

Beyond the-state-of-the-art SRF cavities with advanced surface preparation

CNRS/IN2P3/IJCLab

Akira Miyazaki, David Longuevergne, Mael Vannson

CEA/IRFU

Enrico Cenni

KEK/iCASA

Kensei Umemori, Takayuki Kubo, Hayato Ito

energie atomique • energies alternatives

1

Outline

- Superconducting RF cavities for present and future accelerator projects
- Mystery in SRF cavity performance
- Previous collaborative activities
- Theoretical approach: new collaboration
- Global collaboration
- Plan of 2025
- Conclusion

Superconducting cavities in present and future accelerators

SRF is the technology of today \rightarrow most probably next colliders

- CW machine (circular or high current linac) needs high Q
- ILC needs high gradient

We need state-of-the-art

- Chemical etching
- Baking/doping
- in **industry**

We know it works (in some labs) but do not know why

Chaudron for black magic

- Clean vacuum furnace (cryopump) over the world including industry
- Systematic comparison of working parameters or even definition of parameters is challenging without collaboration

1st try in IJCLab

Parametrization of heat treatment

Cavity measurement at cold with collaboration

1st (June) and 2nd (July) tests at CEA Saclay

<u>3rd test at KEK-STF: Sep 30 – Oct 11</u>

4th test at KEK-STF: Feb 2025 after 800C annealing in Jan

- Measurement result at CEA was not excellent \leftarrow magnetic fields issue
- One week measurement after ERL2024 \rightarrow excellent result at KEK in reduced magnetic fields

Switch OFF/ON the anti-Q-slope

Increase in Q / decrease in R by the RF field is a peculiarly nonlinear phenomenon \rightarrow anti-Q-slope \rightarrow critical for FCC-type applications

i

High-Q (low R_s) theory: Homogeneous disorder

The theory is valid only at low field (1st order perturbation)

Magnetic scattering

Non-magnetic scattering

Gurevich-Kubo theory for anti-Q-slope

Smearing of $N(E) \rightarrow R_{BCS} \downarrow$ caused by field not impurity

- DC field is known to smear $N(E) \rightarrow$ reduction of net number of thermally excited quasi-particles
- Extrapolation of DC result to RF may be justified relaxation time of SC is faster than RF (quasi-DC approximation)
- Eliashberg excitation of f(E)

 $f_0 > 1.73/2\pi\tau_E \sim 15 \text{ GHz} \gg 1 \text{ GHz} \text{ (SRF)}$

 \rightarrow Extrapolation of DC may be valid for SRF

Energy relaxation time				
Metal	Tc	τ _E a	k_T_c	Υ _r
	(K)	(s)	(µeV)	(µeV)
Zn	0.88	9.3 10 ⁻⁸	76	7.1 10 ⁻³
A1	1.18	1.3 10 ⁻⁸	102	5.2 10^{-2}
In	3.41	$9.5 \ 10^{-11}$	294	6.9
Sn	3.72	$2.7 \ 10^{-10}$	321	2.4
Nb	9.25	$1.8 \ 10^{-11}$	798	37

GHz corresponds to $\hbar \omega = 4.1 \text{ ueV}$.

13

- Frequency dependence (higher/lower 1 GHz) was NOT explained by Gurevich theory
- Electron-photon relaxation time $\tau_{e,ph} \sim 0.23 \text{ ns} \gg \tau_E = 18 \text{ ps}$ (energy relaxation time)
- If the relaxation process is dominated by $\tau_{e,ph}$, corresponding cross-over is **1.2 GHz**
- \rightarrow Possible enhancement of superconductivities could cause anti-Q-slope?
- Extension of Gurevich theory (+ impurity self-energy and Higgs mode) enhances anti-Q-slope at higher frequency WITHIOUT $\tau_{e,ph}$ discussions (T. Kubo arXiv:2408.00334)

\rightarrow Quantitative study is the next research direction

Dobrovolskiy, et al. Commun

14

Phys 3, 64 (2020).

FJPPN in the global SRF collaboration

- We are *financially* linking laboratories for the SRF studies (TTC is only for technology and no funding...)
- FJPPN is the critical ingredient that closes the missing link

FJPPN in the global SRF collaboration

- We are *financially* linking laboratories for the SRF studies (TTC is only for technology and no funding...)
- FJPPN is the critical ingredient that closes the missing link

- Participation in SRF2025 conference [FR \rightarrow JP]
 - Akira Miyazaki is a convener of Hot Topic session "development toward extremely high performance superconducting cavities "
 - Extend the stay at KEK before/after SRF2025 [FR \rightarrow JP]
 - Heat treatment of the cavity at KEK
 - Revisit KEK in November 2025

September 21-26, 2025

SRF2025 - 22nd International Conference on RF Superconductivity

- Cavity preparation (IJCLab clean room technician) works with KEK people inside clean room
- Cavity testing (Akira Miyazaki)
- Hayato Ito / Kensei Umemori visit IJCLab (time slot to be discussed...LCWS2026?) [JP→FR]
 - Participation in heat treatment with IJCLab vacuum furnace
 - Seminar on heat treatments at KEK
- Theoretical collaboration
 - Takayuki Kubo helps Akira Miyazaki to implement numerical codes
- Matching fund EAJADE will co-finance the travel with FJPPN
- Starting point for larger grant application (?)

- SRF cavities are the core of next particle accelerators
- We are more or less sure of how to make good cavities but we do not know how they work scientifically and systematically
 - Nonequilibrium nonlinear phenomena!
 - Challenge in comparing parameters of different laboratories
- Exchange cavities / furnace heat treatment / cavity testing in different laboratories
 - A successful example is IJCLab-CEA-KEK collaboration 2024
 - The key was bilateral financial scheme: European funding + FJPPN (ERL)
- Based on the success in 2024, we propose to decoupled SRF cavities from ERL
 - SRF collaboration will focus on more general scientific aspects of superconducting physics
 - ERL collaboration will focus on beam dynamics, photocathode, more specific and practical aspects
- FJPPN is the last piece of puzzle that fills the missing link in the global collaboration among US, EU, and JP

PhD job opening for high-Q cavity study

- Systematic data analysis of SRF cavity data over the world
- Comparison to nonequilibrium superconductivity theories
- Contact: Akira.Miyazaki@ijcalb.in2p3.fr

