FKPPN-GBAR Gravitational Behaviour of Antihydrogen at Rest

Dong Hwan Won, David Lunney²

Seoul National University
 IJCLab, CNRS/Universite Paris-Saclay

Outline

- Introduction & motivation.
- GBAR experimental concept.
- GBAR experimental apparatus.
 - Positron beam line.
 - Antiproton beam line.
- \overline{H} production 2022 & 2024.
- Future improvements
- GBAR affiliation
- Summary

Introduction & motivation

The GBAR experiment

• Gravitational Behaviour of Antihydrogen at Rest

Antimatter and CPT Symmetry

- Antimatter is the mirror image of matter. It was predicted by Dirac in 1928 and experimentally confirmed with the discovery of the positron in 1932.
- The observable universe is composed almost entirely of matter, but antimatter is extremely rare.
- This asymmetry motivates experimental tests of fundamental symmetries such as CPT.

Weak Equivalence Principle (WEP)

- The WEP states that all objects fall at the same rate in a gravitational field, regardless of their composition.
- WEP has been confirmed for normal matter at extremely high precision.

• $m_I = m_G$

• Universality of free-fall: All bodies fall with the same acceleration in an identical gravitational field, regardless of their composition

Torsion balance of Eötvös experiment

$$\eta_{AB} = 2 \left| \frac{(m_G/m_I)_A - (m_G/m_I)_B}{(m_G/m_I)_A + (m_G/m_I)_B} \right| < 10^{-9}$$

MICROSCOPE: Two accelerometers in a satellite

(2022)

```
\eta(Ti, Pt) < 10^{-15}
Phys. Rev. Lett. 129, 121102
```


Weak Equivalence Principle (WEP)

- WEP test for the antimatter?
- There is still no high-precision experimental evidence for antimatter.
- On-going experiment with antihydrogen atom: ALPHA-g, AEgIS, GBAR

ALPHA-g: $a_{\overline{g}} = (0.75 \pm 0.13(stat, sys) \pm 0.16(simulation))g$

Anderson et al., Nature 621, 716–722 (2023)

ALPHA-g apparatus

GBAR experimental concept

GBAR experiment concept

- GBAR aims to measure the free fall of ultracold antihydrogen atoms and determine the gravitational acceleration "g-bar" with a precision better than 1%(Phase 1) High precision.
- This involves producing antihydrogen ions, sympathetic cooling them, and converting them to neutral antihydrogen for free-fall measurement.
- Ultra-cold antihydrogen(10uK : initial velocity<1m/s)
- Photo-detachment of positron

•
$$\bar{g} = \frac{2h}{(\Delta t)^2}$$

GBAR experiment concept

- Double charge exchange process between anti-proton beam and dense positronium cloud (1x1x20mm³ cavity)
 - $\overline{H} + Ps \rightarrow \overline{H}^+ + e^-: 2^{nd}$ milestone with Enough intensity of e⁺ & \overline{p} $\overline{p} + Ps \rightarrow \overline{H} + e^-$: 1st milestone

 - Good beam phase-space
- Cooling anti-hydrogen ion down to **10uK** range (ultra-cold) with Be⁺ to get extremely slow velocity : 3rd milestone

GBAR experiment concept

• Phase 1: 1 % precision on \overline{g} with 500 \overline{H}

• Phase 2: Gravitational Quantum States

Velocity selection, Spectroscopy Interferometry: at least 10⁻⁵ precision O. Rousselle *et al.*, Eur. Phys. J. D **76**, 209 (2022)

GBAR experimental apparatus

Experiment scheme

Experiment scheme

Experiment setup(2024)

©Riss ©Charlie Hebdo *Charlie Hebdo*, n°1676

©Riss ©Charlie Hebdo *Charlie Hebdo*, n°1676

GBAR experimental apparatus

Positron beam line

Positron beam line

- **LINAC** \rightarrow Impinges electrons on a W target + moderator
 - \rightarrow 3 × 10⁷ e⁺/s

RC

- e^+ accumulation
- $6 \times 10^8 e^+$ per AD/ELENA cycle(~2min)
- Record accumulation of more than $7 \times 10^9 e^+$ in 30min

HFT

BGT

11

Positron beam line

- Confinement of more than 5×10^6 oPs in a tubular target(2mm x 1.5mm x 20mm) out of 7×10^7 e⁺ on target area.
- Re-designed Ps cavity (2023) for higher positron acceptance and better of the positron efficiency (10-1) higher positron acceptance and better of the positron of the position of the positi

GBAR experimental apparatus

Antiproton beam line

Antiproton beam line

-0.04

0.02

0.04

0.02

C. Roumegou, PhD thesis, Universite Paris-Saclay (2023)

Decelerator

100keV p̄ →

- GBAR decelerator Prof. David Lunney developed.
- Drift tube with -HV with fast-switching when pbar beam is in the tube
- Higher efficiency and mono-energy expected compared with Degrading foil
- With 100keV>1keV deceleration, emittance is increased about 10 times

6keV \bar{p}

- V

_ v ♠ Ejection & acceleration

Bunching

V(-)

HV1

 \overline{p} beam

HV3 gnd

- Penning-malmberg trap (5T; 7T max) for antiproton beam reprocessing
- Function : Trapping, cooling, compression, acceleration, bunching and accumulation
- Goal : Producing antiproton beam with good beam parameters (higher intensity with accumulation, good phase-space & time spread for double charge reaction, small energy spread, etc)

Antiproton trap

- 6keV Beam Parameters at MCP3 (2024)
- Beam Intensity : 4.9x10⁶ (Num of pbar)
- Extraction efficiency(/ELENA) : 43%
- Beam size(σ_x) : 2.71mm
- Beam size(σ_y) : 2.99mm
- Bunch length(FWHM) : 80ns

Antiproton trap

• Accumulation and extraction of up to 7x10⁷ pbar

Antiproton beam line guiding

200 400 600 800 1000

x [pixels]

400

x [pixels]

200

ຄຸ່ດ

600

Antiproton beam line guiding

H production 2022 & 2024

\overline{H} production

« Mixing » runs: $\overline{p} + Ps(1S) \rightarrow \overline{H} + e^{-1}$

\overline{H} production (2022)

- Produced antihydrogen is detected above 3σ (which is **1**st milestone)
- About 6.8x10⁶ oPs (5x10⁷ e⁺) and 3x10⁶ \bar{p} /ELENA pulse(~2min)
- $17 \sim 20\overline{H}$ for 7000 shots of 'Mixing' $\sim 0.003\overline{H}$ /ELENA pulse($\sim 2min$)
- (First) production of antihydrogen by charge exchange between o-Ps and antiproton beam
- higher intensity with better emittance by antiproton trap required \overline{H}^+ production (2nd milestone)

Convert

\overline{H} production (2024)

Eur. Phys. J. C 83, 1004 (2023)

\overline{H} production (2024)

• Antihydrogen production rate increased roughly by factor 30(preliminary)

Future improvements GBAR affiliation Summary

Future improvements

- Positron transport efficiency between HFT and Ps target.
- Continue antiproton trap developments
- SPHINX(Study of Positronium Hydrogen Interactions - Negative hydrogen production Cross Sections) project
- Recycler

SPHINX project

 $\overline{H} + Ps \rightarrow \overline{H}^{+} + e^{-}$ \bigcup $H + Ps \rightarrow H^{-} + e^{+}$

Idea: photodetached H^- beam from ELENA just before the interaction region to make pure H(1S) beam Early form of the project first presented at the collaboration meeting in 2019

Charge filtering trap (2023)

For same potential at lenses, opposite charge shows different motion

 $\overline{\mathbf{O}}$

- By giving negative potential for lens after target cavity, antiproton is reflected, and antihydrogen ion passes the lens.
- With giving push-pull switching for lens before target cavity, antiproton is trapped in target cavity and then go back to trap after switch opening

GBAR affiliation

Related in FKPPN 2024

26

IJCLAB (French)

- David Lunney
- Sarah Geffroy

IBS (Korean)

- Bongho Kim
- Kwanhyung Park
- Byunchan Lee

SNU (Korean)

- DongHwan Won
- Sunkee Kim

Summary

- The GBAR experiment aims to measure the gravitational acceleration of antihydrogen with a precision better than 1%.
- The first milestone has been achieved: successful production of antihydrogen via the reaction between antiprotons and positronium.
- French and Korean team has contributed significantly to whole antiproton beam line.
 - Development of the decelerator
 - The antiproton trap antiproton beam reprocessing
 - The design of the recycler.
- All components are being continuously upgraded to support highefficiency antihydrogen production & the second milestone.

Thank You!

Q&A