

Study of electroweak observables in the heavy flavour sector at FCC-ee $D^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\chi$

Willy Weber

(willy.weber@tu-dortmund.de)

D0 populations in the samples

 $e^+e^- \rightarrow cc$

• Last time:

• Re-run with higher event number:

100k events 115k D0 <mark>493 red</mark>

(0.43 +/- 0.02) %

250k events

286k D0

1179 red

(0.411 +/- 0.012) %

Picture of the whiteboard (next steps)

Morro + Table of 6, Pf. D'signal. Bin in Er, acto la. in buis. 3) Er as a function of Er; es a find Or) Ero as a fr of Fro; VS Oro) Gr as a fr of Pro; VS Oro Aparte : 5 1400 2.50 M TIMP " Her/c2

Willy Weber | 20.02.2025

3

Picture of the whiteboard (next steps)

• Efficiency consideration:

Energy resolution consideration:

technische universität dortmund

Reconstruction effeciency vs. photon angle

Angle of a photon pair from a pion

dortmund

• The smaller the angle, the greater the **boost** of the decay Photons with a very small angle are likely to hit the same detector element

7

P0 & D0 Effeciency

4) Ezo as a fr of En; vs Ono 5) Ero as a fr of Pro; vs Oso

Decrease for high energies

9

What are we able to reconstruct?

U technische universität dortmund

Willy Weber | 20.02.2025

UNIVERSITÉ 12

Not linear...

Willy Weber | 20.02.2025

Clermont Auvergne 13

Linear area: 4-10 GeV

technische universität dortmund

Willy Weber | 20.02.2025

Clermont Auvergne 14

Decay channels in the pipeline

Already produced:

10k

$$B \rightarrow Kee$$
 Master 2

10k

μμ

🕈 Bd_Kstee=btosllball05.dec (~543 B) 🔻 🎦 Bu_Kee=btosllball05.dec (~337 B) 👻

• Will be produced in the future:

10k

Bd_mumu=DecProdCut.dec (~212 B) ▼ Bd_pi+pi=CPV,DecProdCut.dec (~323 B) ▼ Bs_mumu=DecProdCut.dec (~215 B) ▼

1000k

 $B \rightarrow$

Thanks for listening 🙂

Willy Weber | 20.02.2025

10k

482	#######################################	
483	# Calorimeter	525
484	*****	526
485	module DualReadoutCalorimeter Calorimeter {	520
486	set ParticleInputArray ParticlePropagator/stableParticles	520
487	set TrackInputArray TrackMerger/tracks	520
488		529
489	set TowerOutputArray towers	530
490 101	set PhotonoutputArray photons	231
192	set FF]owTrackOutputArray ef]owTracks	532
193	set EFlowPhotonOutputArray eflowPhotons	533
194	set EFlowNeutralHadronOutputArray_eflowNeutralHadrons	534
495		535
496	set ECalMinSignificance 2.0	536
497	set HCalMinSignificance 2.5	537
498		538
499	set SmearLogNormal false	539
500		540
501	set SmearTowerCenter true	541
502	#set SmearTowerCenter false	542
503	set pi [expr {acos(-1)}]	543
504		544
505	# LISTS OF the edges of each tower in eta and phi;	545
507	# the list ends with the higher edge of the last tower;	546
508	# Barrel: deta=0.02 towers up to letal ζ = 0.88 (up to 450)	547
509	# Endcaps: deta=0.02 towers up to leta <= 3.0 (8.6 $^{\circ}$ = 100 mrad	548
510	# Cell size: about 6 cm x 6 cm	549
511		550
512	set EtaPhiRes 0.02	551
513	set EtaMax 3.0	552
514		553
515	set pi [expr {acos(-1)}]	554
516		555
517	<pre>set nbins_phi [expr {\$pi/\$EtaPhiRes}]</pre>	556
518	<pre>set nbins_phi [expr {int(\$nbins_phi)}]</pre>	557
519	set Dhilling ()	558
520	fon (sot i . Inding phi) (di Inding phi) (ince i) (559
522	add $PhiBins [even { ti * thi/theorem phi}]$	560
522	j	561
-2.4		201

```
set nbins_eta [expr {$EtaMax/$EtaPhiRes} ]
set nbins eta [expr {int($nbins eta)} ]
for {set i -$nbins eta} {$i <= $nbins eta} {incr i} {</pre>
 set eta [expr {$i * $EtaPhiRes}]
 add EtaPhiBins $eta $PhiBins
# default energy fractions {abs(PDG code)} {Fecal Fhcal}
add EnergyFraction {0} {0.0 1.0}
# energy fractions for e, gamma and pi0
add EnergyFraction {11} {1.0 0.0}
add EnergyFraction {22} {1.0 0.0}
add EnergyFraction {111} {1.0 0.0}
# energy fractions for muon, neutrinos and neutralinos
add EnergyFraction {12} {0.0 0.0}
add EnergyFraction {13} {0.0 0.0}
add EnergyFraction {14} {0.0 0.0}
add EnergyFraction {16} {0.0 0.0}
add EnergyFraction {1000022} {0.0 0.0}
add EnergyFraction {1000023} {0.0 0.0}
add EnergyFraction {1000025} {0.0 0.0}
add EnergyFraction {1000035} {0.0 0.0}
add EnergyFraction {1000045} {0.0 0.0}
# energy fractions for K0short and Lambda
add EnergyFraction {310} {0.3 0.7}
add EnergyFraction {130} {0.3 0.7}
add EnergyFraction {3122} {0.3 0.7}
## ECAL crystals for the EM part from 2008.00338
# set ECalResolutionFormula {resolution formula as a function of eta and energy}
set ECalResolutionFormula {
(abs(eta) <= 0.88 )
                                        * sqrt(energy^2*0.005^2 + energy*0.03^2 + 0.002^2)+
(abs(eta) > 0.88 && abs(eta) <= 3.0)
                                        * sqrt(energy^2*0.005^2 + energy*0.03^2 + 0.002^2)
```


Annexe

Photon reconstruction effeciency

$$D^0 \rightarrow \pi^0 \pi^0 \rightarrow 4\gamma$$

- Broader bins because of the smaller samplesize
- Low efficiency in last bin
 (E > 40 GeV, 27%)
 Why?

technische universität

dortmund

Pion reconstruction effeciency

Efficiency decreases
 steadily for E > 15 GeV

Pion reconstruction effeciency

• Efficiency stable high

Weird peak at Pi/2
 SOLVED ©

technische universität

dortmund

Pion decay: Background consideration

- D0-signal pions
- Pion background
- Combinatorical background

Reconstructed P0 mass distribution

Background reduction I

Background reduction II

\

technische universität

dortmund

Best result old sampls (purity: 18.75 (51% Signal))

79220 Events, 998.817 P0, 189.933 D0

technische universität dortmund

