VBS measurement in semileptonic final states with ATLAS Run-2 data

IRN Terascale @ IPHC Strasbourg - 21/5/25

Mathieu Markovitch

Laboratoire de Physique des 2 Infinis

Vector Boson Scattering (VBS)

- Electroweak (EW) production of vector bosons associated with jets
- Cannot be separated from other EW diboson production
- Final states with two EW bosons and two forward jets with high invariant mass (*VVjj*)
- Very low cross sections (fb level)

Why studying VBS ?

- Processes involving Triple Gauge Couplings (TGCs), having unique access to Quartic Gauge Couplings (QGCs)
- Couplings with the Higgs cancelling unitarity violation by longitudinally polarized EW bosons at high energy
 - Test of the EW symmetry breaking mechanism
 - Interest of polarization studies
- Effect of anomalous QGCs (aQGCs) can be studied through EFT framework

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda}\mathcal{L}_5 + \frac{1}{\Lambda^2}\mathcal{L}_6 + \frac{1}{\Lambda^3}\mathcal{L}_7 + \frac{1}{\Lambda^4}\mathcal{L}_8 + \dots$$

Dimension-8 needed to introduce aQGCs without affecting TGCs

VBS in semileptonic final states

- Inclusive VVjj (V=W,Z) electroweak (EW) production
- Semileptonic final states: one gauge boson decays hadronically (quarks pair) and the other one decays leptonically (leptons pair) Higher statistics than

Selections (1)

- VBS jets (*tagging* jets)
 - Small-R
 - Opposite η sign
 - Pair with highest m_{ii} , m_{ii} > 400 GeV
 - $p_{T}^{jet} > 30 \text{ GeV}$
- Leptonically decaying boson
 - 0-lep: 0 LooseLepton, $E_T^{\text{miss}} > 200 \text{ GeV}$
 - 1-lep: 0 LooseLepton, 1 TightLepton, $E_T^{\text{miss}} > 80 \text{ GeV}$, $p_T > 30 \text{ GeV}$
 - 2-lep: 2 LooseLeptons, $p_T > 27$ GeV, mass windows for m_{ee} and $m_{\mu\mu}$

Selections (2)

- Hadonically decaying boson
 - Merged regime (prioritized): large-*R* jet with highest p_T , *W/Z* boson tagger, *b*-veto on additional jet in 1-lepton channel

• **Resolved regime**: small-*R* jets with highest p_T not overlapping with tagging jets, $p_T^{-1} > 40 \text{ GeV}$, $p_T^{-2} > 20 \text{ GeV}$, $m_{jjj} > 220$ GeV (top veto), *b*-veto on additional jet in 1-lepton channel

Analysis regions

- Signal regions (based on hadronically decaying boson)
 - Resolved
 - Merged with High Purity (HP): passes 50% working point of W/Z tagger
 - Merged with Low Purity (LP): fails 50%, passes 80%
- Control regions (inverting boson selection cut)
 - V+jets (V=W in 1-lepton, V=Z in 2-leptons)
 - Top (*b*-jet instead of *b*-veto, only in 1-lepton channel)

RNN

- Need to discriminate between signal and backgrounds (V+jets, VV, top)
- Recurrent neural network using low-level variables (p_T , η , ϕ , E, n_{Tracks})

- Only hadronic objects to harmonize between leptons channels
- Not used for cuts but discriminant in SRs

Observation

W+jets

Top

Z+jets

Dibosor

ATLAS

s = 13 TeV, 140 fb

I-len, Resolved SR

- Signal strength μ extracted from binned likelihood fit
- Measured signal strength: $\mu_{\rm EW VVii} = 1.28 \pm 0.22$

 First observation of EW diboson production in semileptonic final states !

Uncertainties

Uncertainty source	σ_{μ}
Total	0.22
Statistical	0.09
Systematic	0.20
Theory and modelling und	certainties
Floating normalizations	0.04
Z + jets	0.06
W + jets	0.07
$t\bar{t}$	0.02
QCD VVjj	0.05
Single-top	0.01
m_{ii}^{tag} reweighting	0.07
Signal modelling	0.13
MC statistics	0.07
Experimental uncerta	inties
Jets and $E_{\rm T}^{\rm miss}$	0.09
Tracking	0.03
Leptons	< 0.01

b-tagging

Luminosity

< 0.01

0.01

Uncertainty dominated by systematics

In particular theory systematics on the signal

Multi-POI fits

- Fits with multiple signal strengths
 - Good agreement with SM overall
 - Slight tension in the 0-lepton channel

2POI EW/QCD fit

Fiducial cross-section measurement

- Fiducial cross-section extracted from truth yields, scaled by fitted signal strengths
 - Reparameterization of the fit because of the mixing between truth and reconstructed channels
 - Signal systematics set on shape effect only, residual normalization added to account for differences between reconstructed and truth effects
- Results compatible with Standard Model expectation

	Combined	0-lepton	1-lepton	2-lepton	Resolved	Merged
$\sigma^{\rm fid,exp}_{EWK}$	$20.4 \pm 3.5 \text{ fb}$	$7.3 \pm 2.5 \text{ fb}$	$10.3 \pm 2.5 \text{ fb}$	$2.8 \pm 1.1 \text{ fb}$	$11.7 \pm 3.4 \text{ fb}$	8.7 ± 2.5 fb
$\sigma_{EWK}^{ m fid,obs}$	$29.2 \pm 4.9 \text{ fb}$	$15.7 \pm 2.8 \text{ fb}$	$10.7 \pm 2.8 \text{ fb}$	$3.1 \pm 1.1 \text{ fb}$	$17.9 \pm 4.3 \text{ fb}$	$11.4 \pm 3.4 \text{ fb}$

EFT and aQGCs

• EFT Lagrangian
$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots$$

Wilson coefficients
 $\mathcal{L}_n = \sum_i C_i^n Q_i^n$ Dimension-n operators
• Amplitude $|A_{SM} + \frac{f_i}{\Lambda^4} A_i|^2 = |A_{SM}^2| + \sum_i \frac{f_i^2}{\Lambda^8} |A_i^2| + \sum_i 2\frac{f_i}{\Lambda^4} \frac{f_i^2}{\Lambda^4} Re(A_{SM}^*A_i) + \sum_{i \neq j} \frac{f_i}{\Lambda^4} \frac{f_j}{\Lambda^4} Re(A_i^*A_j)$
Pure EFT (quadratic) Interference between EFT operators

« cross-terms »

Operators

 (scalar/tensor/mixed) from
 <u>Eboli model</u> affecting
 different vertices

	SM					Not SM			
Wilson coefficients	WWWW	WWZZ	$WW\gamma\gamma$	WW γ Z	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma\gamma$
f_{S0} , f_{S1} , f_{S2}	1	1			1				
f_{M0} , f_{M1} , f_{M7}	1	1	1	1	1	1	1		
f_{M2} , f_{M3} , f_{M4} , f_{M5}		1	1	1	1	1	1		
f_{T0} , f_{T1} , f_{T2} , f_{T3}	1	1	1	1	1	1	1	1	1
$f_{T4}, f_{T5}, f_{T6}, f_{T7}$		1	1	1	1	1	1	1	1
f_{T8} , f_{T9}					1	~	1	1	1

aQGC analysis

- Dedicated aQGC signal MC samples
- All operators of the Eboli model
- SRs separated in two m_{VV} bins, RNN fitted
- Clipping method
 - aQGCs violate unitarity at high energy
 - Can be prevented by reducing theory phase space:

 $\begin{array}{c} \textbf{ATLAS} \\ \textbf{FT1} \\ \textbf{VS} = 13 \text{ TeV}, 140 \text{ fb}^{-1} \\ \textbf{FT1} \\ \textbf{VS} = 13 \text{ TeV}, 140 \text{ fb}^{-1} \\ \textbf{FT1} \\ \textbf{VS} = 13 \text{ TeV}, 140 \text{ fb}^{-1} \\ \textbf{FT1} \\ \textbf{FT1$

introduce a cut-off scale (*clipping*) beyond which the Wilson coefficient is set to zero

- Chosen points are 1.5, 2, 3, 5 TeV + no clipping
- Unitarized limits: intersection between clipping scan and unitarity bounds
- Floating SM EW signal and SM background as background
- 95% CI limits extraction

 m_{VV} clipping value [TeV]

Limits obtained

No unitarization

Unitarization

Wilson Coefficient	Expected limit	Observed Limit	Expected Limit Unitarized	Observed Limit Unitarized	[T _0)/-4]
f_{T0}/Λ^4	[-0.20, 0.18]	[-0.25, 0.22]	[-0.79, 0.47] at [1.76, 1.96] TeV	[-0.85, 0.47] at [1.73, 2.00] TeV	
f_{T1}/Λ^4	[-0.19, 0.19]	[-0.24, 0.24]	[-0.34, 0.34] at [2.59, 2.59] TeV	[-0.43, 0.43] at [2.43, 2.43] TeV	
f_{T2}/Λ^4	[-0.44, 0.44]	[-0.55, 0.55]	[-0.95, 0.96] at [2.22, 2.22] TeV	[-1.16, 1.17] at [2.12, 2.11] TeV	
f_{T3}/Λ^4	[-0.38, 0.38]	[-0.48, 0.48]	[-0.62, 0.62] at [2.71, 2.71] TeV	[-0.88, 0.88] at [2.49, 2.48] TeV	
f_{T4}/Λ^4	[-1.46, 1.32]	[-1.51, 1.37]	[-3.03, 2.60] at [2.02, 2.09] TeV	[-3.03, 2.60] at [2.02, 2.10] TeV	
f_{T5}/Λ^4	[-0.57, 0.53]	[-0.64, 0.58]	-	[-2.65, 2.57] at [1.53, 1.54] TeV	
f_{T6}/Λ^4	[-0.76, 0.72]	[-0.74, 0.71]	[-2.82, 2.01] at [1.66, 1.73] TeV	[-2.98, 2.62] at [1.64, 1.69] TeV	
f_{T7}/Λ^4	[-1.78, 1.52]	[-1.94, 1.70]	[-7.88, 4.29] at [1.65, 1.90] TeV	[-6.70, 4.11] at [1.72, 1.91] TeV	
f_{T8}/Λ^4	[-0.59, 0.59]	[-0.48, 0.48]	-	-	
f_{T9}/Λ^4	[-1.22, 1.22]	[-1.02, 1.03]	-	-	
f_{S02}/Λ^4	[-3.22, 3.22]	[-3.96, 3.96]	[-5.53, 5.54] at [2.07, 2.67] TeV	[-6.16, 6.17] at [2.01, 2.01] TeV	Amongst the best
f_{S1}/Λ^4	[-6.84, 6.86]	[-8.06, 8.06]	-	-	aOGC limits
f_{M0}/Λ^4	[-1.13, 1.12]	[-1.26, 1.25]	[-2.61, 2.58] at [2.00, 2.00] TeV	[-2.71, 2.65] at [1.97, 1.98] TeV	
f_{M1}/Λ^4	[-3.23, 3.24]	[-3.95, 3.95]	[-6.22, 6.22] at [2.27, 2.27] TeV	[-7.42, 7.43] at [2.17, 2.17] TeV	
f_{M2}/Λ^4	[-1.66, 1.67]	[-1.85, 1.85]	-	-	No deviation from
f_{M3}/Λ^4	[-5.29, 5.29]	[-5.68, 5.71]	[-23.69, 23.39] at [1.57, 1.57] TeV	[-18.62, 19.10] at [1.66, 1.65] TeV	
f_{M4}/Λ^4	[-2.62, 2.62]	[-2.96, 2.97]	-	-	
f_{M5}/Λ^4	[-3.81, 3.82]	[-4.41, 4.44]	[-6.80, 6.80] at [2.33, 2.33] TeV	[-7.28, 7.30] at [2.29, 2.29] TeV	
f_{M7}/Λ^4	[-5.32, 5.20]	[-6.60, 6.43]	[-9.47, 9.38] at [2.43, 2.43] TeV	[-11.91, 11.11] at [2.29, 2.33] TeV	

SM

Conclusion

- First observation of EW diboson production in semileptonic final states
- Measured signal strength $\mu_{\text{EW VVjj}} = 1.28 \pm 0.22$
- Measured fiducial cross section 29.2 ± 4.2 fb
- Competitive constraints on aQGCs
- Paper available at <u>arXiv:2503.17461</u> (submitted to EPJC)

Thank you !

Back-up

O-lepton event selection

Selection		SR	V CR
	Number of Loose leptons		0
$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss}$		> 200 GeV
	$p_{\rm T}^{\rm miss}$		> 50 GeV
	$\min(\Delta \Phi(E_T^{\text{miss}}, \text{small-R jets}))$		$> \pi/6$
anti-QCD	$\Delta \Phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss})$		$< \pi/2$
	$\Delta \phi(E_{\rm T}^{\rm miss}, Sig - J)$		$> \pi/9$
	Leading Tag jet p_T		> 30 GeV
VBS jets candidates	Subleading Tag jet p_T		> 30 GeV
	m_{jj}		> 400GeV
	Number of small-R jets		≥ 4
$W/Z \rightarrow ii$	Leading signal jet p_T		> 40 GeV
$m/Z \rightarrow ff$	Subleading signal jet p_T		> 20 GeV
	$Z \to q\bar{q}$ and $W \to q\bar{q}$	$64 < m_{jj} < 106 \text{GeV}$	$50 < m_{jj} < 64 GeV \text{ or } m_{jj} > 106$
VBS enhancing	m _{jjj}		> 220 GeV

Resolved

Selection			SR	V CR		
Selection		HP LP				
Number of Loose lept			0			
$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss}$	> 200 GeV				
	$p_{\mathrm{T}}^{\mathrm{m}iss}$	> 50 GeV				
	$\min(\Delta \Phi(E_{\rm T}^{\rm miss}, {\rm small-R jets}))$	$> \pi/6$				
anti-QCD	$\Delta \Phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss})$	$< \pi/2$				
	$\Delta \phi(E_{\rm T}^{\rm miss}, Sig - J)$	> \pi/9				
	Leading Tag jet $p_{\rm T}$		> 30 GeV			
VBS jets candidates	Subleading Tag jet p_T	> 30 GeV				
	m_{jj}	> 400GeV				
W/Z > I	Num of large-R jets		≥ 1			
$W/Z \rightarrow J$	3-Var Tagger	pass50WP pass80WP && !pass50WP fail:				

Merged

1-lepton event selection

cuts		SR	W CR (WR)	tī CR (TR)			
	Number of Tight leptons	1					
$W \rightarrow \ell \nu$	Number of Loose (!Tight) leptons		0				
$m \rightarrow cr$	$E_{\rm T}^{\rm miss}$		> 80 GeV				
	$p_{\rm T}(\ell)$		> 30 GeV				
	Leading Tag jet p_T		> 30 GeV				
VBS jets candidates	Subleading Tag jet p_T	> 30 GeV					
	m _{jj}	> 400GeV					
	Number of small-R jets		≥ 4				
$W/Z \rightarrow ii$	Leading jet p_T	> 40 GeV					
", Z -> JJ	Subleading jet p_T	> 20 GeV					
	$Z \rightarrow q\bar{q}$ and $W \rightarrow q\bar{q}$	$64 < m_{jj} < 106 \text{GeV}$	$50 < m_{jj} < 64 GeV$ or $m_{jj} > 106$	$64 < m_{jj} < 106 \text{GeV}$			
Top veto	Number of additional b-tagged jets	s 0 ≥ 1					
VBS enhancing	m _{jjj}	> 220 GeV					

Resolved

Selection			SR	W CR (WR)		tĨ CR (TR)		
Selection	HP		LP	incl	HP	LP		
	Num of Tight leptons			1				
$W \rightarrow \ell_Y$	Num of Loose (!Tight) leptons	0						
<i>w</i> → <i>cr</i>	E _T miss	> 80 GeV						
	$p_{T}(\ell)$	> 30 GeV						
	Leading Tag jet p_T	> 30 GeV						
VBS jets candidates	Subleading Tag jet p_T	> 30 GeV						
	m _{jj}	> 400GeV						
$W/Z \rightarrow J$	Num of large-R jets			≥ 1				
	3-Var Tagger	pass50WP	pass80WP && !pass50WP	fail80WP	pass50WP	pass80WP && !pass50WP		
Top veto	Num of b-tagged jets outside of large-R jet		0			≥ 1		

Merged

2-leptons event selection

Selection		SR	Z CR		
	Number of Loose leptons		2		
	Same flavor	yes			
$7 \rightarrow \ell\ell$	Leading lepton p_T		> 27 GeV		
$L \rightarrow t t$	Subleading lepton p_T		> 27 GeV		
	dilepton invariant mass	83	$3 < m_{ee} < 99 \text{GeV}$		
	unepton invariant mass	$-0.01170p_{T,\ell\ell} + 85.63 < m_{\mu\mu} < 0.01850p_{T,\ell\ell} + 94.00$ GeV			
	Opposite sign	Fo	or $\mu\mu$ channel only		
	Leading Tag jet p_T	> 30 GeV			
VBS jets candidates	Subleading Tag jet p_T	> 30 GeV			
	m_{jj}	> 400GeV			
	Number of small-R jets		≥ 4		
$W/Z \rightarrow ii$	Leading signal jet p_T		> 40 GeV		
$W/Z \rightarrow JJ$	Subleading signal jet p_T	> 20 GeV			
	$Z \to q\bar{q}$ and $W \to q\bar{q}$	$64 < m_{jj} < 106 \text{GeV}$	$50 < m_{jj} < 64 GeV \text{ or } m_{jj} > 106$		
VBS enhancing	m_{jjj}		> 220 GeV		

Resolved

Selection	Selection		SR	Z CR		
Selection		HP LP incl				
	Number of Loose leptons	2				
	Same flavor		yes			
$7 \rightarrow \ell \ell$	Leading lepton p_T		> 27 GeV			
$L \rightarrow t\bar{t}$	Subleading lepton p_T	> 27 GeV				
	dilepton invariant mass	$83 < m_{ee} < 99 \text{GeV}$				
	difepton invariant mass	$-0.01170p_{T,\ell\ell} + 85.63 < m_{\mu\mu} < 0.01850p_{T,\ell\ell} + 94.00$ GeV				
	Opposite sign		For $\mu\mu$ channel only			
	Leading Tag jet p_T	> 30 GeV				
VBS jets candidates	Subleading Tag jet p_T	> 30 GeV				
	m _{jj}	> 400GeV				
$W/Z \rightarrow I$	Num of large-R jets		≥ 1			
$w/Z \rightarrow J$	3-Var Tagger	pass50WP	pass80WP && !pass50WP	fail80WP		

Merged

Fiducial cross-section

$$\mu_{0lep} \rightarrow \frac{N_{0,0} \times \mu_{0lep \text{ truth}} + N_{0,1} \times \mu_{1lep \text{ truth}} + N_{0,2} \times \mu_{2lep \text{ truth}} + N_{0,none} \times \mu_{0lep\text{ truth}}}{N_{0,0} + N_{0,1} + N_{0,2} + N_{0,none}}$$

$$\mu_{1lep} \rightarrow \frac{N_{1,0} \times \mu_{0lep \text{ truth}} + N_{1,1} \times \mu_{1lep \text{ truth}} + N_{1,2} \times \mu_{2lep \text{ truth}} + N_{1,none} \times \mu_{1lep \text{ truth}}}{N_{1,0} + N_{1,1} + N_{1,2} + N_{1,none}}$$

$$\mu_{2lep} \rightarrow \frac{N_{2,0} \times \mu_{0lep \text{ truth}} + N_{2,1} \times \mu_{1lep \text{ truth}} + N_{2,2} \times \mu_{2lep \text{ truth}} + N_{2,none} \times \mu_{2lep \text{ truth}}}}{N_{2,0} + N_{2,1} + N_{2,2} + N_{2,none}}$$

$$\mu_{2lep} \rightarrow \frac{N_{Res,Res} \times \mu_{Res \text{ truth}} + N_{Res,Mer} \times \mu_{Mer \text{ truth}} + N_{Res,none} \times \mu_{Res \text{ truth}}}{N_{2,0} + N_{2,1} + N_{2,2} + N_{2,none}}$$

$$\mu_{Res} \rightarrow 0.922 \cdot \mu_{Restruth} + 0.078 \cdot \mu_{Mertruth}$$

$$\mu_{\text{Res}} \rightarrow \frac{N_{\text{Res,Res}} \times \mu_{\text{Res truth}} + N_{\text{Res,Mer}} \times \mu_{\text{Mer truth}} + N_{\text{Res,none}} \times \mu_{\text{Res truth}}}{N_{\text{Res,Res}} + N_{\text{Res,Mer}} + N_{\text{Res,none}}}$$

pres $\mu_{\text{Restruth}} = 0.070$ primertruth

$$\mu_{\text{Mer}} \rightarrow \frac{N_{\text{Mer,Mer}} \times \mu_{\text{Mer truth}} + N_{\text{Mer,Res}} \times \mu_{\text{Res truth}} + N_{\text{Mer,none}} \times \mu_{\text{Mer truth}}}{N_{\text{Mer,Mer}} + N_{\text{Mer,Res}} + N_{\text{Mer,none}}}$$

$$\mu_{\text{Mer}} \rightarrow 0.039 \cdot \mu_{\text{Restruth}} + 0.961 \cdot \mu_{\text{Mertruth}}$$

All SRs

