From Inclusive to Differential: Precision Measurements of $t\bar{t}W$ Production at 13 TeV with the ATLAS detector

Nihal Brahimi

On behalf of the ATLAS collaboration IRN TERASCALE @ IPHC Strasbourg

$t\bar{t}W$ process: Rare, Complex and Relevant

- $t\bar{t}W$ is a **rare and challenging** process to model theoretically
 - ➡ significant higher order QCD and EWK corrections, off-shell effects, spin correlations

ATL-PHYS-PUB-2024-011

$t\bar{t}W$ process: Rare, Complex and Relevant

- $t\bar{t}W$ is an irreducible background to many SM and BSM searches including $t\bar{t}H$ and $t\bar{t}t\bar{t} \rightarrow limiting$ factor to their sensitivity
- $t\bar{t}W$ mismodeling observed by ATLAS and CMS \rightarrow measurements consistently yield 20-50% higher cross-section than prediction •Inclusive and differential cross-section measurements of $t\bar{t}W$ are a key input to improve its modelling

ATL-CONF-2019-045

JHEP07(2023)219

JHEP 05 (2024) 131

Full Run 2 ttW analysis: measurement strategy JHEP 05 (2024) 131

- $t\bar{t}W$ production cross-section measured in multilepton final states
 - → 1 Same-Sign (SS) lepton pair or 3L (e/ μ)
 - → N_{jets} ≥ 2, N_{b-jets} ≥ 1(60%) or ≥ 2(77%)
 - → 3L: events w/ OSSF and 3L invariant mass in Z peak excluded

• Inclusive measurement:

- → Signal Regions split based on N_{jets},N_{b-jets} and lepton charge
- ➡ SS further split by lepton flavour
- ➡ 48 (SS) + 8 (3L) signal regions
- Measured parameters:
 - \clubsuit Inclusive and fiducial $t\bar{t}W$ cross-sections
 - $\Rightarrow t\bar{t}W^+$ and $t\bar{t}W^-$ cross-sections and their ratio (R)
 - ➡ Relative Charge asymmetry

• Differential measurement:

➡ Signal Regions split by lepton charge: SS (++/- -), 3L (+/-)

• Measured distributions:

- ➡ Absolute and normalised cross-sections at particle level
- ➡ Relative Charge asymmetry at particle level
- 8 observables sensitive to modelling differences:

→ N_{jets}, H^{jet}_T, H^{lep}_T,
$$\Delta R_{\ell b,lead}$$
, M _{$\ell b,lead$} , M _{$\ell \ell,SS$} , $|\Delta \phi_{\ell \ell,SS}|$
and $|\Delta \eta_{\ell \ell,SS}|$

- Main backgrounds:
 - → Irreducible: $t\bar{t}Z$, diboson
 - ➡ Reducible: fake/non-prompt leptons from tt decays, charge misID electrons

Irreducible backgrounds: $t \bar{t} Z$ and diboson

• Dedicated $t\bar{t}Z$ and VV control regions w/ different jet multiplicities and w/ same flavour dilepton pair invariant mass near the Z peak

 $\lambda_{t\bar{t}Z} = 1.16 \pm 0.15$

➡ Normalisation extracted from fit to data (with signal extraction)

 $\lambda_{\rm VV} = 0.87 \pm 0.33$

Control regions for:	Diboson	$t\bar{t}Z$
Lepton requirement		3ℓ
Lepton definition		(L,M,M)
Lepton $p_{\rm T}$ [GeV]		(10, 20, 20)
$m^{ m SF}_{\ell^+\ell^-}~[{ m GeV}]$		> 12
$ m^{ m SF}_{\ell^+\ell^-} - m_Z ~[{ m GeV}]$		< 10
$ m_{3\ell} - m_Z [\text{GeV}]$		> 10
$m_{ m T}(\ell_0, E_{ m T}^{ m miss}) \; [{ m GeV}]$		—
$N_{ m jets}$	2 or 3	≥ 4
$N_{b ext{-jets}}$	$1 b^{60\%}$	$\geq 1 \; b^{60\%} \; { m or} \geq 2 \; b^{77\%}$
Region split		
Region naming	$3\ell VV$	3ℓ ttZ

Reducible background: Template Method

- 6 Control Regions enriched in **HF non-prompt leptons (e**, μ)
 - \rightarrow defined using exclusive BDT-based isolation working points M_{ex}
- 2 Control Regions enriched in electrons from conversions:
 - Material conversions
 - ➡ Internal (virtual photons) conversions
- Non-prompt lepton templates shapes taken from simulation
 - ➡ normalisation free-floated in the signal extraction fit

Electron Charge mis-ID background is estimated using data-driven method
 negligible for muons

Reducible background: Template Method

λ_e^{had}	λ_{μ}^{had}	λ_e^{MatC}	λ_e^{IntC}	
0.83 ± 0.31	1.01 ± 0.21	1.15 ± 0.31	1.07 ± 0.24	

7

Inclusive $t\bar{t}W$ cross-section measurement

• Simultaneous profile likelihood fit to data using event yields in 56 SR and 10 CR with 6 free parameters (backgrounds normalisation)

 $\sigma(t\bar{t}W) = 880 \pm 50$ (stat.) ± 70 (syst.) fb

9% relative uncertainty

Inclusive $t\bar{t}W$ cross-section measurement

• Simultaneous profile likelihood fit to data using event yields in 56 SR and 10 CR with 6 free parameters (backgrounds normalisation)

- Consistent at 1.4 σ with latest SM NNLO theory calculation 745 ± 50 (scale) ± 13 (2-loop approx.) ± 19(PDF, α_s) fb
- •Leading sources of systematic uncertainties:
 - \Rightarrow tt W modeling (generator, parton shower)
 - → $t\bar{t}H$, $t\bar{t}t\bar{t}$ background normalisation
 - ➡ b-tagging
 - Non-prompt isolation BDT calibration

$t\bar{t}W$ Ratio and Asymmetry measurements

- $\bullet\ t\bar{t}W^+$ and $t\bar{t}W^-$ production rates and their ratio measured inclusively
- Relative charge asymmetry A_C^{rel} also measured
- Both measurements consistent with MC predictions

 A_C^{rel} (Sherpa 2.2.10) = 0.322 ± 0.003 (scale) ± 0.007 (PDF)

ttW differential measurements

- First time differential measurements carried out for $t\bar{t}W$ process at the LHC
- Fiducial phase space definition follows closely the detector level selection using quasi-stable objects (mean lifetime > 30 ps)
- Unfolding performed using a profile likelihood approach
 - ➡ same background model and CR from inclusive fit included
 - ➡ Tikhonov regularisation applied with optimised strength for each observable/fiducial volume
 - ➡ Dedicated binning scheme optimisation, closure and stress tests carried out
 - ➡ signal extracted for each particle-level bin by a fit to the detector level events in several SR

 $\mathcal{L}(\sigma,\vec{\theta},\vec{\lambda}) = \prod_{i} P\left(N_{i}|L_{\text{int}}\sum_{j} \mathcal{R}_{ij}(\vec{\theta})\sigma_{j}(\vec{\theta}) + B_{i}(\vec{\theta},\vec{\lambda})\right) \times \prod_{k} G(\theta_{k}) \times \prod_{l} R(\sigma_{l},\tau_{l}),$

ttW differential measurements

- First time differential measurements carried out for $t \overline{t} W$ process at the LHC
- Fiducial phase space definition follows closely the detector level selection using quasi-stable objects (mean lifetime > 30 ps)
- Unfolding performed using a profile likelihood approach
 - ➡ same background model and CR from inclusive fit included
 - → Tikhonov regularisation applied with optimised strength for each observable/fiducial volume
 - ➡ Dedicated binning scheme optimisation, closure and stress tests carried out
 - ➡ signal extracted for each particle-level bin by a fit to the detector level events in several SR

12

 $\mathcal{L}(\sigma,\vec{\theta},\vec{\lambda}) = \prod_{i} P\left(N_{i}|L_{\text{int}}\sum_{j} \mathcal{R}_{ij}(\vec{\theta})\sigma_{j}(\vec{\theta}) + B_{i}(\vec{\theta},\vec{\lambda})\right) \times \prod_{k} G(\theta_{k}) \times \prod_{l} R(\sigma_{l},\tau_{l}),$

ttW differential measurements: cross-section vs Niets

- Unfolded cross-sections compared to several theoretical predictions (accounting for higher order QCD and EWK corrections)
 - ➡ absolute cross-sections higher than predictions (consistent with inclusive measurements)
- Good agreement with all MC setups for N_{jets} with p-values ~ 17%-96%

$t\bar{t}W$ differential measurements: cross-section vs H_{τ}^{lep}

- Good agreement with all MC setups with p-values ~ 50%-90%
- Comparison to calculation including off-shell effects (Eur. Phys. J. C 81 (2021) 675) in 3L channel for a subset of observables
 - ➡ slightly higher cross-sections than other predictions

$t\bar{t}W$ differential measurements: compatibility with predictions

χ^2 and p-values for unfolded normalised cross-section distributions in the 2ISS region

Observable	NDF	Sherpa 2.2.10		MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Py8		Powheg+H7	
		χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	p-value	χ^2	<i>p</i> -value
$N_{ m jets}$	5	6.5	0.26	7.8	0.17	6.9	0.23	7.2	0.21	6.8	0.24
$H_{ m T}^{ m jet}$	5	2.0	0.85	2.3	0.81	1.9	0.86	2.5	0.78	2.7	0.75
$H_{ m T}^{ m lep}$	7	6.1	0.53	6.3	0.51	5.9	0.55	5.9	0.56	5.9	0.55
$\Delta R_{\ell b,\mathrm{lead}}$	7	6.8	0.45	7.2	0.41	7.2	0.41	7.2	0.40	7.1	0.41
$ \Delta \phi_{\ell\ell,{ m SS}} $	7	1.7	0.97	1.7	0.98	1.9	0.96	1.8	0.97	1.9	0.97
$ \Delta\eta_{\ell\ell, m SS} $	6	7.0	0.32	8.1	0.23	12.1	0.06	10.2	0.12	10.1	0.12

- Overall good agreement with MC predictions for unfolded cross-sections
 - → mild tensions in some observables e.g $|\Delta \eta_{\ell\ell,SS}|$

ttW differential measurements: A^{rel}

Total unc.

Powheg+Py8

AMC@NLO+Py8 (FxFx)

 $\mathsf{A}_{\mathrm{C}}^{\mathrm{rel}}$

1.5

0.5

-0.5

0.5

-0.50.5

-0.5

0.5

-0.5

2

3

5

2ISS

6

2

3

4

31

Particle-Level N_{iete}

5

Pred. - Data

Data, stat. unc.

aMC@NLO+Py8 (Incl.)

Sherpa

Powheg+Hw7

 $A_{\rm C}^{\rm rel}$

1.5

0.5

-0.5

0.5

-0.5

0.5

-0.5Ē

0.5

-0.5F

Data

Pred.

Data, stat. unc.

Powheg+Py8

aMC@NLO+Py8 (FxFx)

Sherpa

Total unc.

----- Off-Shell

- ➡ Many systematic uncertainties cancel out
- Some tension between data and MC predictions
 - ➡ Not statistically significant

➡ Good p-values obtained

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Observable	NDF	Sherpa 2.2.10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				χ^2	<i>p</i> -value
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$N_{ m jets}$	4	4.3	0.37
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$H_{\mathrm{T}}^{\mathrm{jet}}$	5	4.1	0.53
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-000000000	$H_{ m T}^{ m lep}$	6	3.6	0.73
$\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i$	40 70 85 100 115 130 150 180 40 115 145 170 200 245	$\Delta R_{\ell b, \mathrm{lead}}$	6	3.3	0.77
Particle-Level H _T [GeV] $ \Delta \varphi_{\ell\ell}, SS $ 0 1.2 0.30	Particle-Level H_T^{lep} [GeV]	$ \Delta \phi_{\ell\ell,\mathrm{SS}} $	6	7.2	0.30
$ \Delta\eta_{\ell\ell,{ m SS}} $ 6 4.9 0.56		$ \Delta\eta_{\ell\ell, m SS} $	6	4.9	0.56

Summary

- Largest ever dataset available allowing to evolve from inclusive to first time differential $t\bar{t}W$ measurements
 - \Rightarrow overview of the ATLAS inclusive and differential t $\bar{t}W$ production cross-sections measurements given
- Inclusive cross-section found to be ~ 20% higher than state-of-the-art predictions despite including higher order QCD/EWK effects
 - ⇒ compatible at the level of 1.4 σ with NNLO prediction of 745 ± 50 (scale) ± 13 (2-loop approx.) ± 19(PDF, α_s) fb
- Normalised differential distributions are consistent with predictions within uncertainties -> dominated by statistical component
 - → some observables exhibit mild tensions in parts of the distributions but not significant at current accuracy of the measurements
- These measurements are a key input to improve the modelling of this process
 - ➡ HEPdata entry (bootstrap replicas, HISTFactory workspaces for inclusive and differential fits)
- With Run 3 and beyond an unprecedented amount of data awaits!
 - \Rightarrow would enhance significantly the precision of $t\bar{t}W$ measurements...stay tuned!

17

Backup

Definition of unfolded observables

Variable	Definition
$N_{ m jets}$	Number of selected jets with $p_{\rm T}>25{\rm GeV}$ and $ \eta <2.5$
$H_{ m T}^{ m jet}$	Scalar sum of the transverse momenta of selected jets with $p_{\rm T}>25{\rm GeV}$ and $ \eta <2.5$
$H_{\mathrm{T}}^{\mathrm{lep}}$	Scalar sum of the transverse momenta of selected leptons
$\Delta R_{\ell b, \mathrm{lead}}$	Angular separation between the leading lepton and the leading b -tagged jet
$ \Delta \phi_{\ell\ell,{ m SS}} $	Absolute azimuthal separation between the two leptons of the same-sign pair
$ \Delta\eta_{\ell\ell,{ m SS}} $	Absolute pseudorapidity separation between the two leptons of the same-sign pair
Variable	e Definition
$M_{\ell b, \text{ lead}}$	Invariant mass of the leading lepton and the leading <i>b</i> -tagged jet
$M_{\ell\ell,\rm SS}$	Invariant mass of the two leptons of the same-sign pair

Tikhonov regularisation parameter

Observable	$2\ell SS++$	$3\ell +$	$2\ell SS$	$3\ell-$
$N_{ m jets}$	0.7	0.3	0.4	0.2
$H_{\mathrm{T}}^{\mathrm{jet}}$	0.6	0.3	0.4	0.2
$H_{\mathrm{T}}^{\mathrm{lep}}$	0.5	0.1	0.2	0.1
$\Delta R_{\ell b,\mathrm{lead}}$	0.3	0.2	0.3	0.3
$ \Delta \phi_{\ell\ell,{ m SS}} $	0.1	0	0	0
$ \Delta\eta_{\ell\ell,{ m SS}} $	0.1	0.1	0.1	0

$$\rho = \left\langle \sqrt{1 - \left(V_{ii}V_{ii}^{-1}\right)^{-1}} \right\rangle_{i \in 1, \dots, N_{\text{bins}}}$$

- **Tikhonov** regularisation is implemented through the R term in the PLU which constrains the discrete second derivative of the particle level bin normalisation factor to be close to zero
- Optimisation based on bootstrapping to estimate the value of the parameter that minimises the global correlation coefficient of the unfolded covariance matrix

Examples of stress/closure tests

- Building an Asimov dataset with changed normalisation in certain regions or applying linear slopes in the particle level distributions which are then retrieved by the PLU
- Stress test evaluating the bias in the unfolding using an alternative signal model
- Stress test evaluating the sensitivity to the limited number of simulated events by splitting the signal sample into 2 parts of equal size (for unfolding and as Asimov dataset)
- Data-driven stress test to evaluate the bias in the unfolded observed data (unfolding without regularisation to build pseudo Asimov dataset using a second order polynomial fitting)