

Plan

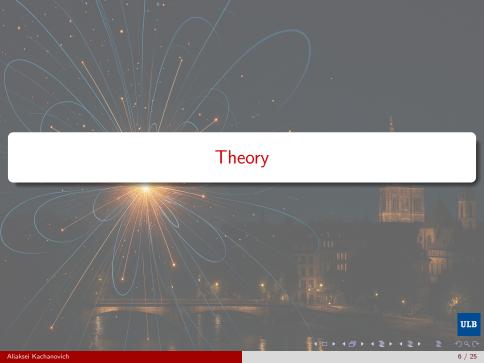
- Motivation
- 2 Theory
 - The SM
 - The NP contribution
- Phenomenology
 - Resonant contribution rescaling vs. new background
 - Phenomenological constrains
- 4 Conclusion

Motivation

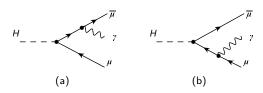
- Rare Standard Model (SM) processes may shed light on open questions, such as dark matter, baryon asymmetry, and neutrino masses.
- The decay $H \to Z \gamma$ is a rare process within the SM.
- ATLAS and CMS reported a branching fraction of $(3.4\pm1.1)\times10^{-3}$ for $H\to Z\gamma$ process, which is higher by a factor of 2.2 ± 0.7 compared to the SM prediction.
- ullet The excess has been interpreted as a modification of the $HZ\gamma$ vertex.
- Detectors measure $H \to \ell\ell\gamma$; excess events may also be due to new physics (NP) backgrounds.

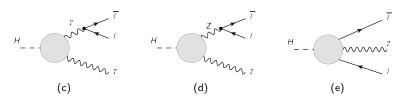
The content of this talk closely follows the analysis in [arXiv:2503.08659], in collaboration with J. Kimus (ULB), S. Lowette (VUB, IIHE), and M.H.G. Tytgat (ULB).

Aliaksei Kachanovich 4 / 25


Motivation

- EFT and UV-complete models responsible for the branching fraction of $(3.4 \pm 1.1) \times 10^{-3}$ for $H \to Z\gamma$.
- Methods to falsify background scenarios.
- Constraints on our models from other observed phenomena.


The content of this talk closely follows the analysis in [arXiv:2503.08659], in collaboration with J. Kimus (ULB), S. Lowette (VUB, IIHE), and M.H.G. Tytgat (ULB).


< \(\bar{B} \) < \(\bar{B} \) < \(\bar{B} \) \(\bar{B} \

Theory. The SM

Tree-level amplitude. Due to the small electron Yukawa coupling, this contribution is relevant only for the dimuon channel.

Loop amplitudes (schematic) contributing to $H \to \ell\ell\gamma$.

7 / 25

Theory. The SM

• The one-loop amplitude can be expressed as [arXiv:2001.06516]

$$\begin{split} \mathcal{M}_{\text{SM,loop}} &= \big[(q_{\mu} p_{1\nu} - g_{\mu\nu} \ q \cdot p_1) \bar{u}(p_2) \big(A_1 \gamma^{\mu} P_R + B_1 \gamma^{\mu} P_L \big) v(p_1) \\ &+ (q_{\mu} p_{2\nu} - g_{\mu\nu} \ q \cdot p_2) \bar{u}(p_2) \big(A_2 \gamma^{\mu} P_R + B_2 \gamma^{\mu} P_L \big) v(p_1) \big] \varepsilon^{*\nu}(q) \,, \end{split}$$

Tree level

$$\mathcal{M}_{\text{SM, tree}} \ = \ -\frac{e^2 m_{\mu} \varepsilon_{\nu}^{*}(q)}{2 m_{W} \sin \theta_{W}} \\ \times \ \left[\frac{\bar{u}(p_{1}) (\gamma^{\nu} \not q + 2 p_{1}^{\nu}) v(p_{2})}{t - m_{\ell}^{2}} - \frac{\bar{u}(p_{1}) (\gamma^{\nu} \not q + 2 p_{2}^{\nu}) v(p_{2})}{u - m_{\ell}^{2}} \right] \, .$$

ULB

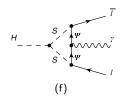
Aliaksei Kachanovich 8 / 25

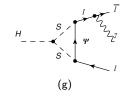
Theory. The NP contribution

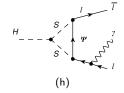
• On the level of effective field theory, the contribution to the $\ell\ell\gamma$ background is described by a dimension-8 effective operator [arXiv:1008.4884]

$${\cal L}_{
m eff} \supset rac{g'}{\Lambda_R^4} |H|^2 \partial_
u (ar\ell_R \gamma_\mu \ell_R) B^{\mu
u} \, .$$

• Other effective operators also contribute to the $H \to \ell\ell\gamma$ process.

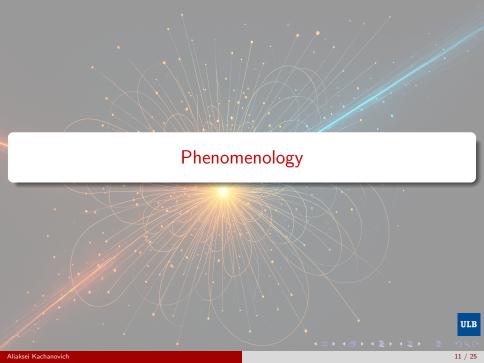

Aliaksei Kachanovich 9 / 25


Theory. The NP contribution


 One of possible UV-complete solution which can provide missing events described by the Dark matter model [arXiv:1405.6921]

$$\mathcal{L}\supset\frac{1}{2}\partial_{\mu}S\partial^{\mu}S-\frac{1}{2}\textit{m}_{S}^{2}S^{2}+\bar{\Psi}(\textit{i}\not{D}-\textit{m}_{\Psi})\Psi-\sum_{\ell}(\textit{y}_{\ell}S\bar{\Psi}\ell_{R}+\textit{h.c.})-\frac{\lambda_{\textit{hs}}}{2}S^{2}|\textit{H}|^{2}$$

 \bullet This Lagrangian gives rise to three new Feynman diagrams contributing to $H\to\ell\ell\gamma$



Aliaksei Kachanovich 10 / 25

General overview

- \bullet The experimental branching fraction can be obtained for the scale $\Lambda_{\mathcal{R}}=246$ GeV.
- In the UV-complete theory, there are 4 new parameters that impact the decay rate.
- One solution can be at $m_{\Psi}=m_S=62.5$ GeV with the $\ell S\Psi$ vertex coupling $y_{\ell}=1.66$ and HSS vertex coupling $y_{hs}=0.26$.
- Another scenario: $m_{\Psi} = m_S = 100$ GeV with $y_{\ell}^2 \cdot y_{hs} = 28.1$.

ULB

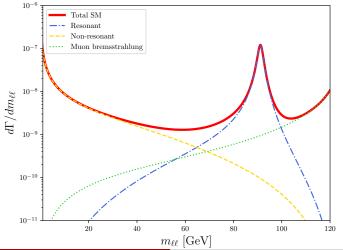
Aliaksei Kachanovich 12 / 25

Definition of resonant contribution

 The loop contribution consists of resonant and non-resonant parts [arXiv:2109.04426]:

$$a_{1(2)}(s,t) = a_{1(2)}^{nr} + a_{1(2)}^{res}(s),$$

where

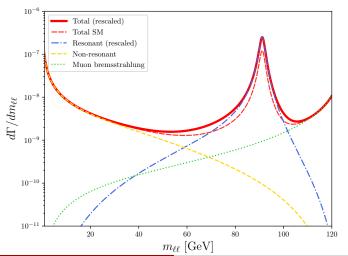

$$a_{1(2)}^{nr} \equiv \tilde{a}_{1(2)}(s,t) + \frac{\alpha(s) - \alpha(m_Z^2)}{s - m_Z^2 + im_Z\Gamma_Z}, \qquad a_{1(2)}^{res}(s) \equiv \frac{\alpha(m_Z^2)}{s - m_Z^2 + im_Z\Gamma_Z}.$$

ULB

Aliaksei Kachanovich 13 / 25

SM contribution to $H \to \ell \bar{\ell} \gamma$

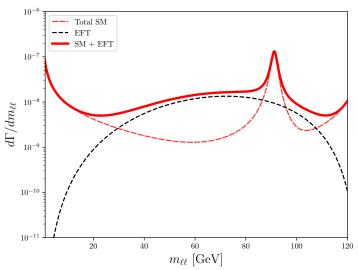
• The resonant contribution corresponds to the process $H \to Z\gamma$, while the non-resonant contribution includes box diagrams and $H \to \gamma\gamma$.



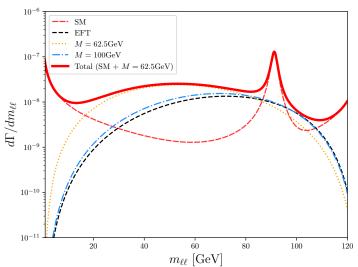
Aliaksei Kachanovich

Contribution with rescaled resonant part

• To simulate the differential decay rate from the experiment, we rescale the resonant contribution in the process $H \to \ell\ell\gamma$.



Aliaksei Kachanovich


Effective operator

The differential decay rate with the contribution of the effective operator.

UV-complete theory

The differential decay rate with the contribution of the UV-complete theory.

Kinematical cuts impact

Theoretical decay rates and the experiment-to-theory ratio for a typical choice of cuts.

#	Cuts	$m_{\ell\ell}^{min}$	$m_{\ell\ell}^{max}$	$\Gamma_{ m tot}^{ m SM}$	$\Gamma_{ m tree}^{ m SM}$	$\frac{Br_{\text{resc}}}{Br_{\text{SM}}}$	$\frac{Br_{\rm EFT}}{Br_{\rm SM}}$	$\frac{Br_{\mathrm{UV}}}{Br_{\mathrm{SM}}}$
1	None	50	125	0.768	0.287	1.67	1.86	2.07
2	None	50	100	0.504	0.028	2.01	2.21	2.57
3	CMS	40	125	0.455	0.011	2.04	2.10	2.13
4	CMS	50	125	0.451	0.011	2.06	2.06	2.06
5	CMS	70	125	0.440	0.011	2.07	1.80	1.71
6	CMS	70	100	0.432	0.006	2.08	1.74	1.68
7	CMS	80	100	0.416	0.005	2.09	1.48	1.39

Table: CMS cuts: $E_{\gamma} \geq 15$ GeV, $E_1 \geq 7$ GeV, $E_2 \geq 25$ GeV and $t_{min}, u_{min} \geq (0.1 m_H)^2$. $m_{\ell\ell}^{min(max)}$ are in GeV, $\Gamma_{\rm tot(tree)}^{SM}$ are in keV. UV-complete theory: $m_S = m_F = 62.5$ GeV.

Aliaksei Kachanovich

Muon magnetic dipole moment

• Contribution to the muon's electromagnetic form factor $F_2(q^2)$ with q photon momenta

$$\Delta F_2(0) \, \hat{=} \, \Delta \left(\frac{g_\mu - 2}{2}\right) \, \hat{=} \, \Delta a_\mu = \frac{y_l^2}{192\pi^2} \frac{m_\mu^2}{M^2}$$

is positive.

- For $y_\ell=1.28$ and $m_S=62.5$ GeV (corresponding to $\lambda_{hs}y_\ell^2=0.72$ if $\lambda_{hs}=0.44$, is $\Delta a_\mu=2.5\cdot 10^{-9}$. A similar shift can be obtained with $y_\ell=2.05$.
- For $m_S=100$ GeV, corresponding respectively to $\lambda_{hs}y_\ell^2=28.1$ for $\lambda_{hs}=6.7$.
- The Standard Model prediction for the muon anomalous magnetic moment is $a_{\mu}(\exp) a_{\mu}(\mathrm{SM}) = (251 \pm 59) \cdot 10^{-11}$, that lies within the range of the UV model prediction.

ULB

Electroweak precision tests (EWPT)

• For $m = m_S = 62.5(100)$ GeV

$$\left. \frac{\Delta \Gamma}{\Gamma} \right|_{\text{inv}} = 0.0002 \, (0.00005) < 0.003$$
 $\left. \frac{\Delta \Gamma}{\Gamma} \right|_{\ell\ell} = 0.0002 \, (0.00006) < 0.001$
 $\Delta m_W = 0.0082 \, (0.0026) \, \text{GeV} < 0.013 \, \text{GeV}$

 \bullet Oblique corrections are significantly smaller than the current 1σ experimental uncertainties.

Aliaksei Kachanovich 20 / 25

Constraints from colliders

- Masses of Ψ and S are degenerate, with $m_{\Psi} \geq m_{S}$.
- As the Yukawa coupling is not small, the process $\stackrel{(-)}{\Psi} \to S + \stackrel{(-)}{\ell}$ leads to soft leptons, which escape detection. The production of $\Psi\bar{\Psi}$ is thus equivalent to missing energy, $pp\to {\rm jets} +\not\!\!\!\!/ E$.
- Collider detection limits can be estimated by comparing the processes $q\bar{q}\to Z'\to \chi\bar{\chi}$ and $q\bar{q}\to Z/\gamma\to \Psi\bar{\Psi}$.
- Bound: $m_F \gtrsim$ 67 GeV (within 5%); benchmark with $m_\Psi \gtrsim m_S =$ 62.5 GeV is borderline, while $m_\Psi \gtrsim m_S = 100$ GeV is safe.

Aliaksei Kachanovich 21 / 25

Comments on DM direct detection

- In thermal freeze-out, the abundance $Y_S=n_S/s$ (with s the entropy density) scales as $Y_S\propto 1/\langle\sigma v\rangle\propto 1/\lambda_{hs}^2$.
- For the benchmark S particle with mass $m_S=100$ GeV, thermal freeze-out requires a large quartic coupling: $\lambda_{hs}\gtrsim 2.2$.
- ullet For S to account for all of DM ($f_S=1$), one would instead need $\lambda_{hs}pprox 0.04$.
- If stable, the *S* particle would therefore be a subdominant DM component: $f_S \approx (0.04/2.2)^2 \approx 3 \cdot 10^{-4}$.
- This benchmark is excluded by direct detection. A lighter S particle, with m_S slightly above $m_H/2$, may still evade direct detection due to proximity to the Higgs resonance.

Aliaksei Kachanovich 22 / 25

Conclusion

- There is background from $H \to \gamma \gamma$, tree-level bremsstrahlung, and box diagrams, which is cut-dependent.
- Appropriate kinematics cuts substantially reduce the background.
- EFT provides a possible explanation for the enhanced decay rate at the scale $\Lambda_R=246$ GeV.
- There is a possible solution in terms of the UV-complete theory.
- The differential decay rate from the experiment is needed.
- Both the UV-complete model and EFT remain consistent with the current muon g - 2 measurement, electroweak precision tests (EWPT), and collider measurements.
- Different kinematic cuts provide the possibility to constrain the model parameters.

