D_RD_27: Machine Learning inference and computation acceleration engines of FPGA

Yun-Tsung Lai

on behalf of the D_RD_27 group

KEK IPNS

ytlai@post.kek.jp

2025 Joint Workshop of FKPPN and TYL/FJPPN

@ L2SN

14th May, 2025

2025/05/14

Belle II

Yun-Tsung Lai (KEK IPNS) @ 2025 Workshop of FKPPN and TYL/FJPPN

Application of FPGA in HEP experiments

Data Link

Data Link

• **Our target:** Study the latest COTS FPGA devices and their associated new technologies for possible application and upgrade in different aspects of HEP experiments.

FPGA

(FEE)

• Hardware acceleration:

High-level

- Not only CPU, but also GPU and FPGA.
- Acceleration on softwarebased calculation.

- FPGA FPGA transmission:
 - Optical link with FPGA MGT and optical modules.
 - Non-Return-to-Zero (NRZ).
 - Different encoding based on protocol design purposes.
 e.g. 8B/10B and 64B/66B.
 - <10 Gbps for DAQ.
 - <25 Gbps for TRG.

- Strong FPGA devices with:
 - Larger number of cells.
 - Larger data bandwidth.

are critical for the usage in:

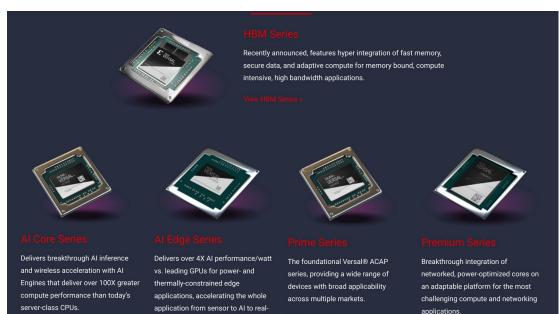
- **TRG**: complicated algorithm implementation.
- **DAQ**: collect and process large data.

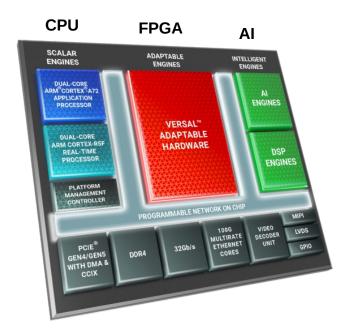
FPGA

(Trigger)

FPGA

(Readout)


- **FPGA server transmission:**
 - Data transmission and system slow control.
 - GbE, PCI-express, VME, etc.
 - PCI-Express is the most popular one nowadays: PCIe40 in ALICE, LHCb, and Belle II.

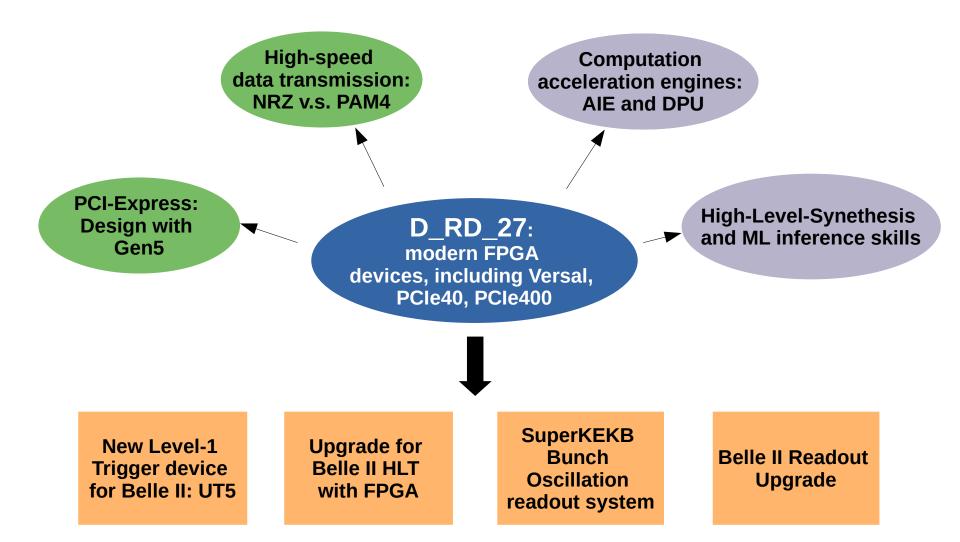

D_RD_27: Modern FPGA devices for HEP

- D_RD_27: Study on modern FPGA devices for application in HEP.
 - Mainly based on the Xilinx Versal series of ACAP.
- KEK together with Japanese HEP community purchased a few evaluation kits.
 - Plan: Common and general studies on the new technologies for future electronics device's R&D. Now we plan to use Versal for L1 TRG, DAQ or HLT purpose.
- The features of different Versal series ACAP:
 - Al engine: convenient interface to implement ML core into firmware.
 - High Bandwidth Memory (HBM).

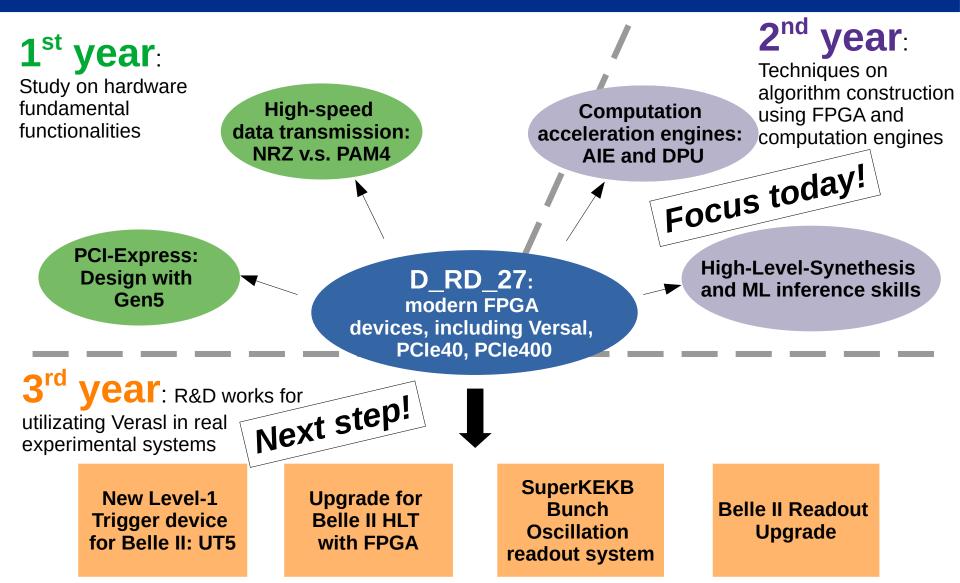
time control

• Larger number of cells + High transmission bandwidth.

source: Xilinx website


2025/05/14

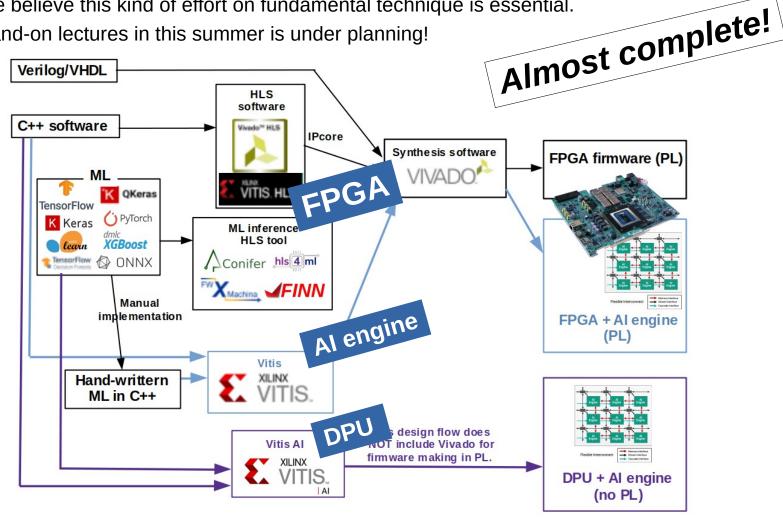
Yun-Tsung Lai (KEK IPNS) @ 2025 Workshop of FKPPN and TYL/FJPPN


- Activities in 2025:
 - Japan → France: Visited CPPM Marseille for the progress on PCIe400 development and discussion on potential upgrade in Belle II.
 - France \rightarrow Japan: Viisited KEK for the deployment of IDROGEN/WhiteRabbit in SuperKEKB system.

France			Japan		
Name	Institute		Name	Institute	
Daniel Charlet	IJCLab Orsay	PCIe readout device for Belle II / LHCb	<u>Yun-Tsung Lai</u>	KEK IPNS	E-sys, Belle II
Patrick Robbe			Manobu Tanaka		E-sys
Tak-Shun Lau			Makoto Tomoto		ATLAS
Emi Kou			Satoru Yamada		Belle II
			Yutaka Ushiroda		Belle II
			Kunihiro Nagano		ATLAS
			Taichiro Koga		Belle II
			Yu Nakazawa		Belle II
Julien Langouet	CPPM Marseille	PCIe400 readout upgrade	Hiroshi Kaji	KEK ACCL	SuperKEKB
Paul Bibron					
Renaud Le Gac					

Project overview

Project overview and working plan


2nd year for D_RD_27: How to make algorithm in FPGA

- With consideration on the longer-term plan for application of such advanced FPGA devices:
 - DAQ readout/collection
 - Hardware (Level-1) Trigger
 - High-Level Trigger (HLT)
- Trigger: real-time data procession with algorithm in FPGA
 - For the **two types of trigger system (L1 and HLT)**, what is the major technical difference in terms of algorithm constrction and deploymeny?
 - Any benefit of utilizing new FPGA devices?
 - We have many kinds of logics to be tested with Versal. But "not only what kind of logic to make, but also how to make it".
 - HDL/RTL
 - High-Level-Synthesis (HLS)
 - ML inference with HLS
 - Computation engines: AI engine and DPU

These are our major focus in the 2nd year and will be reported today.

HLS, ML, AI engine: roadmap of FPGA methodology

- Not only "what kind of logic to make", but also "how to make it". •
- We hope to perform basic study on each of the items, collect experience, build a database of • techinical knowledge, and prepare material to support our experimental colleagues.
 - We believe this kind of effort on fundamental technique is essential.
 - Hand-on lectures in this summer is under planning! ٠

hls4ml

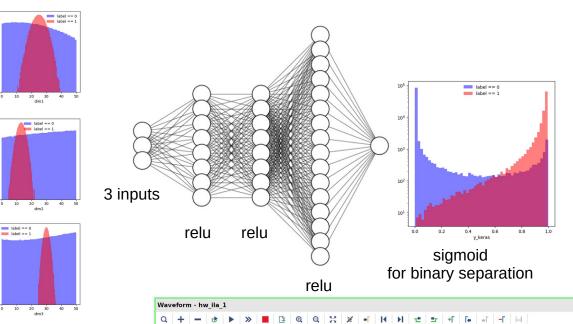
- hls4ml has been widly utilized in our field already.
 - For TensorFlow and Pytorch

ILA Status: Idle

lap rst

[™]ap_start ₩bram addr[<u>9:0</u>]

¹å bram_rd ₩inputdata0[15:0]


inputdata1[15:0]

inputdata2[15:0]

layer13_out_0_V[15:0]

layer13_out_0_V_ap_vld

 Just a smple demonstration using Nexys Video card and a bipolar separation NN model:

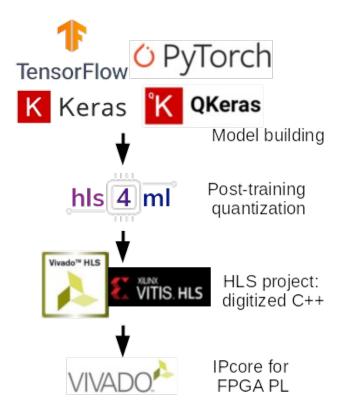
Value

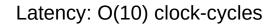
000 (.(.).).

6080

3ad5

74e6

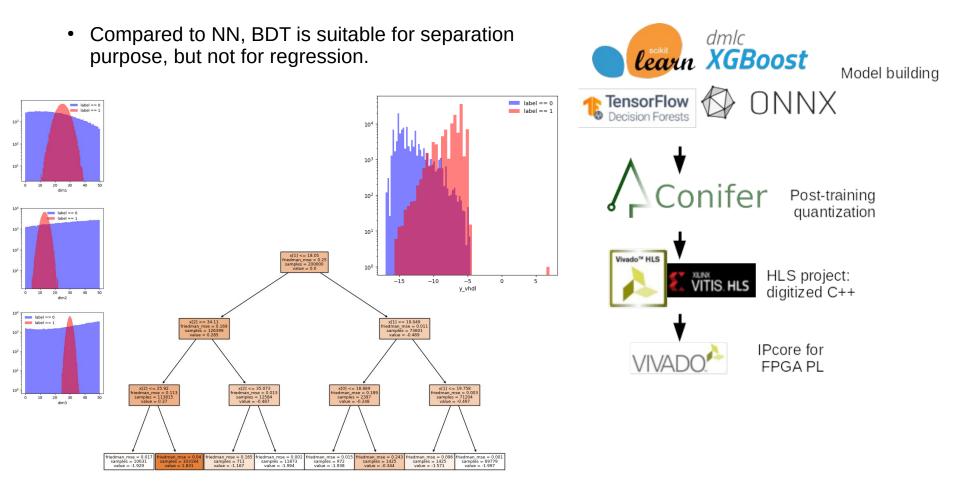

005


6a7d

3419

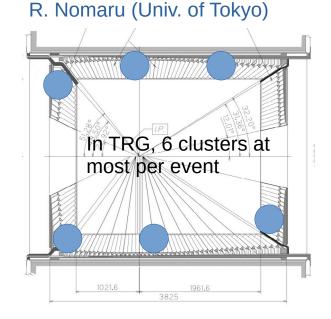
7357

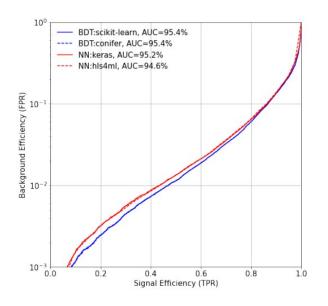
03d8



Yun-Tsung Lai (KEK IPNS) @ 2025 Workshop of FKPPN and TYL/FJPPN

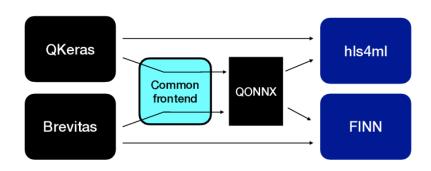
03e6


New study: Conifer

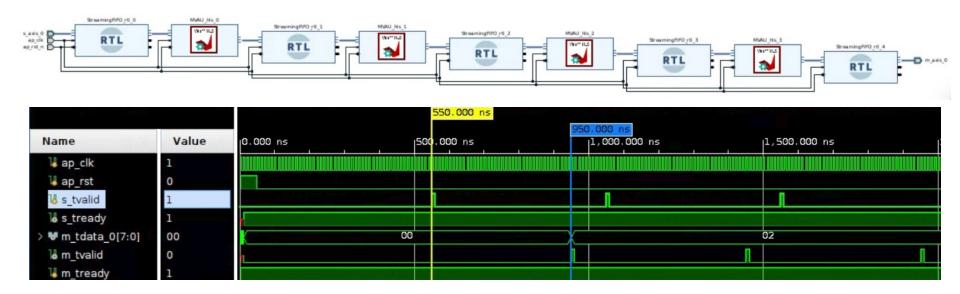

- Conifer: a package for BDT inference in FPGA
 - The same developer group as the one for hls4ml.

Belle II τ trigger: NN v.s. BDT

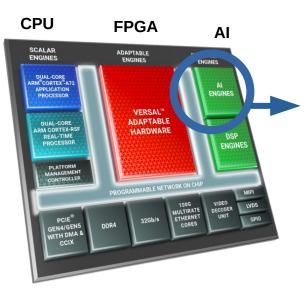
- Example: Belle II τ event trigger with calorimeter cluster
 - Input: clusters' position and energy
 - Output: Y/N for a $e^+e^- \to \tau^+\tau^-$ event
 - Original design is based on NN+hls4ml.
- For an alternative way using BDT+Conifer:
 - BDT can achieve the almost same performance.
 - Smaller LUT usage, and 0 DSP usage.


YongHeon Ahn (Korea Univ.)

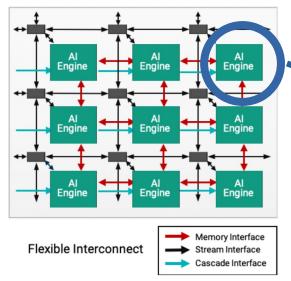
Resources	BDT with Conifer	NN with Keras	
Latency	12 cycles	14 cycles	
Initiation Interval	1 cycle	1 cycle	
LUT	22,504	28,480	
Flip-Flop	11,629	10,632	
DSP	0	228	


New study: FINN

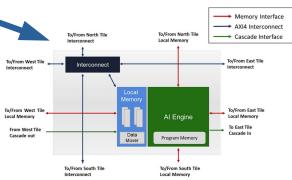
- Under development by AMD Xilinx.
- The core concept is matrix multiplication.
- Quantization based on Pytorch + Brevitas.
- Model representation by ONNX/QONNX.
- Material is ready.
- Will also use it for our ongoing developments.



source: 10.48550/arXiv.2206.11791



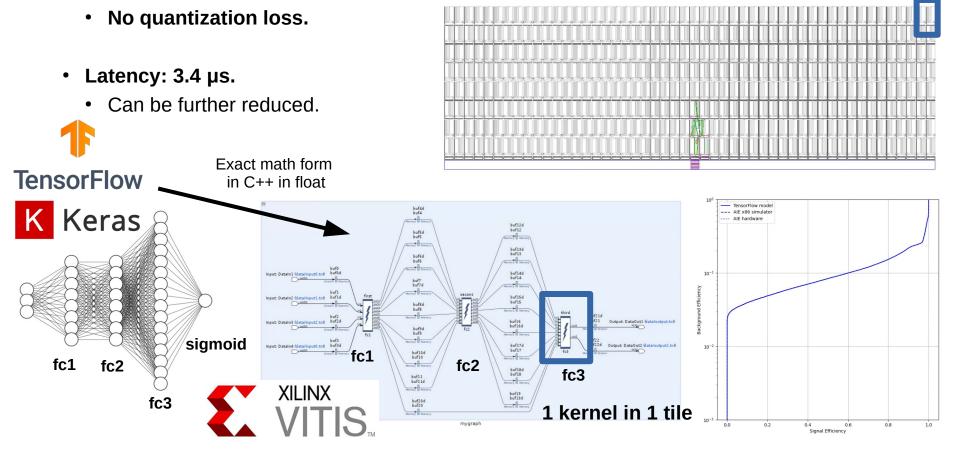
Versal AI engine


Versal ACAP

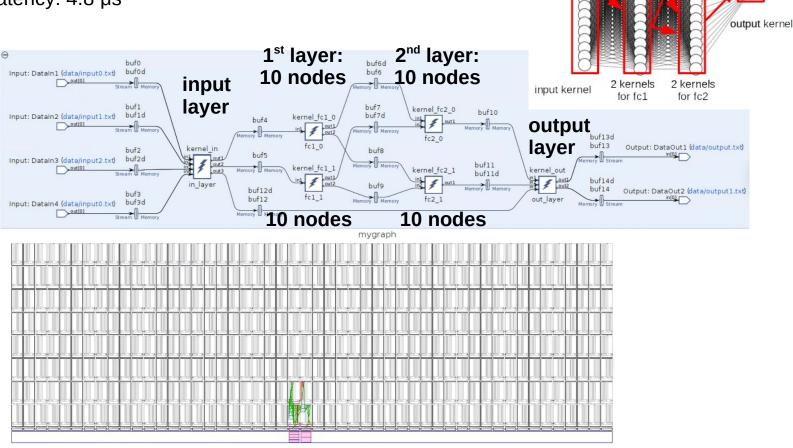
Versal AI engine

Al engine "tile"

- Computation acceleration engine of Versal ACAP.
- Embedded processor of FPGA.
 - High bandwith between FPGA and AI engine.
- C programmable.
 - High precision.
 - No quantization loss on ML.
- Low latency.


You can refer to our mini-WS for many study results: https://kds.kek.jp/event/53369/

Know-how of ML in AIE

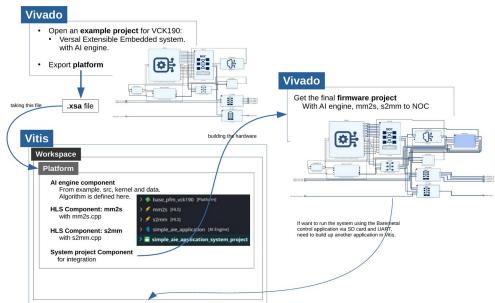

- Here I use this self-defined Keras NN model for demonstration.
- After the model is built, I just obtained the math formula of the model, and write the codes for AI engine in Vitis.
 - Everything for AI engine is in C++ and single-precision floating point.

1 block = 1 AI engine "tile" A unit with 32 kB memory.

ML in AIE: Belle II τ NN trigger

- Use the same NN model design mentioned in previous pages
- Implement the mathmatic formula of the Keras model in AIE.
 - No quantization
- 19,20,20,1
- Latency: 4.8 µs

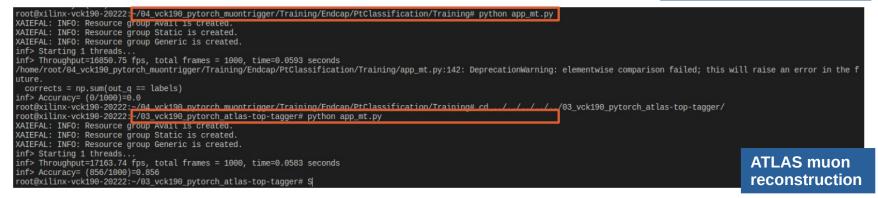
2025/05/14

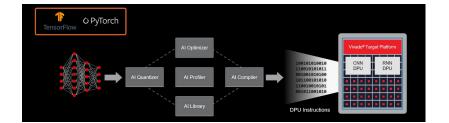

10 data

19 data

Al engine course @ KEK E-sys, in Aug. 2024

- We tried to hold a course about utilization the AI engine in this Aug. at KEK.
 - Attenders in Japan and other countries remotely.
 - All operations were done using local servers in our laboratory.
 - Almost everything is covered: environment setup, Vivado design flow, Vitis design flow, kernel making, Vitis simulation, hardware test.
- This is our first step. Other courses in summer are under planning.

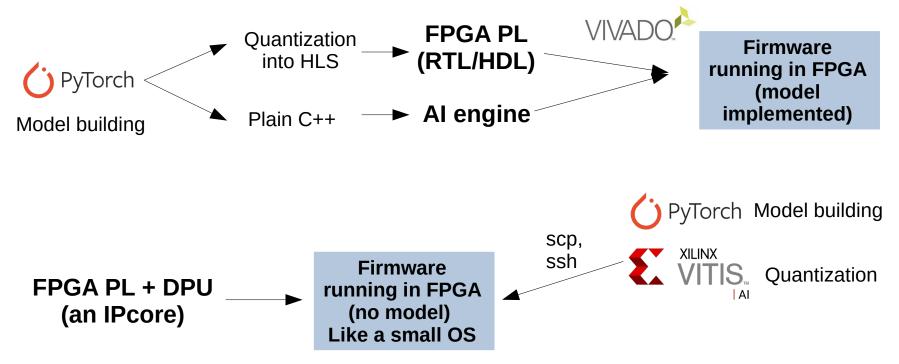



Versal DPU

- **DPU**: Deep Learning Processing Unit
 - Configurable computation engine dedicated to CNN
- DPU takes leverage of the FPGA resource, while the artificial networks inference does not require touching FPGA PL.
 - Network model building by Pytorch, and quantization by Vitis-AI software. Independent of FPGA.
 - FPGA is served like a server. Operate everything with CUI.
 - Hardware acceleration for high-level application.

root@xilinx-vck190-20222:~/03_vck190_pytorch_atlas-top-tagger# python3 app_mt.py XAIEFAL: INFO: Resource group Avail is created. XAIEFAL: INFO: Resource group Static is created. XAIEFAL: INFO: Resource group Generic is created. inf> Starting 1 threads... inf> Throughput=17749.99 fps, total frames = 1000, time=0.0563 seconds inf> Accuracy= (856/1000)=0.856 root@xilinx-vck190-20222:~/03_vck190_pytorch_atlas-top-tagger# |

ATLAS top tagging open data inside Versal DPU



Yun-Tsung Lai (KEK IPNS) @ 2025 Workshop of FKPPN and TYL/FJPPN

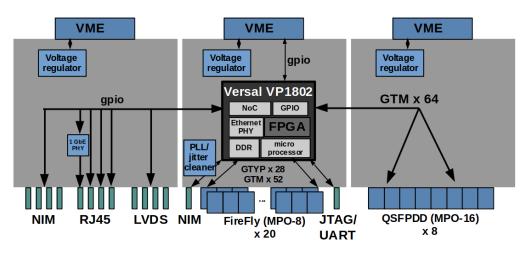
DPU v.s. Al engine v.s. FPGA

- Inference in FPGA PL or AI engine:
 - A fixed network has been implemented inside firmware.

- Inference in **DPU**:
 - Firmware has no model implemented.
 - Model buliding and quantization are done independently.
 - FPGA can be accessed like a server with ssh and scp.
 - Model can be replaced in real-time without touching FPGA firmware.

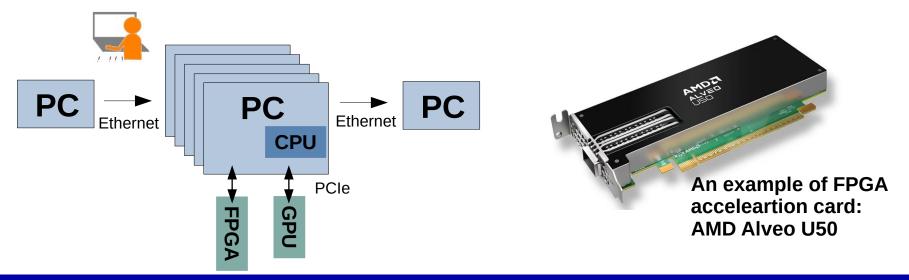
Belle II Level-1 Trigger board upgrade: UT5

Belle II UT3

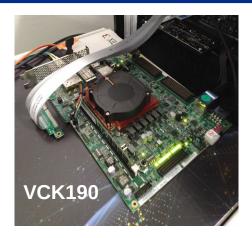

Belle II UT4

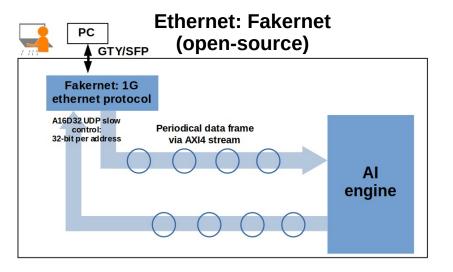
Xilinx Virtex-6 xc6vhx380t, xc6vhx565t 11.2 Gbps with 64B/66B XCVU080, XCVU160 25 Gbps with 64B/66B

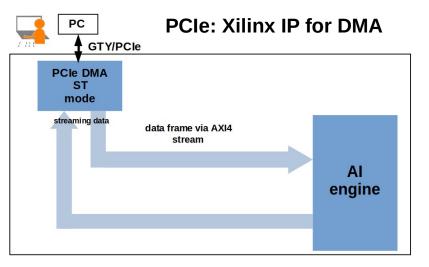
- Optical link: mainly QSFP28
- No Processing System (PS)
- VME for SLC
- All logics design based on PL


New design: UT5 Preliminary block diagram

- Trying to use other than QSFP28 (FireFly, etc) with smaller form factor.
- QSFP-DD for PAM4 in daughter board.
- Versal has Processing System (PS)
- Still VME for SLC
- Prabably no AI engine in UT5
 - But we are still open for the potential for UT6
- Aiming for prototyping in 2026

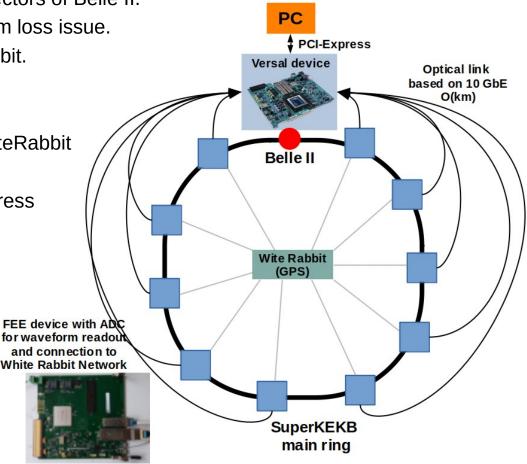

Other than CPU for HLT?


- People have been talking about something other than CPU for HLT: GPU or FPGA.
 - In such case, PC is the host.
 - PC transfers the data to external devices, then get the processed output back to PC.
- The design flow for FPGA logic and integration:
 - Developers make design using C++, python, ML, or HLS tools.
 - Together with the libraries from vendor (Xilinx), integrate everything into application.
 - DDR memory, data link, Ethernet, PCIe, etc.
 - User can execute the application in the host PC command line.
- The design flow mostly does not require touching FPGA PL, RTL/HDL and Vivado.
 - "Hardware acceleration with FPGA"


Communication with PC: PCIe or Ethernet

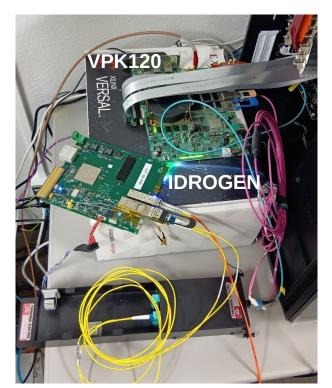
- How about Versal AI engine for HLT?
 - We need PC-FPGA communication, and expertee of integraton in FPGA PL.
- We tested the designs with Ethernet data link and PCIe of VCK190 for demonbstration.
 - Complicated design. Require expertee in FPGA PL design.

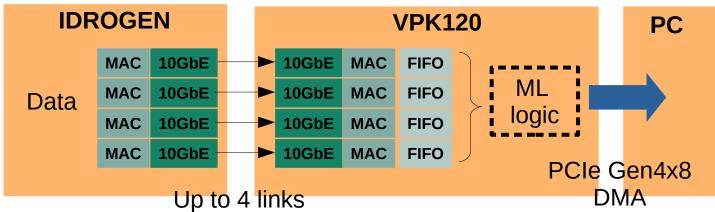
- Support 1G and 2.5G
- GTY transceiver with optical SPF at FPGA, NIC at PC
- 1.5 hrs for 200,000 events



- Self-defined protocol for data exchange.
- 50 min for 200,000 events.

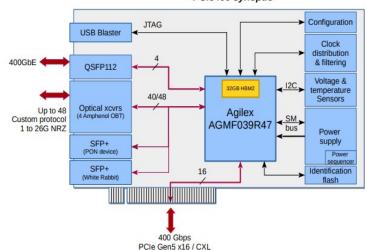
→ Potential for HLT application.


SuperKEKB Bunch Oscialltion Readout system


- Motivation: To handle the sudden beam loss problem in SuperKEKB, we plan to prepare a system to readout the bunch waveform of oscillation
 - Final target: real-time prediction on the sudden beam loss using FPGA readout system.
 - Protection on the inner detectors of Belle II.
 - Feature study for sudden beam loss issue.
 - IDROGEN + ADC + WhiteRabbit.
- System:
 - FEE: IDROGEN + ADC + WhiteRabbit
 - Long-distance optical link
 - Readout: Versal with PCI-Express
 - ML-based logic in Versal
- Collaborators:
 - Univ. of Hawaii, KEK ACCL, KEK E-sys, and IJCLab.

SuperKEKB Bunch Oscialltion Readout System: Progress

- The entire data readout chain has been established:
 - IDROGEN \rightarrow Optical link \rightarrow Versal (VPK120) \rightarrow PCI-Express \rightarrow PC.
- Data link is based on 10 GbE and MAC.
 - Simplicity for framing transmission and prorocol design.
- PCI-Express: Based on DMA. Tested with Gen4 x 8.
 - VPK120 is up to Gen5.
- ML logic: To be developped.

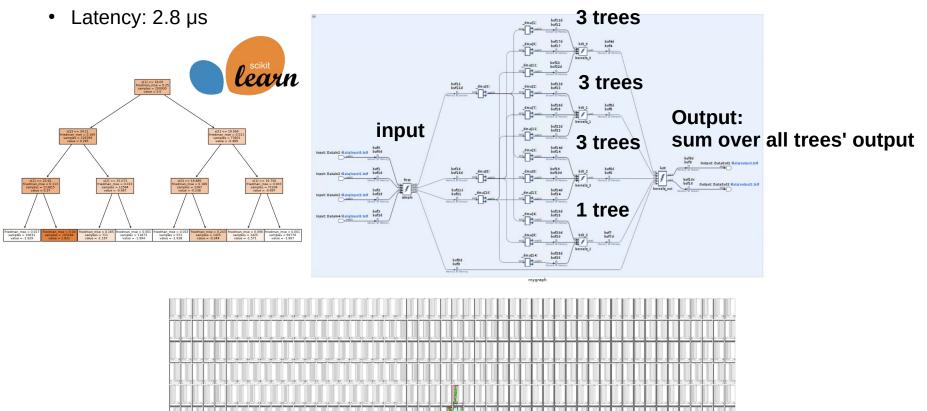

New PCIe device for readout upgrade

- CPPM Marseille group has received the first prototype of PCIe400 in Jan. 2025.
 - 2 boards + 1 partially equiped with power supply
 - Validation and debugging are ongoing
 - Agilex FPGA can be booted correctly:
 - Aiming for next prototype next year
 - Planning for LHCb upgrade

marupgrade1	l3:~ langouet \$jtagconfig
2) PCIe400	[1-9]
031830DD	10M16S(A C L)
034CC0DD	AGM(E039R47AR0 F039R47AR0)

- During our visit at CPPM Marseille, we discussed the possibility of Belle II future upgrade.
 - Belle II has just finished the upgrade and commisionning with PCIe40 in 2024.
 - Versal board has similar spec (Gen5 x 16). We are also working on the continuous readout design and throughput test for Versal.

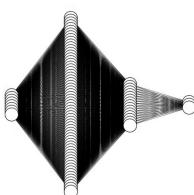
- In our project of D_RD_27, we study the modern FPGA devices for their potential application in experimental HEP for future upgrade.
 - Mainly based on Versal, and also other new PCIe devices.
- In the second year, we focused on the techniques of FPGA algorithm construction for trigger purpose.
 - Not only "what kind of logic to make", but also "how to make it".
 - HLS
 - ML inference
 - Computation engines
 - We built up a database of technical knowledge, implemented with exsiting logics in Belle II, and also provided education.
- Verilog/VHDL HLS software C++ software Synthesis software FPGA firmware (PL) VIVADO ML 1 VITIS. HLS K QKera: ensorFlow K Keras O PyTorch ML inference XGBoost - learn HIS too CONNX Conifer hls 4 ml Manual imple mentatio FPGA + Al engine XILINX Hand-writtern VITIS. ML in C++ This design flow does Vitis AI NOT include Vivado for firmware making in PL XII INX VITIS. DPU + Al engine (no PL)
- For our next step, we plan to consider the potential utilization of the devices in our experimental systems in different aspects:
 - L1 trigger: Belle II UT5 upgrade
 - HLT: adoption of FPGA in HLT
 - Readout: SuperKEKB Bunch Oscillation Readout and Belle II readout. Together with PCIe400.

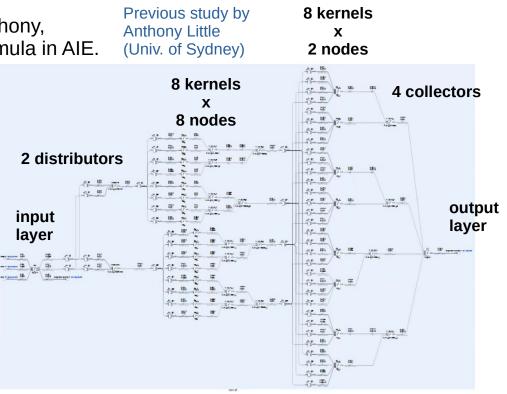

Backup

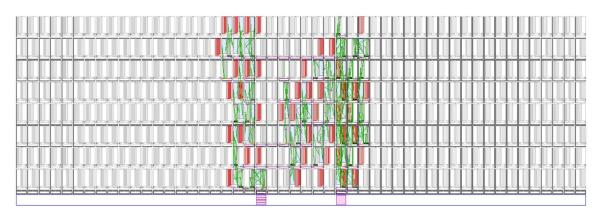
2025/05/14

Yun-Tsung Lai (KEK IPNS) @ 2025 Workshop of FKPPN and TYL/FJPPN

ML in AIE: BDT


- BDT: Basically a large nested structure of if-else
- Using scikit-learn for model building.
 - Input = 3, N_estimator = 10, depth = 3.
- Parallel kernels for separated estimators, then sum over all the outputs.




Yun-Tsung Lai (KEK IPNS) @ 2025 Workshop of FKPPN and TYL/FJPPN

ML in AIE: KLMTRG NN

- Use the pre-tained network by Anthony, then implement the mathmatic formula in AIE.
- 8,64,16,3
 - Hidden layers use tanh. Output layer uses softmax.
- Complicated design!
- Latency: 10 µs

