outcoming dig. signals Ringing on Digital Output due to Injection signal seen even when OFF coupling from the digital buffers S/N issue impacting the Time Walk correction

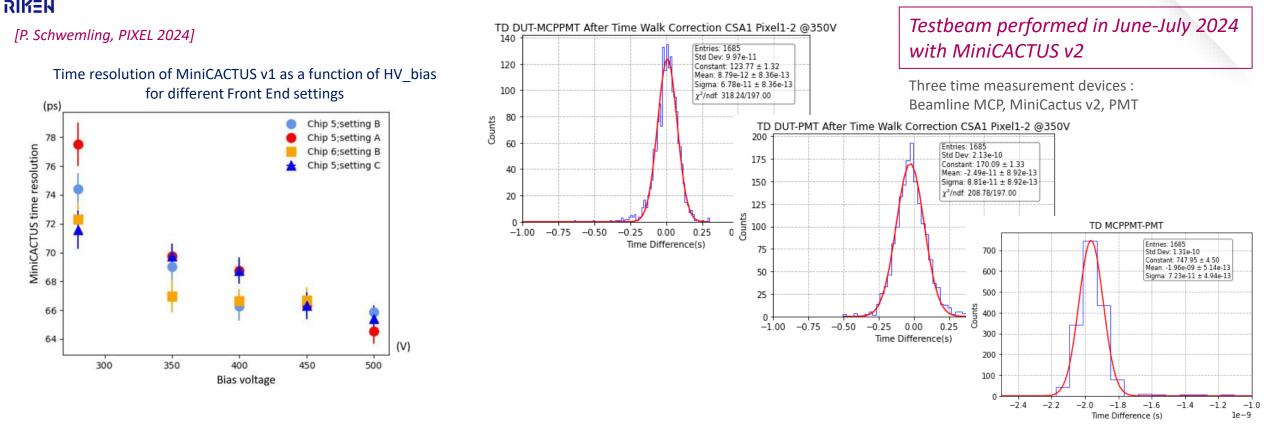
RIKEN

~1 cm


[P. Schwemling, PIXEL 2024]


- ~ 2 times larger than MiniCACTUS v1
- Diodes sizes: 0.5 mm x 1 mm (baseline), 1 mm x 1 mm and 0.5 mm x 0.5 mm
- Small test diode: 50 μ m x 150 μ m and two 50 μ m x 50 μ m
- 3 different preamplifiers implemented (for better jitter and reduced ToT)
- New multistage discriminator with programmable hysteresis
- Improved layout for better mixed-signal coupling rejection
- CEA-IRFU & IFAE-Barcelona collaboration
- Submitted in May 2023, chips came back from post-processing end of May 2024

Analog/Digital couplings were efficiently corrected


MiniCACTUS v2 wire-bonded on its PCB

Achieved performances with MIPs

The time resolution of several sensors with different thicknesses has been measured in several testbeam campaigns using high-energy muons (MIPs) at CERN SPS.

MiniCACTUS v2: the best timing resolution measured was 59.9 ps with the ON-chip FE and discriminator (July'2024 results)

Timing performances in the case of photon detection? → Sensor chip characterization with high-flux photon beam

SPring-8: 3rd generation synchrotron facility RIKEN RIKEN Beamline (16) / Public Beamline (26) / Contract Beamline (15)

JAEA Actinide Science I (Japan Atomic Energy Agency) BL22XU SPring-8 current parameters: 57 beamlines beam outs are (+ 5 other beam. 100 mA stored current 1432.95 m circumference 8 GeV beam energy X-ray Diffraction and Scattering II BL19B2 2.4 nm.rad emittance 508.58 MHz RF frequency RIKEN Coherent Soft X-ray Spectroscopy BL17SU SPring. **Beamline Map** BL33LEP Diagnosis Beamline II Total number of beamlines : 62 Insertion Device (6 m) : 34 (- Long Straight Sec. (30 m) : 4 (-SPring-8: Japan's Flagship **SACLA: Free Electron Laser** Bending Magnet - 74 (**Synchrotron Radiation Facility** 8 GeV for hard X-rays 0.8 GeV for soft X-rays 8 GeV Injector for SPring-8 Main Bldg. **RIKEN BLs** 100 Energy (keV)

Upgrade program towards SPring-8-II has started [H. Tanaka et al., JSR (2024), 31]

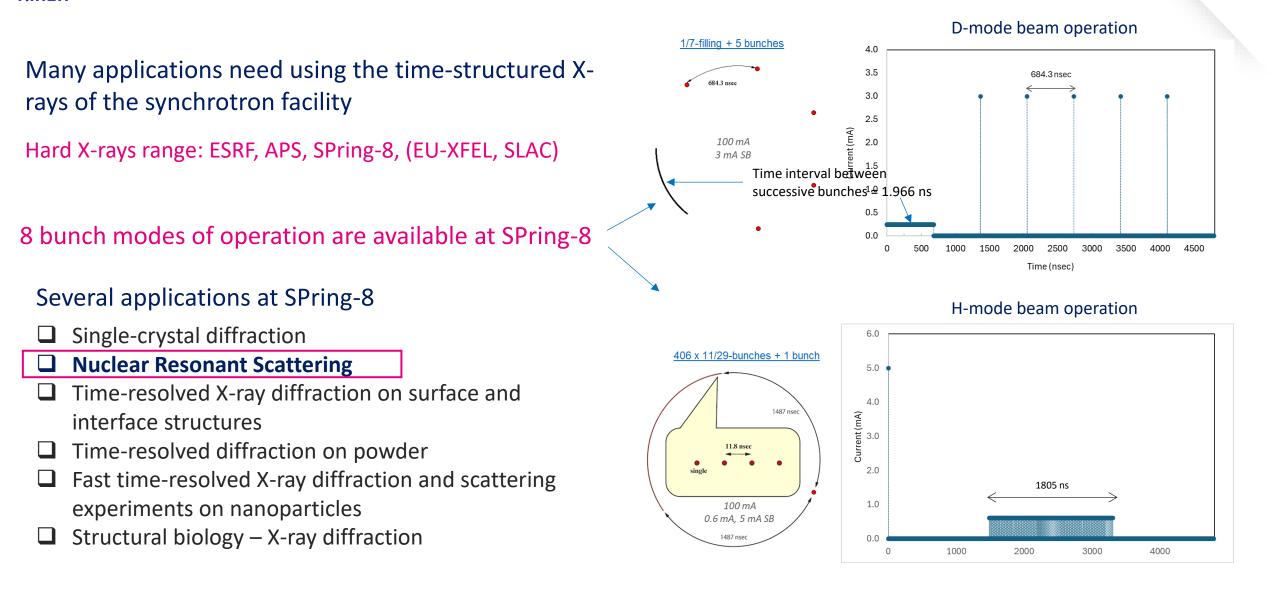
RIKEN Materials Science III BL15XU C XAES II BI 14B2 **OST Quantum Dynamics II** NSRRC ID BL12XU m Dynamics I BL11XU HAXPES I BLO9XU Hyogo BM (Hyogo Prefecture) BL08B2 ● R&D-ID II BL07LSU High Energy X-ray Diffractio Advanced Softmaterial BL03XU Powder Diffraction BL02B2 Single Crystal Structure Analy XAFSI BL01B1 **PUBLIC BLs** BL028 BL048: BL048: BL098W BL098W BL138U BL138U BL1482 BL1482 BL1482 BL2682 BL2682 BL2582 BL2582 BL2582 BL2582 BL2582 BL2582 BL38B BL38B L43LX BL44B BL44B BL01B BL02B

May 16th, 2025

RIKEN SR Physics BL19LXU 4

UNBEAM BM BL16B2 SUNBEAM ID BL16XU

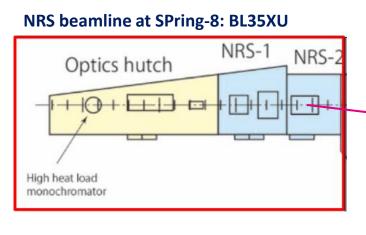
BL04B2

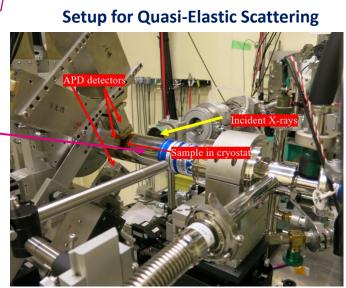


7

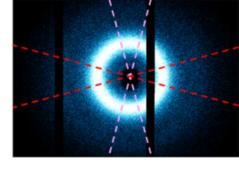
Irfu

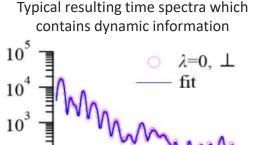
Using the time-structured X-rays




Nuclear Resonance Scattering

Quasi-elastic scattering using Time-Domain Interferometry provides unique information on atomic and molecular-scale dynamics: many research topics from fundamental to materials and life sciences


[Y. Yoda, 6th Inter. Nuclear Resonance Workshop, 2024]



[R. Mashita et al., ACS Macro Lett., 13, 2024]

2D X-ray scattered image of a polymer sample

 10^{2} 10^{1} 1

This type of experiment is currently performed with a one-dimensional APD-type detector with a limited time resolution to 1 ns

Synchrotron user's request:

Strong need for gating time resolution of sub-ns

In bonus: a 2D 'large' pixel matrix could provide information at several scattering angles at the same time !

May 16th, 2025

2025 FKPPN+FJPPN workshop

Test program and expected outputs 1/2

1 / 14-keV photon beam – Without a sample

@ Beamline BL35XU

[Test repeated for 2 sensor thicknesses]

 5×10^{13} ph/s within a beam size (FHWM) of 0.5 mm (V) \times 1.2 mm (H)

Define trigger conditions to see the 'isolated' bunch(es)

- Study the pulse shape, dependence on photon fluxes (pile-up)
- Detection efficiency
- Timing resolution as a function of HV bias, for different pixel sizes and preamplifier types

Define trigger conditions to see the 'bunch train'

Bunch separation capability \rightarrow is an important asset for synchrotron users

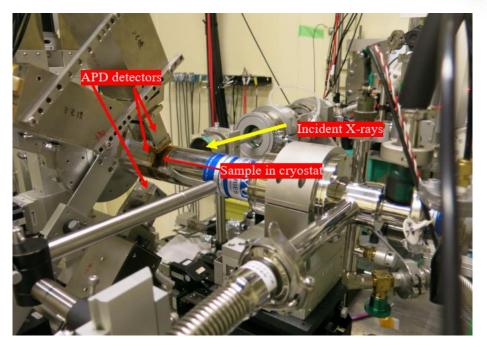
[Position scan with 'pencil beam' on a chosen pixel \rightarrow uniformity of pixel response by scanning the pixel surface]

2 / 43-keV photon beam – Without a sample

~ 1×10^{10} ph/s within a beam size (FHWM) of 0.5 mm (V) \times 1.2 mm (H) Previous tests repeated at higher energy

Test program and expected outputs 2/2 @ Beamline BL35XU

3 / Quasi-elastic scattering at 14 keV – With 'reference' sample


 5×10^{10} ph/s within a beam size (FHWM) of 0.5 mm (V) \times 1.2 mm (H)

Highlight the timing resolution and fast readout capabilities \rightarrow build the time spectrum from the sample relaxation

MiniCACTUS will be positioned at a fixed scattering angle Tests repeated on different pixel sizes HV bias fixed

A timing resolution of \leq 500 ps is expected for photons of this energy

Time-Domain Interferometry performed on BL35XU

Enhancement of the understanding of charge collection dynamics and help optimize detector performance Interest from the synchrotron community, where sub-nanosecond time resolution detection is essential

Summary / expected outputs

□ Promising results have already been obtained with MiniCACTUS v2 in the case of MIPs

- Characterization of performances with 'time-structured' high photon flux will help optimizing the FE efficiency (S/N)
- □ Several lessons to learn from such detector for the synchrotron community → time-resolved applications are limited today by the detection system, in particular for the Nuclear Resonant Scattering experiments

□ The next version of MiniCACTUS implements an intrinsic gain layer and other improvements are considered at short-term: improvement of time resolution with better S/N, reduction of the pixel pitch, reduction of the FE power consumption *Note: tests of test-structures with integrated gain layer have started at CEA/IRFU*