

Probing a class of scotogenic models via Z and Higgs boson decays

Based in work to appear soon

[Darricau, Lee, Orloff, Teixeira, 2505.xxxx]

[A. Alvarez & al., 2301.08485]

Adrian Darricau

Laboratoire de Physique de Clermont - LPCA CNRS Nucléaire et Particules (IN2P3)

Standard Model: an incomplete picture

Despite its many successes, experimental evidence of the **incompleteness** of the SM:

- \rightarrow Neutrino oscillations
- \rightarrow Dark Matter (DM)
- \rightarrow Baryon Asymmetry of the Universe (BAU)

Also some theoretical issues...

Standard Model: an incomplete picture

Also some **theoretical issues** such as:

- \rightarrow Fundamental scales gap
- \rightarrow Hierarchy problem
- \rightarrow Flavour puzzle

If NP at Planck scale, 30 order cancellation with bare mass!

$\Delta M_H^2 |_{1-loop}^{SM} = \frac{3\Lambda_{UV}^2}{8\pi^2 v^2} [M_H^2 + 2M_W^2 + M_Z^2 - 4m_t^2 + ...]$

 \rightarrow How to overcome these experimental caveats? \rightarrow Can we also **improve these theoretical issues**?

Scotogenic models: motivation

Extension at the **Tera** eV **Scale**

A lot of mechanisms to explain ν mass generation!

\rightarrow Seesaw realisation, radiative mechanisms...

Can both be related?

A plethora of models putting forward DM candidates!

 \rightarrow WIMPs, FIMPs...

Yes ! A "Dark generation" of ν mass: "Scotogenic"

A simple radiative seesaw ν mass generation !

 \rightarrow A global \mathbb{Z}_2 symmetry to stabilise DM candidates \rightarrow Neutrino mass generation mechanism constrained by the global \mathbb{Z}_2 symmetry, exclusion of tree level neutrino masses

Many interesting realisations of the scotogenic paradigm T1-1-A, **T1-2-A**...

[D. Restrepo, 1308.3655]

4

Description of the T1-2-A setup

 \rightarrow T1-2-A setup: adds 2 $SU(2)_L$ doublets and (1 fermionic, 1 scalar) charged under \mathbb{Z}_2

 \rightarrow Extended: addition of fermion singlet and c

$$\begin{split} \mathcal{V}_{\text{scalar}} &= \frac{1}{2} M_S^2 \, \mathbf{S}^2 + \frac{1}{2} \lambda_{4S} \, \mathbf{S}^4 + M_\eta^2 \, |\boldsymbol{\eta}|^2 + \lambda_{4\eta} \, |\boldsymbol{\eta}|^4 + \frac{1}{2} \lambda_S \, \mathbf{S} \\ &+ \lambda_\eta \, |\boldsymbol{\eta}|^2 \, |\Phi|^2 + \lambda_\eta' \, |\boldsymbol{\eta} \Phi^\dagger|^2 + \frac{1}{2} \lambda_\eta'' \left[\left(\Phi \boldsymbol{\eta}^\dagger \right)^2 + \text{H.c.} \right] + \lambda_\eta'' \, \mathbf{M} \, \mathbf{M}$$

A. Darricau, LPCA Clermont

d 2 singlets	Field	η	\boldsymbol{S}	F_1	F_2	Ψ_1	
	$\mathrm{SU}(2)_L$	2	1	1	1	2	
doublet	$\mathrm{U}(1)_Y$	1	0	0	0	-1	

Which states after EWSB?

Description of the T1-2-A setup

- \rightarrow T1-2-A setup: adds 2 $SU(2)_L$ doublets and (1 fermionic, 1 scalar) charged under \mathbb{Z}_2
- \rightarrow Extended: addition of fermion singlet and c
- After EWSB:
 - \rightarrow Scalars: 2 CP even ($\phi_{1/2}$), 1 CP odd (A^0) neutral states and charged η^{\pm} state \rightarrow Fermions: 4 Majorana states (χ_i) and 1 charged vector-like ψ^{\pm}

 - In short: \rightarrow 3 potential **DM candidate** : ϕ_1 , χ_1 and A^0 \rightarrow No mixing between CP even and odd state in scalar sector

d 2 singlets	Field	η	S	F_1	F_2	Ψ_1	
	$\mathrm{SU}(2)_L$	2	1	1	1	2	
doublet	$\mathrm{U}(1)_Y$	1	0	0	0	-1	

 \rightarrow 4 Majorana states (χ_i) needed for 3 massive neutrinos (and leptogenesis)

Description of the T1-2-A setup

$\checkmark \nu$ mass mechanism, lepton decays and muon magnetic dipole moment ($\Delta a_{\mu} \sim 4\sigma$) ✓ Found **2 viable DM** candidates (ϕ_1, χ_1) Extensive study of BAU via leptogenesis

Viable DM candidates (ϕ_1, χ_1)

[A. Alvarez & al., 2301.08485]

A. Darricau, LPCA Clermont

The scotogenic T1-2-A setup: revisited

- A flavour physics approach \rightarrow keep points with unviable DM candidate **Relax** certain (driving) assumptions \rightarrow generic Δa_{μ} - from SM-like to NP (at ~ 4.2 σ); no BAU
- **Thorough** exploration of **flavoured** and **ElectroWeak Precision Observables** (EWPO)!
 - \rightarrow cLFV decays: leptonic (radiative, 3 body, conversion in Nuclei), $Z/H \rightarrow \ell_{\alpha} \ell_{\beta}$
 - \rightarrow **EWPO**: sensitive probes of new interactions (scalar, vector, fermion...) Oblique parameters (S,T,U), $Z/H \rightarrow inv$, $Z/H \rightarrow \ell_{\alpha}\ell_{\alpha}$
 - \rightarrow Lepton Flavour Universality Violation (LFUV)
 - \rightarrow In short: revisit a well studied model from a flavour perspective with updated Δa_{μ}

Our goals ?

ν mass generation (at 1 loop)

 ν mass generation

- \rightarrow A "seesaw" mechanism but at 1 loop !
- \rightarrow Flavour violating coupling \mathscr{G} giving neutrino masses

$$\mathscr{L}_{\text{fermion}} \supset -g_{\psi}^{\alpha} \widetilde{\overline{\psi_{2}}} L_{L}^{\alpha} S - g_{F_{i}}^{\alpha} \widetilde{\overline{L_{L}^{\alpha}}} \eta F_{i}$$

$$M_{\nu} = \mathscr{G}^T M_L \mathscr{G}$$

Naturally suppressed by a loop prefactor !

Viable Dark Matter candidate

 \rightarrow Most points excluded by DM-related constraints...

 \rightarrow MicrOmegas to generate relic density and direct detection observables \rightarrow CP even ϕ_1 , Majorana fermion χ_1 and **new viable candidate** CP odd A^0 !

Muon dipole moment

[A. Boccaletti & al. 2407.10913]

 \rightarrow If large Δa_{μ} (4.2 σ) \rightarrow boosts dipole operator \rightarrow If small Δa_{μ} (SM-like) \rightarrow constraints on NP What is the impact of a more suppressed Δa_{μ} ?

Lattice QCD results appeases tension with experiments

11

cLFV lepton processes

$\mu \rightarrow e\gamma, \mu \rightarrow 3e$; effect of NP vs SM-like Δa_{μ}

cLFV lepton processes

Neutrino less Mu-e conversion in the Nuclei

cLFV lepton processes

Leptonic tau decays

14

Z cLFV decays

\rightarrow **Representative** of the other Z cLFV decays \rightarrow Driven by the NP coupling to right-handed leptons g_R^{α}

$$\begin{aligned} \mathcal{V}_{\text{fermion}} &= M_{\nu}^{\alpha\beta} \, \overline{\nu_{\alpha}^{c}} \, \nu_{\beta} - M_{\psi} \, \overline{\psi_{1}} \, \overline{\psi_{2}} + \frac{1}{2} \, M_{F_{ii}} \, \overline{F_{i}^{c}} \, F_{i} - y_{1i}^{*} \, \overline{F_{i}} \, \Phi^{\dagger} \, \overline{\psi_{1}} - y_{2i}^{*} \\ &+ g_{\psi}^{\alpha} \, \overline{\widetilde{\psi_{2}}} \, L_{L}^{\alpha} S + g_{F_{i}}^{\alpha} \, \overline{\widetilde{L_{L}^{\alpha}}} \, \eta F_{i} + g_{R}^{\alpha} \overline{e_{R}^{\alpha}} \, \eta^{\dagger} \, \psi_{1} \right) + \text{H.c.} \end{aligned}$$

Beyond future sensitivity ($\tau \rightarrow 3\mu$)

Not as important as expected...

Higgs cLFV decays

- → **Representative** of the other H cLFV
- \rightarrow Driven by the NP trilinear coupling α when large

$$\begin{split} \mathcal{V}_{\text{scalar}} &= \frac{1}{2} M_S^2 \, \mathbf{S}^2 + \frac{1}{2} \lambda_{4S} \, \mathbf{S}^4 + M_\eta^2 \, |\boldsymbol{\eta}|^2 + \lambda_{4\eta} \, |\boldsymbol{\eta}|^4 + \frac{1}{2} \lambda_S \, \mathbf{S}^2 |\Phi|^2 + \frac{1}{2} \lambda_S \, \mathbf{S}$$

Again, beyond future sensitivity...

Maybe EWPO ? LFUV ?

\rightarrow **EWPO**: sensitive probes of new interactions (scalar, vector, fermion...)

Why important? \rightarrow Towards high precision tests of the SM (FCC-ee...)

- $\rightarrow Z/H \rightarrow inv$
- \rightarrow Oblique parameters
- $\rightarrow Z/H \rightarrow \ell_{\alpha}\ell_{\alpha} + LFUV$

- Oblique parameters (S,T,U), $Z/H \rightarrow inv$, $Z/H \rightarrow \ell_{\alpha}\ell_{\alpha}$ and their sensitive ratios

18

ElectroWeak Precisient in the set of the se $= \sum_{i_{1}, i_{2}, i_{3}} = \sum_{i_{1}, i_{2}, i_{3}} \sum_{i_{1}, i_{2}, i_{3}} \sum_{i_{2}, i_$ $E_{TX^{(4)}} = \sum_{i=1}^{N} \frac{32^{i}}{32^{i}} M_{i}^{(2)} M_{i}^{$ $\left(\left(\left(\frac{1}{2}\right)^{p\times W}\right)^{p\times W}$

 $\sum_{k=1}^{N} \sum_{k=1}^{N} \sum_{$

 $\begin{pmatrix} (W_{2}^{2}, W_{1}^{2}, W_{2}^{2}, W_{3}^{2}, W_{3}$

 $+ \operatorname{Le}^{(k)} \left(\operatorname{Le}^{(k)} \right)^{*}$

(1 Ety.

) # 1000 ((+

 $\begin{array}{c} + \sum_{k} \left(\left(1, \frac{1}{k} \right)^{k} \right)^{k} \left(\left(1, \frac{1}{k} \right)^{k} \right)^{k} \left(1, \frac{1}{k} \right$

 $\sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

 $\frac{zW + \left(\stackrel{p_{\chi}}{zW}, \stackrel{q_{\phi}}{zW}, \stackrel{i_{\eta}}{zW}, \stackrel{i_{\eta}}{zW} \right)^{-12} \left(\stackrel{M_{Z}}{zW}, \stackrel{q_{\phi}}{zW}, \stackrel{i_{\eta}}{zW}, \stackrel{i_{\eta}}{zW} \right)^{-114} \left(\stackrel{M_{Z}}{zW}, \stackrel{m_{\phi}}{zW}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}} \right)^{-12} \left(\stackrel{M_{Z}}{zW}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{M_{Z}}{M_{\phi}} \right)^{-12} \left(\stackrel{M_{Z}}{zW}, \stackrel{M_{Z}}{M_{\phi}}, \stackrel{$

 $+ \sum_{L}^{12} \left(\frac{M_{Z_{3}}}{M_{Z_{3}}} \right)^{n_{L}} \frac{M_{Z_{3}}}{M_{U}} C_{1} \left(\frac{m_{Z_{3}}}{m_{Z_{3}}} \right)^{n_{L}} \frac{M_{U}}{M_{U}} \left(\frac{m_{Z_{3}}}{m_{Z_{3}}} \right)^{n_{L}} \frac{M_{U}}{M_{U}} \frac{M_{U}}{M_{U}} \frac{M_{U}}{M_{U}} \frac{M_{U}}{M_{U}} \right)$

+ T^{Re} (T^{Re})* ^{nne}^g C¹² (M²; ^{nne}^g, ^{nne}^g, ^{NP},

 $F_{L}^{1S,00} = \frac{F_{U}}{16} \begin{pmatrix} T_{T}^{0} \\ T_{L}^{0} \\ T_{L}^{0}$

(THE CAN IN THE CONTRACT OF THE STATE OF THE

 $F_{SL}^{2S,\alpha\beta} = -\frac{eU_{\phi}^{2k}}{16\pi^2 c_w s_w} \Gamma_L^{\beta3} \left(\Gamma_L^{\alpha k}\right)^* \left(C_{00} \left(M_Z^2, m_{\ell_{\alpha}}^2, m_{\ell_{\beta}}^2, M_{\phi_k}^2, M_{A^0}^2, M_{\psi}^2\right)$

 $F_{SL}^{1\chi,\alpha\beta} = \frac{ie\left(c_{w}^{2} - s_{w}^{2}\right)}{16\pi^{2}c_{w}s_{w}} \Gamma_{L}^{\beta c}\left(\Gamma_{L}^{\alpha c}\right)^{*}C_{00}\left(M_{Z}^{2}, m_{\ell_{\alpha}}^{2}, m_{\ell_{\beta}}^{2}, M_{\eta^{\pm}}^{2}, M_{\eta^{\pm}}^{2}, M_{\chi_{c}}^{2}\right)$

 $-\Gamma_{L}^{\beta k} \left(\Gamma_{R}^{\alpha k}\right)^{*} M_{\psi} m_{\ell_{\alpha}} C_{0} \left(M_{Z}^{2}, m_{\ell_{\alpha}}^{2}, m_{\ell_{\beta}}^{2}, M_{\psi}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2}\right)$

 $-\Gamma_{R}^{\beta k} \left(\Gamma_{L}^{\alpha k}\right)^{*} M_{\psi} m_{\ell_{\beta}} C_{0} \left(M_{Z}^{2}, m_{\ell_{\alpha}}^{2}, m_{\ell_{\beta}}^{2}, M_{\psi}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2}\right)$

 $+ \Gamma_R^{\beta k} \left(\Gamma_R^{\alpha k} \right)^* m_{\ell_\alpha} m_{\ell_\beta} C_1 \left(m_{\ell_\alpha}^2, m_{\ell_\beta}^2, M_Z^2, M_{\psi}^2, M_{\phi_k}^2, M_{\psi}^2 \right) \right)$

 $+ \sum_{R} \sum_{k} \left(\sum_{i=1}^{n} \sum_{i=1}^{n}$

 $E^{\frac{1}{2} \cdot \alpha_{0}g} = \frac{ie(2^{2} - \frac{3}{2^{2}})}{16\pi^{2}c_{0}s_{0}} (\Gamma_{E}^{3}(\Gamma_{0}^{2})^{*}m_{e}^{*}C_{12}(M_{E}^{2},m_{e}^{2})^{*}m_{e}^{*}C_{12}(M_{E}^{2},m_{e}^{2},M_{e}^{2},M_{e}^{2},M_{e}^{2})}{2^{*}-2} N_{F2} N_{F2}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*}N_{e}^{*})$

* 50 (Cb + 4) + C1 (M20, M2, M2, M2) (1 (M, (10, 1)) + C1 (M20, M2, M2, M2) (1 (M, (10, 1)) - M2, M2) (1 (M, (10, 1)) - M2, (10, 1)) - M2, (10, 1) - M

Not the sam

 $\begin{array}{c} {}^{t} \mathcal{W} : \mathcal{P}_{\mathcal{Y}} \\ \mathcal{W} : \mathcal{P}_{\mathcal{Y}} \\ \mathcal{H} : \mathcal{P}_{\mathcal{$ $F_{SL}^{1S,\alpha\beta} = \frac{16\pi^{2}c_{w}s_{w}}{32\pi^{2}c_{w}s_{w}} \left(\Gamma_{L}^{\beta k} \left(\Gamma_{L}^{\alpha k} \right)^{*} \left(B_{0} \left(m_{\ell_{\beta}}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2} \right) - 2 C_{00} \left(M_{Z}^{2}, m_{\ell_{\alpha}}^{2}, m_{\ell_{\beta}}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2} \right) \right)$ $F_{SL}^{1S,\alpha\beta} = \frac{ie \left(c_{w}^{2} - s_{w}^{2} \right)}{32\pi^{2}c_{w}s_{w}} \left(\Gamma_{L}^{\beta k} \left(\Gamma_{L}^{\alpha k} \right)^{*} \left(B_{0} \left(m_{\ell_{\beta}}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2} \right) - 2 C_{0} \left(m^{2} - m^{2} - M^{2} - M^{2} - M^{2} - M^{2} - M^{2} \right) \right)$ $- m_{\nu_{i}} \Gamma_{ck}^{j} \left(\Gamma_{dk}^{i}\right)^{*} C_{12} \left(M_{Z}^{2}, m_{\nu_{i}}^{2}, m_{\nu_{j}}^{2}, M_{\chi_{c}}^{2}, M_{\chi_{d}}^{2}, M_{\phi_{k}}^{2}\right)\right),$ $32\pi^{2}c_{w}s_{w} + M_{Z}^{2}C_{1}\left(M_{Z}^{2}, m_{\ell_{\beta}}^{2}, m_{\ell_{\alpha}}^{2}, M_{\psi}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2}\right) + m_{\ell_{\alpha}}^{2}C_{1}\left(m_{\ell_{\alpha}}^{2}, m_{\ell_{\beta}}^{2}, M_{Z}^{2}, M_{\psi}^{2}, M_{\phi_{k}}^{2}, M_{\psi}^{2}\right)$ $F_{L}^{1\chi,ij} = \sum_{ck} \frac{-ieU_{\Phi}^{2k}}{16\pi^{2}c_{w}s_{w}} \left(\Gamma_{c3}^{j} \left(M_{\chi_{c}}\Gamma_{c3}^{i} \left(C_{1} \left(m_{\nu_{j}}^{2}, m_{\nu_{i}}^{2}, M_{Z}^{2}, M_{\phi_{k}}^{2}, M_{\chi_{c}}^{2}, M_{A^{0}}^{2} \right) \right) \right)$ $- C_1 \left(m_{\nu_j}^2, m_{\nu_i}^2, M_Z^2, M_{A^0}^2, M_{\chi_c}^2, M_{\phi_k}^2 \right) \right) + m_{\nu_i} \left(\Gamma_{ck}^i \right)^* \left(C_{12} \left(M_Z^2, m_{\nu_i}^2, m_{\nu_i}^2 \right) \right)$ + $C_{12}\left(M_Z^2, m_{\nu_i}^2, m_{\nu_j}^2, M_{\phi_k}^2, M_{A^0}^2, M_{\chi_c}^2\right)\right)$ + $m_{\nu_j}\Gamma_{ck}^i\left(\Gamma_{c3}^j\right)^*\left(C_{12}\left(M_Z^2, m_{\chi_c}^2\right)\right)$ + $C_{12}\left(M_Z^2, m_{\nu_i}^2, m_{\nu_j}^2, M_{\phi_k}^2, M_{A^0}^2, M_{\chi_c}^2\right)\right)$, 32 00 So TS

A.

EWPO: $Z \rightarrow inv$

\rightarrow Strong constraint to NP and strongly disfavours light invisible states $M_{inv} < M_Z/2$

 \rightarrow Small tension with the SM, points reaching toward the experimental measurements? **Sensible by future experiments** ?

Again, beyond future sensitivity...

 $\mathcal{V}_{\text{fermion}} = M_{\nu}^{\alpha\beta} \,\overline{\nu_{\alpha}^c} \,\nu_{\beta} - M_{\psi} \,\overline{\psi_1} \,\overline{\psi_2} + \frac{1}{2} \,M_{F\,ii} \,\overline{F_i^c} \,F_i - y_{1i}^* \,\overline{F_i} \,\Phi^\dagger \,\overline{\psi_1} - y_{2i}^* \,\overline{F_i} \,\Phi \,\psi_2{}^c$ $g_{\psi}^{\alpha} \widetilde{\overline{\psi_2}} L_L^{\alpha} S - g_{F_i}^{\alpha} \widetilde{\overline{L_L^{\alpha}}} \eta F_i + g_R^{\alpha} \overline{\overline{e_R^{\alpha}}} \eta^{\dagger} \psi_1 + \text{H.c.}$

Invisible Higgs decays

 \rightarrow Strong constraint to NP and strongly disfavours light invisible states $M_{inv} < M_H/2$

 \rightarrow A lower floor driven by m_{ν}

Again, beyond future sensitivity...

$$\begin{split} \mathcal{V}_{\text{fermion}} &= M_{\nu}^{\alpha\beta} \, \overline{\nu_{\alpha}^{c}} \, \nu_{\beta} - M_{\psi} \, \overline{\psi_{1}} \, \widetilde{\psi_{2}} + \frac{1}{2} \, M_{F\,ii} \, \overline{F_{i}}^{c} \, F_{i} - y_{1i}^{*} \, \overline{F_{i}} \, \Phi^{\dagger} \, \widetilde{\psi_{1}} - y \\ &+ g_{\psi}^{\alpha} \, \widetilde{\overline{\psi_{2}}} \, L_{L}^{\alpha} S + g_{F_{i}}^{\alpha} \, \widetilde{\overline{L_{L}^{\alpha}}} \, \eta F_{i} + g_{R}^{\alpha} \overline{e_{R}^{\alpha}} \, \eta^{\dagger} \, \psi_{1} + \text{H.c.} \end{split}$$

 \rightarrow Still not within reach...

\rightarrow A reminder on the **importance of analytical derivation**

Z flavour conserving decays

 \rightarrow Representative of the other Z conserving decays

 \rightarrow Large trilinear coupling α yields sizeable contributions!

 \rightarrow **Points excluded** by other bounds... Actually from $H \to \ell_{\alpha} \ell_{\alpha}!$

$$\begin{split} \mathcal{V}_{\text{scalar}} &= \frac{1}{2} M_S^2 \, \mathbf{S}^2 + \frac{1}{2} \lambda_{4S} \, \mathbf{S}^4 + M_\eta^2 \, |\eta|^2 + \lambda_{4\eta} \, |\eta|^4 + \frac{1}{2} \lambda_S \, \mathbf{S}^2 |\Phi|^2 + \frac{1}{2} \\ &+ \lambda_\eta \, |\eta|^2 \, |\Phi|^2 + \lambda_\eta' \, |\eta \Phi^\dagger|^2 + \frac{1}{2} \lambda_\eta'' \left[\left(\Phi \eta^\dagger \right)^2 + \text{H.c.} \right] + \alpha \, \mathbf{S} \left[\Phi \eta^\dagger \right] \end{split}$$

 \rightarrow SM-Like Δa_{μ} relaxes constraints

Lepton Flavour Universality Violation

A. Darricau, LPCA Clermont

 $R_{\alpha\beta}^{Z/H} \equiv \frac{\Gamma(Z/H \to \ell_{\alpha}\ell_{\alpha})}{\Gamma(Z/H \to \ell_{\beta}\ell_{\beta})}$

- \rightarrow Representative of the other ratios
- \rightarrow SM Predicts LFUC (other than mass effects)
- → Z LFUV corrections fully under control! → H LFUV corrections favours small trilinear coupling α

$$\mathcal{P}_{\text{scalar}} = \frac{1}{2} M_S^2 \, \mathbf{S}^2 + \frac{1}{2} \lambda_{4S} \, \mathbf{S}^4 + M_\eta^2 \, |\boldsymbol{\eta}|^2 + \lambda_{4\eta} \, |\boldsymbol{\eta}|^4 + \frac{1}{2} \lambda_S \, \mathbf{S}^2 |\Phi|^2 + \frac{1}{2} \lambda_{\eta} \, |\boldsymbol{\eta}|^2 \, |\Phi|^2 + \lambda_\eta' \, |\boldsymbol{\eta}\Phi^\dagger|^2 + \frac{1}{2} \lambda_\eta'' \left[\left(\Phi \boldsymbol{\eta}^\dagger \right)^2 + \text{H.c.} \right] + \alpha \, \mathbf{S} \left[\Phi \boldsymbol{\eta}^\dagger - \mathbf{M} \, \mathbf{S}^\dagger \right] \, \mathbf{M} \, \mathbf{S}^{\dagger} \, \mathbf{M} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{M} \, \mathbf{M}^{\dagger} \, \mathbf{M} \, \mathbf{$$

ffects) **ol**!

\rightarrow **Thorough analysis** on the flavour phenomenology

- \rightarrow Found a new viable DM candidate: A^0
- \rightarrow Put forward the **consequences** of relaxing Δa_{μ}
- \rightarrow Parameter space favoured by leptogenesis **disfavoured by EWPO**

26

Backup

A. Darricau, LPCA Clermont

1. to a to

 10^{-9}

 $|g_{\psi}^{e}|$

 10^{-7}

10-5

10-11

10-13

Parameter space g_{F_2} 100 10^{-1} 10-2 10⁻³ |**g**⊭_₂| 10^{-4} 10-5 Parameter Range 10^{-6} M_S^2, M_η^2 $[5 \times 10^5, 5 \times 10^6]$ 10⁻⁷ M_1, M_2 [100, 20000]10-7 10⁻⁴ 10⁻³ 10⁻² 10⁻¹ 10⁰ 10⁻⁵ 10^{-8} 10^{-6} $|g_{F_2}^e|$ [700, 2000] M_ψ g_{ψ}^{α} $\pm \left[10^{-10}, 10^{-4}\right]$ $y_{11,12,21,22}$ 100 $\left[10^{-19}, 10^{-10}\right]$ $m_{ u_1}$ 10^{-} ا *g*^µ_{\[}] 10⁻² ا

10-3

 10^{-4}

 $|g_{F_2}^{\tau}|$

Backup

A. Darricau, LPCA Clermont

Backup

- \rightarrow Use extra degrees of freedom of *R* to set Δa_{μ} and keep $\ell_{\alpha} \rightarrow \ell_{\beta} \gamma$ under control
- \rightarrow This **generates** a fine tuned \mathscr{G} matrix and g_R^{α} vector as a byproduct

Casas-Ibara

 \rightarrow Links $M_{\nu}^{\alpha\beta}$ to its experimental values through M_{L} , \mathcal{G} and R a complex orthogonal matrix

