Linear Collider Facility 2-fermion processes

Roman Pöschl

TYL-FJPPN/FKPPN Meeting May 2025 Nantes

Physics program at future electron-positron colliders

All Standard Model particles within reach of planned e+e- colliders

High precision tests of Standard Model over wide range to detect onset of New Physics

Machine settings can be "tailored" for specific processes

Centre-of-Mass energy

des 2 Infini

•Beam polarisation (straightforward at linear colliders)

$$\sigma_{P,P'} = \frac{1}{4} \left[(1 - PP')(\sigma_{LR} + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR}) \right]$$

Background free searches for BSM through beam polarisation

Energy reach of LC

Two fermion processes

 Σ_{IJ} are helicity amplitudes that contain couplings g_L , g_R (or F_V , F_A) $\Sigma_{IJ} \neq \Sigma_{I'J}' =>$ (characteristic) asymmetries for each fermion Forward-backward in angle, general left-right in cross section All four helicity amplitudes for all fermions only available with polarised beams LC would be four colliders in one!

ee→bb at 250 GeV

- Study was carried out in earlier TYL/FJPPN project
- Powerful tool to study onset and amplification of new physics effects
- Full simulation study at 250 GeV is solid basis for estimations on Z pole (A_b, R_b)
- Interpretation in terms of new physics (Z' up to 19 TeV in case of GHU) require precise input from Z pole
- Study has been extended to 500 GeV, 1 TeV
- Full simulation study at 250 GeV is solid basis for estimations on Z pole (A_b, R_b)

TYL-FJPPN/FKPPN May 25

A. Irles et al. https://arxiv.org/pdf/2306.11413

ot

couplings

4*l*

Separation power in GHU Models J. P. Marquez et al. (ILD Meeting 17/01/24)

m _{z1} [TeV]		Gŀ	۱U۱	/s S	Mc	liscr	rimir	natio	on p	owe	er (o	5-lev	vel)	IL	.[
19.6	B_3^+	0.1	0.5	0.5	0.1	0.7	0.8	0.5	1.3	1.3	1.6	2.5	2.5	Z-ferr	ņior	n
19.6	B_3	0.1	0.5	0.5	0.3	0.9	0.9	0.9	2.7	2.7	3.3	6.7	6.8	• C: (ning Cụrị	s rent
14.9	B_2^+	0.2	0.8	0.8	0.3	1.5	1.6	0.9	2.2	2.3	3.0	4.4	4.5	pre • R: I	ILC2	on 250
14.9	B_2^-	0.2	0.7	0.7	0.5	1.4	1.5	1.7	4.6	4.8	6.3	>10	>10	(Ra • Z: (а. н Giga	iet.) 1-Z
10.2	B_1^+	0.3	1.7	1.7	0.7	3.2	3.5	1.5	4.4	4.7	4.3	6.8	7.0	<	3	σ
10.2	B_1^{-}	0.5	1.4	1.4	0.9	2.7	2.8	3.3	9.6	9.9	>10	>10	>10	3	-4	σ
8.5	A ₂	0.6	3.5	3.6	0.9	4.8	5.3	4.3	>10	>10	>10	>10	>10	4	-5 -	σ
7.2	A ₁	0.8	4.1	4.3	1.0	5.0	5.5	5.3	>10	>10	>10	>10	>10	>	5	σ
		C	R	Z	C	R	Z	С	R	Z	С	R	Z			
			<u></u>	50		~ 2	50		$\sim \sim$	50		$\sim \sim$				
		ILC250 ILC				UZ	250 ILC250 ILC250									
	(no pol.))		+500 +500)				
		-	-	-							+	100	0*			

Probed mass scale: 9-25 TeV

4-fermion operators in EFT (arxiv:2209.08078)

- Interpretation of 2f results bears discovery potential
 - Will benefit from polarisation <u>and</u> higher energies
- Has to be vetted regularly against (HL-)LHC results

- PhD thesis of Yuichi Okugawa (IJCLab/Tohoku U, 2021-2024)
 - Polarisation (-80,+30): $\Delta R_s = 0.9\%$, $\Delta A_{fb,s} = 0.9\%$
 - Polarisation (+80,-30): $\Delta Rs = 1.6\%$, $\Delta A_{fb,s} = 5.9\%$
 - Statistical error only
 - Systematic error sensitive to knowledge of background
- Analysis based on leading particle
 - "hand made cuts" to understand effect of potential selection criteria
 - Some cuts are very harsh
 - Therefore selection effiency is low (0.6%) and S/B \sim 1
 - u,d final states with Kaons cannot be well suppressed
- Analysis needs revision

s-tagging with Modern Flavor Tagging

TYL-FJPPN/FKPPN May 25

matrix

- Considerable progress in flavor tagging in recent years ...
- Mouthwatering opportunities for light quarks
- e.g. Background down to 10⁻² at 10% efficiency
- For this working point statistical error would go down to
 - Polarisation (-80,+30): $\Delta R_s = 0.22\%$, $\Delta A_{fb,s} = 0.22\%$
 - Polarisation (+80,-30): ΔRs = 0.4%, ΔA_{fb,s} = 1.5%
- Systematics due to background could be ~statistical error
- Remains to be shown, other systematics may set in -> TYL/FJPPN project!

stag ilc nngg strange cpidfullprob

T. Suehara

Reconstruction and use of t spin polarisation

- The T-pair final state provides unique possibilities for testing the Standard Model and discovering the effects of new physics
 - access to the spin orientation of the final state fermions by consideration of the distribution of the T decay products
 - Probing of longitudinal polarisation (positive and negative helicity τ)
 - transverse spin components
- Spin correlations between the two final state taus

т spin polarisation – Analysis at 500 GeV

- Interface MadGraph TauDecay
- Sensitivity of EFT operators to ttW/B operators and 4-fermion vertices

- At 500 GeV T production "plagued" by ISR
 - ... and ISR photon often unmeasurable
- Successful helicity analysis requires kinematic constraint
- Iterative procedure to determine τ helicity

D. Jeans, ECFA Report

WW production at 250 GeV (and above)

Analysis of fully hadronic final state (first steps)

 W^+ and QGC)

Observables depend strongly on beam polarisation

- => Enrich different helicity modes of W
- => Disentangling of couplings to Z and γ W => in situ measurement of beam polarisation (and luminosity)

W charges (true jets and measured)

Sensitivity to triple and quartic gauge Boson couplings (TGC

X. Xia, PhD Student¹⁰

LCWS 2024

LCWS2024 International Workshop on Future Linear Colliders ∽~---

- July 7th July 11th 2024 at University of Tokyo
- Organised (among others) by Daniel and Taikan
- 341 participants
- TYL/FJPPL enabled participation of R.P.

LCWS2024: Linear Colliders teaming up in view of the upcoming EPSSU

• all linear colliders share the same scientific goals:

- formulate a coherent physics program
- define energy stages etc science-driven

beyond an individual technology:

- design a linear collider *facility*
- infrastructure compatible with various technologies
- plus beam-dump / fixed-target exp's / R&D facilities

• study the Higgs now - but maintain flexibility for the future:

- start now with an *affordable* project
 - maintain scientific diversity
 - strengthen accelerator R&D towards 10 TeV pCoM collider
- decide on upgrades / new projects based on future developments or even break-throughs:
 - scientifically: HL-LHC could still discover new particles
 - technologically: higher gradients / muon cooling / high-field magnets

Title: 2 fermion production at future Higgs factories									
Frenc	h Group		Japane	se Group					
name (Family name, First name)	title	lab. ²	name (Family name, First name)	title					
Pöschl, Roman e-mail: roman.poeschl@ijclab.in 2p3.fr	Dr	ILCLab	Jeans, Daniel e-mail: daniel.jeans@kek.jp	Dr					
Roman Pöschl	Dr	ILCLab	Ishikawa, Akimasa	Dr					
François Richard	Dr	ILCLab	Suehara, Taikan	Dr					
Xin Xia	PhD	IJCLab	Tian, Junping	Dr					
Jesus Hernandez	Postdo c	IJCLab	Sanuki, Tomoyuki	Dr					
	Title: 2 fermion product Frence name name (Family name, First name) Pöschl, Roman e-mail: roman.poeschl@ijclab.in 2p3.fr Roman Pöschl François Richard Xin Xia Jesus Hernandez	Title: 2 fermion production at futureFrench Groupnametitle(Family name, First name)DrPöschl, RomanDre-mail: roman.poeschl@ijclab.in 2p3.frDrRoman PöschlDrFrançois RichardDrXin XiaPhDJesus HernandezPostdo c	Title: 2 fermion production at future Higgs factoFrench Groupnametitlelab.²(Family name, First name)DrILCLabPöschl, RomanDrILCLabe-mail: roman.poeschl@ijclab.in 2p3.frDrILCLabRoman PöschlDrILCLabFrançois RichardDrILCLabXin XiaPhDIJCLabJesus HernandezPostdoIJCLabccC	Title: 2 fermion production at future Higgs factories Japane French Group Japane name (Family name, First name) title lab. ² name (Family name, First name) Pöschl, Roman Dr ILCLab Jeans, Daniel e-mail: roman.poeschl@ijclab.in 2p3.fr Jeans, Daniel e-mail: daniel.jeans@kek.jp Roman Pöschl Dr ILCLab Ishikawa, Akimasa François Richard Dr ILCLab Suehara, Taikan Xin Xia PhD IJCLab Tian, Junping Jesus Hernandez Postdo c IJCLab Sanuki, Tomoyuki	Title: 2 fermion production at future Higgs factoriesFrench Groupname (Family name, First name)titlelab.2name (Family name, First name)titlePöschl, Roman e-mail: roman.poeschl@ijclab.in 2p3.frDrILCLabJeans, Daniel e-mail: daniel.jeans@kek.jpDrRoman PöschlDrILCLabIshikawa, AkimasaDrFrançois RichardDrILCLabSuehara, TaikanDrXin XiaPhDIJCLabTian, JunpingDrJesus HernandezPostdo cIJCLabSanuki, TomoyukiDr				

- Progress on 2-fermion studies in past fiscal year
- (Major) contributions to community documents in preparation of ESPPU 2026
 - ECFA Higgs/electroweak/top
 - LCVision documents, see https://agenda.linearcollider.org/event/10624/program
- Next fiscal year
 - Revision of ee->ss study based on modern flavor tagging
 - Continuation of ee->TT
 - Phenomenology, e.g. global fits with 2-fermion quantities

J. List

Higgs Quantum Numbers – CP via ttH

Determination of CP nature of scalar boson in an unambiguous way

Top Yukawa Coupling

Similar prospects exist for

1000
8
1.0

Upshot: New particles are maybe not many TeV away but in LC reach

J. Braathen ECFA Workshop 2024

Top pair production at threshold

Small size of ttbar "bound state" at threshold ideal premise for precision physics

Cross section around threshold is affected by several properties of the top quark and by QCD

- Top mass, width Yukawa coupling
- Strong coupling constant •

- Effects of some parameters are correlated:
- Dependence on Yukawa coupling rather weak,
- Precise external α_s helps

Top threshold scans at different e+e- colliders

- Results based on toy measurements of the total cross section
- Assessment with full simulation studies needed

27 MeV (15 MeV stat)

error source	Δm_t^{PS} [MeV
stat. error (200 fb^{-1})	13
theory (NNNLO scale variations, PS scheme)	40
parametric (α_s , current WA)	35
non-resonant contributions (such as single top)	< 40
residual background / selection efficiency	10 - 20
luminosity spectrum uncertainty	< 10
beam energy uncertainty	< 17
combined theory & parametric	30-50
combined experimental & backgrounds	25 - 50
total (stat. $+$ syst.)	40 - 75

- Numbers for ILC/CLIC, some numbers get better for FCCee
 - e.g. Beam energy uncertainty < 3 [MeV]
- Uncertainty driver α_s (more on α_s in backup)
 - $\Delta m \sim 2.6 \text{ MeV per } 10^{-4} \text{ in } \alpha_s$ TYL-FJPPN/FKPPN May 25

umbers get better for FCCee v < 3 [MeV] α_s in backup)

High energies ~above tt-threshold Domain of linear colliders

Low energies e.g. Z-pole Domain of circular machines However, ...

Transition region, i.e. HZ threshold **Comparable Higgs Couplings uncertainties** for all proposals (see later)

Linear colliders are more versatile to test chiral theory due to polarised beams

$$\sigma_{P,P'} = \frac{1}{4} \left[(1 - PP') (\sigma_{LR}) \right]$$

Figure J. List

 $(P_R + \sigma_{RL}) + (P - P')(\sigma_{RL} - \sigma_{LR})$

Uncertainty driver α_s

- Talk by Francesco Giuli at LCF22
 - https://indico.ectstar.eu/event/149/contributions
- Best prospects from e+e- collisions

 - - Worth another look ?!

• /3058/attachments/1919/2513/FCC_LFC_FGiuli_2022.pdf

• $\Delta \alpha / \alpha \sim 0.1\%$ for FCCee hadronic Z-decays Comparable with QCD Lattice Results • Status for ILC $\Delta \alpha / \alpha \sim 0.6\%$ (arXiv:1512.05194)

Running top mass

ILC, $\sqrt{s} = 500 \text{GeV}$						
500 4000						
$350\mathrm{MeV} 110\mathrm{MeV}$						
$55\mathrm{MeV}$						
$20\mathrm{MeV}$						
$85\mathrm{MeV}$						
$360\mathrm{MeV}\ 150\mathrm{MeV}$						

Top mass summary

Snowmass report, arXiv:2209.11267

Marcel Vos@Top23

QCD uncertainties on ee->tt cross section

Linear Colliders

- Marching non-relativistic calculations in threshold region with tt-continuum is theoretical challenge
- QCD uncertainties shrink as energy increases
- Non resonant contributions are important (i.e. ee->tt --> ee->WbWb)

J. Reuter, FCCee-France Workshop, Annecy and arXiv: 1609.03390

High Order Electroweak Corrections

- Electroweak corrections manifest themselves differently for different beam polarisations

Beam polarisation important asset to disentangle SM and effects of new physics Configuration $e_R^- e_L^+$ seems to lead to "simpler" corrections

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Comparison with parton level results, different jet energy resolutions

- Multi-jet final state!
 - Seems that jet energy resolution on parton level cannot be propagated to detector
 - Re-assessment of reason needed
 - c and b quarks can decay semileptonically
- Higher energies may help

A.F. Zarnecki, N. v.d. Kolk

Slide from 2016!!!!

Lepton collider is both competitive and complementary

First top physics: $e+e- \rightarrow tj$ searches at 250 GeV

More full-simulation work needed!

H. Hesari et al., arXiv:1412.8572 G. Durieux et al., arXiv:1412.7166 Shi & Zhang, arXiv:1906.04573 ILC white paper, arXiv:2203.07622 *M. Arroyo et al.,arXiv:2202.04572*

TYL-FJPPN/FKPPN May 25

Marcel Vos@Top23

Two fermion production: Z-Pole and higher energies

Sensitivity to Z/Z' mixing Sensitivity to vector (and tensor) couplings of the Z

•the photon does not "disturb"

Sensitivity to interference effects of Z and photon!! Measured couplings of photon and Z can be influenced by new physics effects Interpretation of result is greatly supported by precise input from Z pole

Z-Pole input?

- precision compared with LEP/SLC
- Comparable precisions despite differences in luminosity
 - Systematics will play a major role

• No full simulation study exists on Z-Pole

- Most of the results (educated) guesses on experimental issues by extrapolations from higher energies
- Some examples in the following

Numbers FCCee: "Mixture" of FCC CDR and P. Janot at Precision Workshop/CERN https://indico.cern.ch/event/1140580/timetable/ Numbers ILC: arxiv: 2203.07622 (ILC Snowmsss report)

• All future colliders will improve significantly

T-lepton polarisation

 $e^+e^- \rightarrow \tau^+\tau^-$ Recent study at 500 GeV for ILD IDR fraction of decays × purity 8⁰⁸ 0.6 polarisation precision [%] ILD -IDR-L ---- IDR-S **IDR-L** 1.5 efficiency 0.4 ---- IDR-S 0.4 ILD 0.2 0.5 $e^+e^- \rightarrow \tau^+\tau^-$ √s = 500 GeV 0 0.2 2 6 0 a₁ π ρ # reconstructed photons EfficiencyxPurity drops Photon separation gets involved with increasing photon at high energies multiplicity Still often only one photon reconstructed

Close-by photons are challenge for highly granular calorimeters (in particular Ecal) at high-energies Ideal benchmark for detector optimisation Maybe still room for improvement, better algorithms?

Roman Pöschl

Precision of tau polarisation of order 0.3%-1%

Decomposing ee->bb – Differential cross section

Full simulation study within ILD Concept at \sqrt{s} =250 GeV allows for educated guess on uncertainties on Z-Pole

Arxiv:2306.11413

Excellent agreement between predicted and reconstructed distributions

Source	$e^-e^+ ightarrow car{c}$				$e^-e^+ o bar{b}$				
	$P_{e^-e^+}(-0.8,+0.3)$		$P_{e^-e^+}(+0.8,-0.3)$		$P_{e^-e^+}(-0.8,+0.3)$		$P_{e^{-}e^{+}}(+0.8,-0.3)$		
	R_c	$A_{FB}^{c\bar{c}}$	R_c	$A_{FB}^{c\bar{c}}$	R_b	$A_{FB}^{bar{b}}$	R_b	$A_{FB}^{bar{b}}$	
Statistics	0.18%	0.38%	0.27%	0.52%	0.12%	0.24%	0.23%	0.70%	
Preselection eff.	<0.01%	0.12%	0.02%	0.16%	<0.01%	0.08%	0.06%	0.12%	
Background	0.01%	0.01%	0.02%	0.02%	0.01%	0.01%	0.06%	<0.01%	
heavy quark mistag	0.11%	<0.01%	0.06%	<0.01%	0.12%	<0.01%	0.22%	<0.01%	
uds mistag	0.03%	<0.01%	0.02%	<0.01%	0.08%	<0.01%	0.14%	<0.01%	
Angular correlations	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	0.10%	
Beam Polarisation	<0.01%	<0.01%	0.02%	0.01%	<0.01%	0.01%	0.03%	0.15%	
Systematics	0.15%	0.16%	0.12%	0.19%	0.18%	0.13%	0.29%	0.22%	
Total	0.24%	0.41%	0.30%	0.55%	0.21%	0.27%	0.37%	0.73%	

Additional complication in continuum compared with Z-Pole: **Rejection of ISR events**

Light quarks at @ 250 GeV are in the making

 $e^+e^- \rightarrow s\bar{s}$ at 250 GeV

- The current analysis shows the potential to measure light quarks at e+e- colliders
- Even more than others light quarks rely on excellent particle ID
 - ... over full solid angle
- The hard cuts to get a clean sample in this analysis results in a small efficiency O(1%)
- Clear room for improvement beyond "collider flavors"

PhD thesis Y. Okugawa

Double tagging

Important systematic error is knowledge of tagging efficiency ε_q

Can be derived from data if tagging is independent in two hemispheres, i.e. if

$$C_q = \frac{\epsilon_{double}}{\epsilon_q^2} \approx 1$$

If $C_q \neq 1 =>$ Hemisphere correlations => systematic error

For example:

LEP (large beam spot): $C_q-1 \approx 3\% \Rightarrow \Delta R_b \approx 0.2\%$

SLC (smaller beam spot): $C_q - 1 < 1\% => \Delta R_b \approx 0.07\%$

Future (small/tiny beam spot): Expect $C_q - 1 = 0 \Rightarrow \Delta R_b \approx 0$ to be verified however

- Flavor tagging
 - Indispensable for analyses with final state quarks
- Quark charge measurement
 - Important for top quark studies,
 - indispensable for ee->bb, cc, ss, ...
- Control of migrations:

 - Correct measurement of vertex charge Kaon identification by dE/dx (and more)
- Future detectors can base the entire measurements on double Tagging and vertex charge LEP/SLC had to include single tags and
- Semi-leptonic events

An enigmatic couple

Elementary Scalar?

Composite object?

- Higgs and top quark are intimately coupled! Top Yukawa coupling O(1) ! => Top mass important SM Parameter
- New physics by compositeness? Higgs and top composite objects?
- e+e- collider perfectly suited to decipher both particles

Track momentum: $\sigma_{1/p} < 5 \times 10^{-5}/\text{GeV}$ (1/10 x LEP) (e.g. Measurement of Z boson mass in Higgs Recoil) Impact parameter: $\sigma_{d0} < [5 \oplus 10/(p[GeV]sin^{3/2}\theta)] \mu m (1/3 \times SLD)$ (Quark tagging c/b) Jet energy resolution : $dE/E = 0.3/(E(GeV))^{1/2}$ (1/2 x LEP) (W/Z masses with jets) Hermeticity : $\theta_{min} = 5 \text{ mrad}$ (for events with missing energy e.g. SUSY)

Final state will comprise events with a large number of charged tracks and jets(6+)

- High granularity
- Excellent momentum measurement
- High separation power for particles

Particle Flow Detectors Detector Concepts: ILD, SiD and CLICdp

