

Investigation of oxygen effects induced by carbon ion irradiation via Geant4-DNA simulations

Shogo OKADA

KEK, Japan <u>shogo.okada@kek.jp</u>

Sebastien INCERTI

CNRS-IN2P3 & Bordeaux University, LP2i, France <u>sebastien.incerti@in2p3.fr</u>

and colleagues (Japan / KEK & National Institutes for Quantum Science and Technology and France / CNRS-IN2P3-LP2i)

2025 Joint workshop of FKPPN and TYL/FJPPN

Context

Carbon ion radiotherapy (CIRT)

- Highly effective treatment due to its high linear energy transfer (LET) compared to classical photon radiotherapy and proton therapy
 - Leads to a higher relative biological effectiveness (RBE): 2-3 times more clustered DNA damage to cells than low-LET radiations^{1, 2}
 - Mainly used for radio-resistant tumors
 - Japan is the leading country: 7 facilities in operation today³, e.g. 43000 patients treated (1994-2023)
 - Therapeutic carbon beams in Caen, France, expected around 2030 ("ARCHADE" facility)
- A key factor in radiation therapy is the oxygen enhancement effect
 - The presence of oxygen significantly increases DNA damages in tumor cells : more oxidative stress^{4,5}
 - However, many solid tumors develop "hypoxic" regions
 - More resistant to standard photon or proton irradiation
 - On the contrary, CIRT is less dependent on cell oxygen level and is more efficient
 - Physics & chemistry: high-LET (more clustered damages), production of oxygen (from water radiolysis)
 - Specific biological mechanisms at play, e.g. influence of transcription factors (e.g. hypoxia-inducible transcription factor-1⁴) on radioresistance under hypoxic conditions, cell type dependence...

A possible "contribution" could arise from physics: the "multiple ionisation" process (MI)

- High-LET irradiation (like C) ions induces numerous ionisation events through MI
 - More (direct) clustered damage to DNA
 - Localized production of reactive molecular species from water radiolysis (e.g. **O(**³**P)**, O₂⁻⁻, HO₂⁻, and H₂O₂ from MI)
 - Increasing oxygen production around C tracks
- □ The quantitative impact of MI requires further investigation...

- .) Nature 508, 133-138 (2014)
- (2) Advances in Radiation Oncology 9, 101317 (2024)
- (3) PTCOG (<u>link</u>)
- (4) Cancers 12, 2019 (2020)
- 5) Cancers 11, 112 (2019)

Objectives of the project

Motivation

New project to provide the scientific community with the possibility to simulate multiple ionisation from ion irradiation in liquid water in Geant4-DNA, and investigate its impact on physics, chemistry and radiobiology applications

Recent activities

- Relevant beta physics classes of Geant4 for the multiple ionisation processes in water have been implemented in version 11.3 (Dec. 2024), based on prior studies
 - Baba et al., J. Appl. Phys. 129, 244702 (2021)
 - For proton, alpha particles and carbon ions
 - Double and triple ionisation cross sections are calculated from single ionisation (Rudd semi-empirical model) and radiolysis data by Meesungnoen and Jay-Gerin⁽¹⁾
 - Process classes: G4DNADoubleIonisation and G4DNATripleIonisation
 - □ Model classes: G4DNADoubleIonisationModel and G4DNATripIeIonisationModel
- Detailed verification & validation (physics, chemistry) have not yet been completed

Plan of the project (2 years...)

- We propose a verification & validation study following **three stages**:
 - Stage#1: verification of **physics** quantities ("physics stage")
 - Stage#2: validation of **water** radiolysis ("chemistry stage")
 - Stage#3: quantifying biological impact such as DNA damage ("biology stage") induced by multiple ionisation and comparison to experiments
- Will be fully included in Geant4-DNA physics lists & examples

FIG. 1. The ratio of double-to-single ionization cross sections σ_d/σ_{si} for ¹H⁺ (dotted red line), ⁴He²⁺ (dashed green line), and ¹²C⁶⁺ (dashed-dotted blue line) ion beams reported by Meesungnoen and Jay-Gerin.¹¹ The values of σ_d/σ_{si} reported by Champion²⁵ for a variety of ions at intermediate velocities and gaseous water are also shown for the sake of comparison (solid black line).

⁽¹⁾ J. Phys. Chem. A 109, 6406-6419 (2005)

Stage #1: Validation of physics quantities

First stage tasks (2025)

- 1. Computing **fundamental physical quantities in liquid water** under irradiation of high-LET ions **(C, alphas, protons)** considering (or not) multiple ionisation and evaluate its impact on:
 - Secondary electron spectra (importance: responsible of most direct DNA damage)
 - Range
 - Stopping power
 - Radial doses
- 2. Comparing with **published** (from other track-structure codes) and **reference** data / international recommendations (e.g. ICRU data)
- 3. Including these new physics processes in **Geant4-DNA Physics constructors** and corresponding user Geant4-DNA **"extended" examples**
 - "range"
 - "spower"
 - "radial"

Outcome

Geant4-DNA reference data and "ready to use" user examples showcasing the impact of MI

Expected duration

6 months

Example of physics verification

Francis et al., Phys. Med. Biol. 57, 209-224 (2012) Incerti et al., Med. Phys. 45, e722-e739 (2018)

Stage #2: Validation of water radiolysis

Second stage tasks (2025 - 2026)

- Simulation of water radiolysis yields, known as "G-values" of water radiolysis by ions (C, alphas, protons), considering (or not) multiple ionisation
 - A a function of **time**
 - As a function of **LET**
 - Using the four Geant4-DNA chemistry models
 - "step-by-step", "IRT", "IRT-sync", "mesoscopic"
 - See recent review in Tran et al., Med. Phys. 51, 5873–5889 (2024)
- Comparing with experimental data to evaluate the impact of multiple ionisation and Geant4-DNA simulation accuracy
- In addition, we propose to investigate how high-density ionization affects the local oxygen concentration
 - Do we observe an increase of oxygen production in CIRT around Carbon ion tracks ? What is the time evolution ?
 - And what about p, He irradiation ?

Outcome

- Reference Geant4-DNA data on time and LET evolution of G-values
- Evaluation of impact of MI on local oxygen concentration

Expected duration

6 months

oxygen production

Example of radiolysis validation

Radiochemical yields of molecular species w/o Ml, **as a function of LET**

Ramos-Mendez et al., Med. Phys. 47 (2019)

Stage #3: quantifying biological impact

molecula

Home

Overview Available ge

Running the

Publication

Building geo

Third stage tasks (2026)

- Combining Geant4-DNA physics & radiolysis simulation with geometries of biological cells in order to estimate early DNA damage
 - At different LET
 - For **C**, but also **p and He ions**
 - Using the "molecularDNA" Geant4-DNA example
 - Human cell geometries (6.4 Gbp of DNA)
 - Example development is coordinated by LP2i
 - Direct and non-direct DNA early breaks (before repair)
 - Simple & complex DNA breaks
- Comparison with **experimental measurements** on DNA damage
 - From the literature and in collaboration with QST
 - Towards future multi-ion therapy studies @ QST (C, He, O...) (link)

Outcome

- Possibility for users to take into account multiple ionisations in the "molecularDNA" example
- Reference data on early direct and indirect DNA damages in biological cells
 - First time in Geant4

Expected duration

- 9 months
- May require CC-IN2P3 dedicated hours (already requested)

https://moleculardna.org

rDNA		Q Search molecularDNA	molecular	DNA on GitHub	The Geant4-DNA Project		
		^e molecularDNA					
netries	~	Radiation-induced DNA damage simulations in Geant4					
kample		molecularDNA is a Geant4-DNA example built to allow easy simulation of radiation-induced DNA damage with flexible geometries and well defined damage parameters.					
etries	~	Get started right away in the Gear library of pre-existing geometries	Get started right away in the Geant4 geant4/examples/advanced/dna/moleculardna directory with a library of pre-existing geometries, or dive into the documentation.				
		A tutorial demonstrating molecul	arDNA is also available at this lin	k.			
		Important : This example is for demonstration purposes and is intended as an intr users to create their applications. Therefore, users are advised to adapt and optim					
		parameters in their applications a	ccoraingiy.				
		molecular structure					
			Hillet ore				

Example of radiobiology validation

Open science & outreach

Visibility

- □ All software will be available freely in Geant4 (after publication)
- Part of the on-going workplan of Geant4-DNA on the improvement of accuracy of ion models
 - In coll. with Geant4@CERN, ASNR, Wollongong U., ...

Outreach

- □ A Geant4-DNA tutorial will be organised in Japan in 2026 or 2027
 - Series of past tutorials organised in Japan
 - **2**024: Osaka
 - **2**015: Hiroshima
 - Progress and findings of this project will be shown during the tutorial
 - Including live demonstration using the free Geant4 Virtual Machine (LP2i)

An interdisciplinary project & team

- Consisting of experts in Geant4 and Geant4-DNA development, radiation chemistry and radiobiology
 - Geant4 & Geant4-DNA core development
 - Long-collaboration & fruitful collaboration between KEK & IN2P3 on Geant4 & Geant4-DNA developments (e.g. FJPPL 2007-2017)
 - S. OKADA (KEK)
 - □ K. MURAKAMI (KEK)
 - **T. SASAKI (KEK)**
 - □ H. TRAN (IN2P3)
 - S. INCERTI (IN2P3)
 - Radiation chemistry & biology data
 - T. KUSUMOTO (QST Hospital)
 - Radiochemical yields (p, C)
 - Early DNA damage (p, C)

Collaborator	Stage #1 (6 months)	Stage #2 (6 months)	Stage #3 (9 months)
S. OKADA	х	х	х
K. MURAKAMI	х	x	Х
T. SASAKI	X	Х	Х
H. TRAN	x	x	Х
S. INCERTI	X	X	Х
T. KUSUMOTO		Х	Х

Budget request for 2025

From Japan side

- □ A 10-day trip to LP2i, Bordeaux
 - 800 kJPY asked to KEK (S. OKADA)

From France side

- 2 trips of 6 days to KEK, Tsukuba
 - 4960 € asked to IN2P3 (H. TRAN and S. INCERTI)
 - (at least one trip if two trips are too expensive)

Additional support (confirmed)

- Postdoctoral fellow @ LP2i: to be recruited during autumn 2025 for 24 months
 - Candidates are very welcome to apply at these links:
 - https://emploi.cnrs.fr/Offres/CDD/UMR5797-JERBAU-077/Default.aspx?lang=EN
 - http://geant4.in2p3.fr

Thank you very much !

