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The T2K experiment: Tokai to Kamioka

Long baseline neutrino 
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T2K near detector: ND280

ND280 measures beam spectrum and flavor 
composition before the oscillations 

 Detector installed inside the UA1/NOMAD magnet (0.2 T) 
 A detector optimized to measure π0 (P0D) 
 An electromagnetic calorimeter for μ/e separation 

and energy measurement of EM showers. 

 2 Fine Grained Detectors (target for ν interactions). 
  FGD1 is pure scintillator, 
  FGD2 has water layers interleaved with 

scintillators
  

 3 vertical Time Projection Chambers: reconstruct 
momentum and charge of particles, PID based on 
measurement of ionization 

A target-tracker system composed of: 

Limitations
 Low angular acceptance → mostly reconstruct 

forward going tracks entering the TPCs.

 Low efficiency to track low momentum protons 

→ Have to use lepton kinematics only for E
ν
 

reconstruction.

ECalECal

 ND280 (before upgrade) ND280 (before upgrade)

FGD

0.2T
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P0D replaced with a new scintillator target (Super-FGD), two High-Angle TPCs and six Time-of-Flight planes.

 Super-FGD allow to fully reconstruct tracks in 3D           lower 
threshold and excellent resolution to reconstruct protons at any 
angle.

 High-Angle TPCs (x 2) provide additional high angle coverage 
for particle reconstruction.

 ToF planes (x 6) allow to veto particles originating from outside 
the ND280 fiducial volume.

 Neutrons will also be reconstructed via proton recoil.

ND280 upgrade design

 Readout using resistive Micromegas.

Requirements:
 Momentum resolution <= 10%

 dE/dx resolution <= 10%
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High Angle TPC (HA-TPC)

HA-TPC instrumented with 16 ERAMs  New field cage design with thin 
walls to minimize dead material 
and maximize tracking volume. 
(Total width ≈ 4 cm / 2% X

0
)

 Readout using ERAM instead of standard 
bulk Micromegas.

 Two field cages joined at the central cathode plane.

 Each anode plane instrumented with 8 Encapsulated Resistive 
Anode Micromegas (ERAM). [32 ERAMs in total]

 Purpose- 3D track reconstruction, PID, tracking high angle and 
backward-going particles. 
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HA-TPC readout: Micromegas detector

Pad size: 11 * 10 mm2

Resistive MicroMegas detectors achieved thanks to the addition of a resistive layer (DLC)

 Charge sharing between pads             More precise position reconstruction

 Better resolution with reduced number of pads            Cost-effective and compact technology

 Reduced risk of sparks            No need for protection circuit on readout electronics

 Allows to put mesh at ground for better E-field uniformity.

 More flexible design            Increase charge spreading to improve spatial resolution.

R = Surface resistivity
C = Capacitance / unit area

Developed for ILC-TPC 
with pad size- 7 * 2 mm2

vertical-TPC readout HA-TPC readout

Pad size: 9.8 * 7 mm2

DLC foil

Glue thickness 
and permittivity
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X-ray test bench

X-ray hitmap

 Chamber with aluminized mylar on one side to allow X-rays to pass.

 3 cm drift distance.

 Robotic x-y-z arm system holding an 55Fe X-ray source capable of 
precise movement.

 Each ERAM pad is exposed by the X-ray source for a duration of    
3 minutes.

 Each event is a result of punctual charge deposit in leading pad. 

 Environmental conditions such as pressure, temperature, humidity 
and gas purity are closely monitored.
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X-ray test bench

X-ray hitmap

 Chamber with aluminized mylar on one side to allow X-rays to pass.

 3 cm drift distance.

 Robotic x-y-z arm system holding an 55Fe X-ray source capable of 
precise movement.

 Each ERAM pad is exposed by the X-ray source for a duration of    
3 minutes.

 Each event is a result of punctual charge deposit in leading pad. 

 Environmental conditions such as pressure, temperature, humidity 
and gas purity are closely monitored.
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X-ray test bench

X-ray hitmap

 Chamber with aluminized mylar on one side to allow X-rays to pass.

 3 cm drift distance.

 Robotic x-y-z arm system holding an 55Fe X-ray source capable of 
precise movement.

 Each ERAM pad is exposed by the X-ray source for a duration of    
3 minutes.

 Each event is a result of punctual charge deposit in leading pad. 

 Environmental conditions such as pressure, temperature and 
humidity are closely monitored.

P

To characterize the gain and charge 
spreading of all operational ERAMs.

Objective:

 Important ingredients for simulation and 
reconstruction algorithms.
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Gain calculation

 55Fe spectrum can be reconstructed using all events in one pad.

 Gain is obtained for a pad by fitting its 55Fe spectrum and obtaining the amplitude of K
α
-peak.

 Energy resolution of < 10% is obtained.

 Summing all waveforms in each event and taking amplitude of summed waveform.

Example of an 55Fe spectrum Gain map of ERAM-30
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μ
Energy resolution (%) =               *  100  
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Charge dispersion principle

 Charge dispersion on anode achieved with a resistive foil glued on PCB.

 Continuous RC network, defined by material properties and geometry, shares 
evenly the charge among several pads.

 Obeys Telegraph equation:

 The anode charge density is time dependent and sampled by readout pads.

References : M.S. Dixit et.al., NIM A518, 721 (2004) , M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

DLC resistivity: 400kΩ/□

Glue thickness: 150 μm
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Ingredients for charge spreading model (using test bench setup)

 Transverse diffusion

RMS spread = 540 μm (accounted for)
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 Transverse diffusion

 Longitudinal diffusion

RMS spread = 540 μm (accounted for)

Ingredients for charge spreading model (using test bench setup)

RMS spread = 4.5 ns (neglected)
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 Transverse diffusion

 Longitudinal diffusion

 Resistive foil + glue

Leading pad

Adjacent pad

Diagonal pad

time bin (40 ns)

Q = ∫ ρ(r) dr

Q

RMS spread = 540 μm (accounted for)

RMS spread = 4.5 ns (neglected)

Ingredients for charge spreading model (using test bench setup)
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Charge spreading model

Charge diffusion function:

 Obtained from Telegrapher’s equation for charge diffusion.

 Integrating charge density function over area of 1 readout pad.

 Parameterized by 5 variables:

 x
0

 y
0

 t
0
: Time of charge deposition in leading pad

 RC : Describes charge spreading
 Q

e
 : Total charge deposited in an event

Initial charge position

RC = 60 ns/mm2

x
H
, x

L
: Upper and lower bound of a pad in x-direction 

y
H
, y

L
: Upper and lower bound of a pad in y-direction

Q
e
 = Q

Primary
 * G
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 Transverse diffusion

 Longitudinal diffusion

 Electronics Response R(t)

time bin (40 ns)

RMS spread = 540 μm (accounted for)

RMS spread = 4.5 ns (neglected)

 Resistive foil + glue

Ingredients for charge spreading model (using test bench setup)
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Electronics Response function

 Each channel of an Electronics card is injected with multiple pulses of different 
amplitudes.

 Resulting output signals(response of Electronic cards) are fitted with the 
Electronics response function.

 Parameterized by 2 main variables related 
to shape of a signal waveform: Q and w

s.

 Variation in these fit parameters over all the 
pads was studied to determine if they can 
be set as constants.

 Q  =  0.6368
 w

s  
=  0.1951

fixed (412ns peaking time)

Q
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Signal model

 Convolution of charge diffusion function with derivative of electronics response function.

S (t )=Q (t )∗ dR
dt

RC = 60 ns/mm2
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Application of Signal model on X-ray data

RC = (110.82 ± 1.363) ns/mm2

χ2/Ndf = 1.903

3-waveform simultaneous fit of an X-ray event

 RC is obtained for a pad by simultaneous fit of waveforms in each event. Simultaneous fit: Leading pad + Neighbouring 
pads are fitted simultaneously

Example 1:



24Shivam Joshi 14th Joint workshop of FKPPN and TYL/FJPPN

Application of Signal model on X-ray data

RC = (100.49 ± 1.078) ns/mm2

χ2/Ndf = 1.491

4-waveform simultaneous fit of an X-ray event

 RC is obtained for a pad by simultaneous fit of waveforms in each event. Simultaneous fit: Leading pad + Neighbouring 
pads are fitted simultaneously

Example 2:
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Results from fitting events in 1 pad

RC distribution
Q

e
 distribution

Distribution of charge 
deposition points (x

0
, y

0
)

 Reconstruction of 55Fe 
spectrum with correct 
peak positions. 

RCmean = 106.2 ns/mm2 Mean1 = (247.9 ± 17.8) x 103 e- 

Mean2 = (127.7 ± 15.8) x 103 e- 

χ2/Ndf distribution

#e
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Gain from simultaneous fit: Validation of Signal model

Gain map from 
simultaneous fit method

Gain map from 
waveform sum method

Ratio of gain(of each pad) 
obtained from 2 different methods

Ratio
mean

 = 1.037

 Very high similarity in gain maps obtained from two different methods.

 Gain results serve as validation for Electronics Response function, 
and robustness of entire model.
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RC extraction from all ERAM pads

RC distribution of ERAM-30

RC
mean

 = 112 ns/mm2

RC map of ERAM-30

 Fitting process is carried out for all pads to obtain RC map.

 RC is more homogeneous in horizontal direction than in vertical direction.

R
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ns
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2D map of R measurements

 RC map structures seem to be correlated with R measurements.

 90 R-measurements → 18 rows x 5 columns

 Horizontally uniform features due to sputtering mechanism.

Understanding RC map features: 
Compare with resistivity values
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RC maps of ERAMs used in CERN 2022 test beam
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Mechanical impact on gain

Gain map of ERAM-10 Resolution map of ERAM-10 ERAM stiffener

 Copper + solder mask layer causes an unequal distribution of pressure from 
stiffener onto the PCB.

 Unequal pressure causes variations in amplification gap                           
gain increases, resolution worsens in pads on top of the PCB stiffener.

 Replacing copper + solder mask with a copper mesh fixed this issue.
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Gain non-uniformity within a pad

 High-granularity Gain map obtained using simultaneous 
fit.

 Gain variations seen within pads partly on top of PCB 
(soldermask + copper) overlay.

 Horizontal stiffener layer causes different gain in upper 
and lower halves of affected pads.

G
a
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One pad
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Mean RC and Gain of all operational ERAMs

 Mean RC value driven by DLC foil batch and mean gain value driven by lamination process 
used in a batch of produced ERAMs.
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RC information of all operational ERAMs

 Lower and upper bounds of box:    [Mean – 25%, Mean + 25%] of distribution  (50% of values within box). 

 Lower and upper bounds of bars:    [Mean – 49%, Mean + 49%] of distribution  (98% of values within bars).

DLC resistivity ≈ 500kΩ/□

Glue thickness: 150 μm
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Gain and resolution of operational ERAMs

ERAM with a problematic region 
of abnormal Gain (e.g. ERAM-02)

Gain distribution

Resolution distribution

Candle with one bar 
longer than the other 

ERAM with a stiffener structure 
(e.g. ERAM-09 to ERAM-18)

Candle with one bar 
noticeably longer than 
the other 
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ERAM selection for HA-TPC installation

Occupancy of ERAM positions in HA-TPC endplates

 ERAM positions closest to SFGD should be installed 
with best functioning ERAMs.

 Criteria for best functioning ERAMs:

 Similar mean gain values.
 Good energy resolution profile.
 RC should not be very high.
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Conclusion

 ND280 upgrade employs resistive Micromegas for the read-out of HA-TPC, which works on the 
principle of charge spreading.

 ERAM signal model is obtained from convolution of charge diffusion function and derivative of 
electronics response function.

 The model is able to successfully fit waveforms from X-ray data.

 Used to characterize all the operational ERAMs (37), obtaining their RC, gain and energy 
resolution information.

 Energy resolution < 10% obtained for all ERAMs.

 Detailed understanding of features observed in RC and gain maps was acquired.

 ERAM characterization results directly led to the selection of particular ERAMs to be installed at 
particular positions in the two HA-TPCs.

 RC and gain results are very important inputs to HA-TPC simulation and reconstruction 
algorithms.

Link to paper: https://doi.org/10.1016/j.nima.2023.168534  OR  https://arxiv.org/abs/2303.04481

https://doi.org/10.1016/j.nima.2023.168534


THANK YOU!
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 Low angular acceptance (as opposed to 4π coverage at Super-K)             Mostly reconstruct forward going tracks entering the TPCs.

 Low efficiency to track low momentum protons              Have to use lepton kinematics only for E
ν
 reconstruction. 

 No capability to detect/reconstruct neutrons.

 Limited ToF information resulting in out-of-fiducial-volume (OOFV) background.

 Limited precision for ν
e
 cross-section measurements.

Motivations for ND280 upgrade

ND280 Super-K

Former ND280
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Detector installation in ND280 pit
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Understanding RC map features: 
Charge spreading using basic-level variables

RC map of ERAM-16 Basic-level variable maps

T1 - T2

D

A1

A2

Ratio of 
amplitudes

 Both non-transformed variable maps exhibit key 
features of RC map with varying degrees of precision.

 Note: Charge deposition point is computed 
using center-of-charge method

R
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Effect of RC and gain on HA-TPC performance

 HA-TPC installed with higher-gain ERAMs have higher mean dE/dx.

 Spatial resolution is observed to be directly correlated to mean RC 
value of an ERAM.

 Applying RC tuning to ERAMs with large RC values greatly improves 
the spatial resolution.

Without RC tuning

With RC tuning

Mean dE/dx

Spatia
l 

reso
lutio

n

Performance plots from HA-TPC group
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