

KYUSHU UNIVERSITY

Optimisation of COMET Phase-I Sensitivity by Mitigating the Atmospheric Background

FJPPN/FKPPN 2025 @ Nantes May 12, 2025

 LPCA: Géraldine FAURE, Cristina CARLOGANU, Sébastien GADRAT, Thomas CLOUVEL (PhD)
 Kyushu U: Thomas BOUILLAUD, Junji TOJO, Yu Nakamura (M2), Hiroki OKURANO (M2) 1. COMET sensitivity

The Single-Event Sensitivity of COMET

 $SES = \frac{1}{\frac{T_{run}(I_p/e)R_{\mu/p}\mathcal{B}_{cap}\mathcal{A}_{\mu \to e}}{N_{\mu}^{stop}}}$ $\mathcal{A}_{\mu \to e}$ $= \mathcal{A}_{geo}\mathcal{E}_{trigger}\mathcal{E}_{DAQ}\mathcal{E}_{finding}\mathcal{E}_{tracking}$ $\mathcal{E}_{quality}\mathcal{E}_{p}Window\mathcal{E}_{t}Window$

$\mathcal{A}_{\mu ightarrow e}$	4.1%	Acceptance
\mathcal{B}_{cap}	61%	Muon capture branching fraction
$R_{\mu/p}$	4.7×10^{-4}	Muon yield per POT
Ip	0.4 μΑ	Proton beam current
T _{run}	146 days	Total run time

To achieve a Phase-I SES of 3.1×10^{-15}

1. COMET sensitivity

The Single-Event Sensitivity of COMET

- ✓ **CTH** 4-fold trigger within 700 < t < 1170 ns
- ✓ Track in CDC pointing towards Al target
- ✓ Momentum 103.6 < *p* < 106 MeV/c
- ✓ No coincident activity in CRV

Sources of background

Table 14. Summary of the estimated background events for a single-event sensitivity of 3×10^{-15} in COMET Phase-I with a proton extinction factor of 3×10^{-11} .					
Туре	Background	Estimated events			
Physics	Muon decay in orbit	0.01			
	Radiative muon capture	0.0019			
	Neutron emission after muon capture	< 0.001			
	Charged particle emission after muon ca	pture < 0.001			
Prompt beam	* Beam electrons				
	* Muon decay in flight				
	* Pion decay in flight				
	* Other beam particles				
	All (*) combined	≤ 0.0038			
	Radiative pion capture	0.0028			
	Neutrons				
Delayed beam	Beam electrons	~ 0			
	Muon decay in flight	~ 0			
	Pion decay in flight	~ 0			
	Radiative pion capture	~ 0			
	Antiproton-induced backgrounds	0.0012			
Others	Cosmic rays [†]	$N_{\text{cosmicBG}} = 0.48$			
Total		0.032			

DIO e^- eliminated by momentum window

Sources of background

Table 14. Summary of the estimated background events for a single-event sensitivity of			Signal and DIO (BR= 3×10^{-15})	
3×10^{-15} in COMET Phase-I with a proton extinction factor of 3×10^{-11} .				
Туре	Background	Estimated events	⁻ μ-e conv	
Physics	Muon decay in orbit	0.01		
	Radiative muon capture Neutron emission after muon capture Charged particle emission after muon capture	0.0019 < 0.001 < 0.001		
Prompt beam * Beam electrons * Muon decay in flight * Pion decay in flight * Other beam p All (*) combined Assuming:				
Radiative pic Neutrons Delayed beam	Neutrons • 99.99% CRV det Neutrons • Total CRV covera Beam electrons • No fako CRV trigger	ige	De^{-} eliminated by momentum window	
	Muon decay in flig • NO Take CKV trig • CDC rejection of	μ^+ with 89% effici	ency	
	Antiproton-induced backgrounds	~ 0 0.0012	Coordinate and the second second	
Others Total	Cosmic rays [†] $N_{\rm CO}$	smicBG = 0.48	background.	

2. Cosmic ray veto

Atmospheric muons: the dominant background

Two types of cosmic background:

- Atm muon misidentified as electron
- Electron induced by atm muon

Backgrounds rejected if activity inside the **Cosmic Ray Veto (CRV)** within time window of CTH/CRV event.

The CRV covers:

- Upstream and downstream sides (high radiation) with Resistive Plate Chambers (RPCs)
- Top, left, and right sides with scintillators

... but some openings could let "sneaking muons" in (CDC/CTH hit but no CRV hit).

Simulating the atmospheric background

 $\rightarrow N_{\text{cosmicBG}} = 2.29$

Because of the low trigger acceptance and large multiple scattering of low momentum muons, the atmospheric background is very expensive to simulate with direct Monte-Carlo:

→ Use backward Monte-Carlo

Assuming:

- 99.99% CRV detection efficiency
- Total CRV coverage
- No fake CRV triggers
- No μ^+ rejection from CDC
- No μ/e discrimination from CTH

M. Moritsu, V. Niess, M. Dubouchet, G. Faure Activity led by French team at LPC

2. Cosmic ray veto

Rejecting cosmic muons with CRV

Current situation: CDC/CTH gives signal while CRV serves as veto.

Before we started refining the muon beamline, with a simple model of the CRV (timing window $\Delta t = 10$ ns) we had a high accidental veto rate

> The faster RPCs ($\Delta t \sim ns$) are essential on upstream CRV

Detector module: 2 RPCs

Increased number of layers and segmentation are needed

Tracker module: 5 detector modules

Triple-coincidence rates in CRV

$$N_{coin} = {}_{4}C_{3} \times \left(\frac{N_{inner} + N_{outer}}{2}\right)^{3} \times (\Delta t)^{2} \qquad \Delta t = 10 \text{ ns}$$

 $N_{side} = N_{coin} \times N_{strip}$

	N_{coin} (Hz)	N _{strip}	N _{side} (kHz)
top	7.8	204	1.61
right	21.9	206	4.52
left	27.6	206	5.68
front	6.33x10 ³	192*	1214
back	1.07x104	192*	2053
total			3279

 \rightarrow leads to 33% accidental veto (Valentin Niess, 2021)

Rather relying on temporal coincidence, we are now trying to use spatial information in a global tracking algorithm

e^{-}/μ^{+} discrimination with CTH and CDC

Current situation: CDC/CTH gives signal while CRV serves as veto. But CTH and CDC can also reject sneaking muons.

e^{-}/μ^{+} discrimination with CTH and CDC

Current situation: CDC/CTH gives signal while CRV serves as veto. But CTH and CDC can also reject sneaking muons.

M. Moritsu

e^{-}/μ^{+} discrimination with CTH and CDC

Current situation: CDC/CTH gives signal while CRV serves as veto. But CTH and CDC can also reject sneaking muons.

 $\circ~$ Discrimination with CTH depends on light collection efficiency

CTH hardware

CTH hardware

Readout: DASH board

→Prototype produced and tested in LPC in collaboration with J-PARC

CTH hardware

Readout: DASH board

→ Prototype produced and tested in LPC in collaboration with J-PARC

CTH hardware

Readout: DASH board

→ Prototype produced and tested in LPC in collaboration with J-PARC

CTH hardware

Readout: DASH board

→Prototype produced and tested in LPC in collaboration with J-PARC

Generative Adaptive Networks (GAN) to generate background data

GAN models can be used to easily and quickly generate noise events.

In *JINST 18 P06007*, a proof-of-concept is discussed, in which 2 GAN models are studied: a 'simple' GAN and a second one with a Self-Attention layer, allowing it to take into account spatial correlation.

With the unbiased Fréchet Inception Distance (FID) metric, the SAGAN model gives better results than the GAN.

- G. Faure and C. Carloganu plan to have students at LPC (engineer or/and M2) apply this on the CDC & CTC.
- S. Gradat will provide **CCin2p3** support
- Discussion with other experiments doing such R&D (such as CMS)

4. Current improvements

Global tracking for better cosmic μ rejection

Instead of relying on temporal coincidence in CRV for cosmic veto, we propose instead to implement a global tracking combining CTH/CDC/CRV data.

- CRV RPCs and scintillators provide spatial information, which opens up the possibility of global tracking.
- Construct a likelihood for the CRV activity to be of atmospheric origin including detailed CRV information around the track extrapolation (instrumented area or not, local efficiency and average noise, etc.)
- ➤ Will be led jointly by LPC and Kyushu U.
 →T. Bouillaud will visit Clermont for 3 months this summer to implement it with T. Clouvel.

Conclusion

- The **sensitivity** of COMET Phase-I critically depends on the control of the **atmospheric background.**
- The **CRV** is the main detector responsible for cosmic event rejection, but may let in "**sneaking muons**" and suffers from high radiation.
- **CTH and CDC** can also be used for **cosmic** μ **rejection**, but more realistic background estimations are needed.
 - → Generative Adaptive Networks would help us generate this background data.
- Finally, a **global tracking algorithm** combining data from **CRV/CDC/CTH** is crucially needed to reach the target sensitivity.

- LPC Clermont is leading the CRV activity and fully involved in CTH hardware:
 - Thomas Clouvel and Nicolas Chadeau long-term stay in J-PARC (summer 2024) for CTH MPPC quality control
 - Cristina Carloganu and Géraldine Faure visits to J-PARC (CM, ...)
 - Boards in Clermont
- Kyushu University and J-PARC lead CTH activities and contribute to software:
 - I (Thomas Bouillaud) will visit Clermont LPC for 3 months this summer to work on the global tracking with Thomas Clouvel.
 - > Junji Tojo will also visit the LPC this summer.