Quantum Sensing for Particle Physics

14th Joint workshop of the France-Japan and France-Korea Particle Physics Laboratories

Steven Worm

Deutsches Elektronen-Synchrotron (DESY) / Humboldt-Universität zu Berlin May 15, 2025

Outline

- Introduction: the "What" and "Why" of quantum sensing for Particle Physics
- Selected quantum sensing techniques
 - Cryogenic detectors
 - Superconducting devices
 - Spin-based, NV-diamonds
 - Metamaterials, 0/1/2-D materials
 - Ionic / Atomic / Molecular systems
 - Optical atomic clocks
 - Atom Interferometers
 - Magnetometers
- How to get started in Quantum Sensing: DRD5 / RDquantum

What is Quantum Sensing?

- Requirements for a quantum sensor
 - Discrete quantum states (e.g. energy levels $|0\rangle$, $|1\rangle$)
 - Possibility to reset and readout
 - Coherent state manipulation possible (usually)
 - Sensitivity—something measurably changing (e.g. frequency ω_0 or transition rate Γ)
- Note that entanglement/squeezing not required, but can make even better sensors
- Close parallel to DiVencenzo Criteria for Quantum Computing, minus gate requirements
- (photons, matter), superconducting circuits, optomechanical systems, quantum materials

Quantum Sensing: any sensing device enabled by the ability to manipulate and read out quantum states

• Many possible systems: atoms (neutral, ions, Rydberg states), cavities, atomic clocks, interferometers

[Degen, Reinhard, Cappellaro, Rev. Mod. Phys. 89, 035002; DiVencenzo, https://arxiv.org/abs/cond-mat/9612126] 3

Quantum Detectors, Quantum Experiments

- A1: Potentially better sensitivity or noise performance
- A2: Because we have to (e.g. for ultra-light dark matter)!

- Quantum Detectors: use quantum sensing to making extreme measurements possible
 - Enables (better) measurements, e.g. wavelengths
 - Extreme sensitivities (single-photon) or low noise

Why quantum sensing?

- Quantum Experiments: sensing is used for fundamental physics measurements
 - Gravity, Lorentz Invariance, physical constants $(\alpha, \mu, dipole moments), etc$
 - Techniques such as interferometry, magnetometry, clock-based systems, optomechanical devices

Cryogenic Detectors

- Low energy and limits for ionisation
 - Limit for e/hole pairs in semiconductors is band gap energy (1.12 eV for Si)
 - Ionisation works above the band gap, below we detect the heat (phonons)
- Measuring small temperature differences
 - ΔT depends on energy and heat capacity ($C = c_p m$)
 - Heat capacity given by Debye equation, $C \propto (T/T_D)^3$, where $T_D =$ Debye Temp
 - Silicon example: $\Delta T \approx 1\%$ requires mass of 1 µg and $T_0 = 0.1$ K
- Example1: Hitomi satellite, SXS (JAXA, CSA)
 - 36 pixels (814 µm) HgTe absorber at 50 mK
 - Energy between 0.3 and 12 keV, resolution ~7 eV
- Example2: Lynx X-ray Microcalorimeter (NASA)
 - ~50k pixels (25-50 µm) Au absorber at 50 mK
 - Energy between 0.2 and 15 keV, resolution <3 eV

COEFFICIENT (cm-1)

ABSORPTION

[Hitomi; JATIS, Vol. 5, 021017 (2019)] 5

and a second second	

Transition Edge Sensors (TES)

- TES Operations: Measure ΔT with superconducting circuit
 - sharp transition between superconducting \rightarrow conducting
 - small temperature change, large resistance change
 - Detection limited by thermal noise; readout resistance << sensor resistance
- Readout: Superconducting Quantum Interference Devices (SQUIDs)
 - Two Josephson junctions in parallel: low temperature (~0-5 K)
 - Plus: Low temp, very low noise, moderate amplification
 - Minus: limited input, feedback (flux) loop required to lock at operating point
- Example: BICEP3
 - Used to study Cosmic Microwave Background (B-modes)
 - Monolithic arrays of 2400 antenna-array coupled TES detectors
- Arrays used from radio to X-ray with high spectral resolution (SPT, ATHENA, BICEP) \rightarrow now also particle physics (CDMS, ALPS...)

[Nagler et al, JATIS, 7(1), 011005 (2021); BICEP3]

very narrow (* meander bia Absorption of ps timing resolu Provides high-ef counter for (WSi demonstra Very low dark c applicable for But very small

uantum Sensing for Particle Pl

Absorption of phy ps timing resolutio

- Non-destructive multiple read cycles to reduce electronics noise by \sqrt{N}
- Provides similar single-eh pair sensitivity
- Currently being applied for DM searches, low-light-level astronomy
- Superconducting Nanowire Single Photon Detectors (SNSPDs)
 - Threshold detector for single photons
 - Very narrow (~100 nm) superconducting
 - meander biased <u>class to transition</u>

Provides high-efficience of the second secon [APL Quantum 2, 026118 (2025)])

nal

CCD m as le el regin

SNSPD: Advances & Expected Performance

Timing jitter	Intrinsic photon number resolution	Efficiency	Array size	Maxi coun
18 ps	None	93%	64	1 G
	3-5 photons			1.5 0
[1] 2.6 ps		[2]	[3] 4x10 ⁵	
1 ps	10	98%	10 ⁷	10 0

[1] Korzh, Zhao et al, *Nature Photonics* 14, 250 (2020)

[2] Reddy et al, *Optica* 7, 1649 (2020)

[3] Oripov, Rampini, Allmaras, Shaw, Nam, Korzh, and McCaughan, *Nature* 622, 730 (2023)

[4] Craiciu, Korzh et al, *Optica* 10, 183 (2023) [5] Resta et al, *Nano Letters* (2023) [6] Chiles, *PRL* 128, 231802 (2022) [7] Taylor, Walter, Korzh et al, *Optica*, (2023)

Cryogenic Quantum Sensors

- Superconducting Tunnel Junctions (STJ)
 - Exploit quantum tunnelling in a junction of two superconductors
 - Direct tunnel current measurement (non-Heterodyne): simultaneous fast photon counting and spectroscopy in IR, Vis, UV bands
- Microwave Kinetic Inductance Detectors (MKIDs)
 - Exploits change in phase of an inductor capacitor (LC) oscillator in thin superconductor
 - Read-noise free, easier multiplexing: arrays of ~10k under test
- Superconductor-Insulator-Superconductor (SIS) receivers
 - Enabling technology for sub-mm Astronomy
 - Superconducting circuits allow phase coherent downconversion THz \rightarrow GHz

Superconducting Tunnel Junction

MKID operating principle

Cryogenic Quantum Sensors vs. Wavelength

IV

Transition Edge Sensors (TES)

Kinetic Inductance Detectors (KID)

Superconducting Nanowire Single-Photon Detector (SNSPD)

Hot-Electron Bolometer (HEB)

Cold-Electron Bolometer (CEB)

Superconductor-Insulator-Superconductor (SIS)

Travelling Wave Parametric Amplifier (TWPA)

Josephson Junction Parametric Amplifiers (JJPA)

licrowave 3cm - 3mm 10-100 GHz .04-0.4 meV	Submillimeter 3mm - 300µm 100 GHz - 1 THz 0.4-4 meV	Far infrared 300 – 30 μm 1 – 10 THz 4-40 meV	Optical 2 μm - 300 nm 2-37 eV	High Ene UV, X-Ra

Quantum Dots and Chromatic Calorimetry

- Quantum dots: nanometer-sized semiconductor structures, e.g. in carbon, perovskites, etc. Tuneable, with properties between single atoms and bulk material

- Seed different parts of a detector with nanodots emitting at different wavelengths
- Wavelength of fluorescence photon indicates specific nanodot position: shower profile from spectrometry

Quantum Sensing | Steven Worm | 15.5.25 DESY.

[Y. Haddad and also F. Yuan et al., Nature Comm. 9 (2018) 2249] 11

Quantum Dots: Active Scintillators & Tracking

- Quantum Dots, Quantum Wires, Quantum Wells... many structures possible
- Quantum Well-dots: aiming for active scintillators
 - electronic amplification / modulation
 - pulsed / primed operation
 - gain adapted in-situ
- Quantum Dots in CMOS pixels: DoTPiX
 - n-channel MOS transistor + buried quantum well gate
 - gate collects holes, modulates current
- Tracking with Quantum Dots: Scintillating (Chromatic) Tracking
 - GaAs bulk to generate e/h pairs, InAs quantum dots to trap charge
 - Dots emit photons from photoluminescence, collected by photodiode

→ CEA, CNRS/C2N Paris-Saclay

[Maximov et al., Appl. Sci. 2020, 10, 1038; M.Hoeferkamp et al., arXiv:2202.11828; A. Minns et al., MRS Advances 6, 297–302 (2021)] 12

Quantum-Polarized Helicity Detection in NV Centres

- Photoluminescent point defect in diamond nitrogen-vacancy centres (NV-)
 - Spin-dependent photoluminescence to measure electronic spin state
 - Relatively long (millisecond) spin coherence at room temperature
- Spin-spin scattering for helicity determination
 - Usually requires polarized beams and/or polarized targets
 - Polarized scattering planes possible to measure track-by-track particle helicity

[G. Alvarez et al., Nature Communications 6, 8456 (2015)] 13

- Rydberg readout of a Time Projection Chamber
- Antiprotonic atoms and novel HCI systems

 - isotope shift (King plot), EDM measurements

DESY. Quantum Sensing | Steven Worm | 15.5.25

[M. Doser, Prog. Part. Nucl. Phys, (2022); G. Kornakov] 14

amplification

Quantum-enabled Experiments & Ultra-light Dark Matter

Quantum Sensing needed for Light/Ultralight Dark Matter

Gravitational Lensing

[T. Lin, arXiv:1904.07915] 15

Ultra-Light Dark Matter: Phenomenology

- Adding new DM interaction (field) to Standard Model Lagrangian
 - Bosonic: Ultra-light DM must be bosonic in nature

 - Non-relativistic ($\sim 10^{-3}c$): so it neither leaves the galaxy or clumps near the center Oscillating classical field: coherent, practically monochromatic \rightarrow wave-like

$$\mathscr{L}_{int} = \frac{4\pi\phi}{M_{pl}} \Big(\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - d_{m_e} m_e \bar{e}e - \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{A\mu\nu} - \sum_{i=u,d} (d_{m_i} + \gamma_{m_i} d_g) m_i \bar{\psi}_i \psi_i \Big)$$

Coupling to Lagrangian is linear (in ϕ) for lowest order interaction w/ scalar field

$$\mathscr{L}_{DM} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_{e}} m_{e} \bar{\psi} \psi$$

At the effective new physics energy scales Λ_{α} and Λ_{ρ} , α and m_{ρ} appear to oscillate

$$\frac{d\alpha}{\alpha} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_\gamma},$$

[Damour & Donoghue, PRD 82, 084033 (2010); Arvanitaki et al., Phys. Rev. D 91, 015015 (2015); Safranova et al., RMP 90, 025008 (2018)] 16

 $\phi(t) \approx \phi_0 \cos(m_\phi c^2 t/\hbar)$

$$\frac{dm_e}{m_e} \approx \frac{\phi_0 \cos(m_\phi t)}{\Lambda_e}$$

Quantum Sensing Methods for Testing $\Delta \alpha / \alpha$

Atomic spectroscopy (clocks)

 $\delta(v_1/v_2) \propto \cos(m_{\varphi} t)$ 10⁻²³ eV < m_{φ} < 10⁻¹⁶ eV

Laser interferometry (cavities)

 $\delta \Phi \propto \delta(vL) \propto \cos(m_{\varphi}t)$ 10⁻²⁰ eV < m_{φ} < 10⁻¹⁵ eV

Atom interferometry

 $F(t) \propto p_{\varphi} \sin(m_{\varphi} t)$ 10⁻²³ eV < m_{φ} < 10⁻¹⁶ eV

Quantum Sensing Methods for Testing $\Delta \mu / \mu$

DESY. Quantum Sensing | Steven Worm | 15.5.25

Quantum Sensing with Optical Atomic Clocks

- **Optical Atomic Clock**
 - Laser for oscillator, usually a narrow frequency around atomic transition
 - Ultra-stable laser locked to atomic transition, "counted" with frequency comb
- Atomic clock transition scale and sensitivity is "selectable"
 - For $R_{\infty} = \alpha^2 m_e c / 4\pi \hbar$, fine structure const. α , and $\mu \equiv m_p / m_e$

Hyperfine transitions: $\nu_{\rm hf} = A \cdot \mu \alpha^2 F_{\rm hf}(\alpha) \cdot R_{\infty}$ $\nu_{\rm opt} = B \cdot F_{\rm opt}(\alpha) \cdot R_{\infty}$ **Optical transitions:** Vibrational transitions: $\nu_{\rm vib} = C \cdot \mu^{1/2} \cdot R_{\infty}$

- Calculate sensitivities to variations in α or μ given by K_{α} and K_{μ}
- Search for variation in α : ultra-light Dark Matter
 - Measure ratios of frequencies ($R = \nu_1/\nu_2$) for two clocks, look for oscillations
 - Highly charged ions give excellent sensitivity
 - Th-229 nuclear clock \rightarrow extreme sensitivity

Clocks proposed for QSNET

feedback

Clock	Κα	K
Yb⁺(467 nm)	-5.95	(
Sr (698 nm)	0.06	(
Cs (32.6 mm)	2.83	-
CaF (17 μm)	0	0
N_{2}^{+} (2.31 μ m)	0	0
Cf ¹⁵⁺ (618 nm)	47	(
Cf ¹⁷⁺ (485 nm)	-43.5	(

Quantum Sensing: Networks of Optical Clocks

- NPL-SYRTE-PTB demonstrated an optical clock network with dark fibres
- Comparing optical clocks with different sensitivities to variations of α
- Results for T = 0.9, 12, 45 hours
- Results for previously unconstrained parameter space (topological defect DM)

[Roberts et al, New J. Phys. 22, 093010 (2020); P. Delva et al., Phys. Rev. Lett., 118 221102 (2017)] 20

The REFIMEVE+ Network

Fig. 1. Map of France with the REFIMEVE+ network. Red arrows: operational links. Blue arrows: planned links. Or-ange arrows: international cross-border links towards Braunschweig (Germany), London (UK) and Torino (Italy). In this paper, we focus on the link between Paris and Lille (thick red line).

Performance for frequency transfer ($\Delta f/f$)

- 5.4x10⁻¹⁶ at 1s
- 1.7x10⁻²⁰ at 65000s (=18h)
- Accuracy: 3x10⁻²⁰

Fig. 3. Scheme of the testbench with a simulated link of 200 km, including two bi-directional OADMs and one bi-directional EDFA. For the noise floor measurement, the 200 km link is replaced by a short single mode fiber.

→ Muquans, CNRS/Laboratoire de Physique des Lasers, SYRTE, RENATER, Syrlinks, LP2N...

[Applied Optics Vol. 57, Issue 25, pp. 7203-7210 (2018)] 21

5, LP2N... 0 (2018)] 2

Quantum Sensing with Interferometry

- Superimpose waves to look for interference \rightarrow precise measure of (e.g.) distance
- Source is split and sent on two (or more) different paths, then recombined
- Interference (eg from changes in arm length) analysed by Fourier analysis, fringes, etc.

Long-Baseline Atom Interferometry

- Demonstrated at ~meter scale, proposing 100m and ultimately km (space)
 - AION: Atom Interferometer Observatory and Network
 - ELGAR: European Laboratory for Gravitation and Atom-interferometric Research
 - MIGA: Matter wave-laser based Interferometer Gravitation Antenna
 - MAGIS: Matter-wave Atomic Gradiometer Interferometric Sensor
 - ZAIGA: Zhaoshan Long-baseline Atom Interferometer Gravitation Antenna
 - AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space
- Matches lab infrastructure; underground shafts (CERN, Fermilab, etc)
- Ultralight DM, but also topological DM, gravitational waves, Lorentz invariance

AION experiment concept

Cavities: Axion Heterodyne Detection

- DarkSRF Collaboration aiming for tunable cavities
 - Figure of merit (F) proportional to square of DM mass (m_a) and cavity volume (V)

$$F \sim g_{a\gamma}^2 m_a^2 B^4 V^2 T_{sys}^{-2} G$$

- Resonant cavities possible down to μeV ; below that, need huge volume
- Tunable superconducting RF cavity:
 - Frequency conversion: drive $\omega_0 \approx \text{GHz} \rightarrow \text{axion gives } \omega_1 \approx \omega_0 \pm m_a$
 - Corrugated cavity with two polarizations (and lengths)
 - Separate scales allows separate tuning of ω_0 and ω_1
- Scan over axion masses:
 - Change of cavity geometry modulates the frequency splitting $\omega_0 \omega_1$
 - Huge parameter space to explore, but technical (cryo) challenges

 \rightarrow see also KAIST (CAPP/DMAG) also KEK...

(a) Cartoon of cavity setup.

[A. Berlin et al., JHEP 07 (2020) 07, 088; arXiv:2007.15656] 24

Quantum Sensing with Magnetometry: CASPEr

- Cosmic Axion Spin Precession Experiment (CASPEr)
 - Measure two interactions: electric dipole moment (EDM) and the gradient interaction with nuclear spin Solid-state NMR of ²⁰⁷Pb in a polarized ferroelectric crystal

 - Axion-like DM exerts an oscillating torque
- Limits for neV DM masses vs EDM coupling g_d and gradient coupling g_{aNN} ; many ideas for improvements

DESY. Quantum Sensing | Steven Worm | 15.5.25

- Other light DM detection (annihilating, decaying, fifth-force coupling, phonon scattering)

[S. Bass, M. Doser, Nat Rev Phys 6, 329–339 (2024)]

RDquantum / DRD5: Get started with Quantum Sensing

Collaboration recently launched, preliminary WP structure now set

Exotic systems in traps & beams (HCl's, molecules, Rydberg systems, clocks, interferometery, ...)

<u>Quantum superconducting systems</u> (4K electronics; MMC's, TES, SNSPD, MKID's... integration challenges)

Focus on exploring new technologies, connecting to HEP needs, and *community-building*

DESY. Quantum Sensing | Steven Worm | 15.5.25

WP4

<u>Quantum techniques for sensing</u> (back action evasion, squeezing, entanglement, Heisenberg limit)

<u>Capability expansion</u> (cross-disciplinary exchanges; infrastructures; education) WP6

Many connections to France, Korea, Japan already listed, also Christophe Dujardin WP-2 co-leader, Shion Chen sub-WP leader for WP-3, Su-Yong Choi from Korea University on MAGIS-100 (WP1)...

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Steven Worm Group Lead, Astroparticle Detectors steven.worm@desy.de

