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→ Answer the big fundamental questions!

Can ML find answer these questions for us? No!

Can it help us with it? Yes!
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The challenge ahead
• general trend: larger-and-larger experiments 

collecting more-and-more data

• e.g. LHC: already enormous dataset will be further 
enlarged by a factor ∼ 10

• costs for future experiments increasing

• new analysis methods

• theory precision ≃ experimental precision
Fully exploit the available data!



The particle physics workflow
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ML can help with each of these steps by increasing

• accuracy/performance and/or

• increase speed

Experiment



ML in a nutshell
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Terminology
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• Artificial Intelligence (AI)
• machines performing complex tasks
• e.g. Feynman diagram generators, …

• Machine Learning (ML)
• subfield of AI where machines learn 

from data
• e.g. linear regression, BDTs, …

• Deep Learning (DL)
• subfield of ML using deep neural 

networks



Types of ML (selection)
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• regression (e.g. calorimeter calibration)
• classification (e.g. jet tagging)
• generation (e.g. event generation)

Tasks

• supervised (e.g. amplitude regression)
• unsupervised (e.g. data clustering)
• semi-supervised (e.g. anomaly detection)

Learning 
types



Neural networks
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• activation introduces non-linearity (e.g. 𝑔 𝑥 = max(0, 𝑥))
• adjust weights by minimizing loss
• large enough network can in principle approximate any function



ML workflow
1. define the problem

2. collect and preprocess the dataset

3. define your ML model

4. training 

5. evaluation
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• ML strategy — multiple ways to approach problem

• loss — what objective do I want to optimize?

• architecture — what is the best structure for my NN?

• encode physics knowledge — symmetries, …



ML for particle physics — requirements
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SpeedPrecision

Control



Precision ML with uncertainties
"All models are wrong, but some — those that know when they can be trusted — 

are useful!"
— George Box (adapted)
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amplitude surrogates



Amplitude surrogates
• evaluating analytic expressions for amplitudes ℳ ! can be very expensive due to

• higher-order corrections
• large final-state multiplicities

 
• idea: 

• generate small training sample using full analytic expression
• train a NN to approximate ℳ ! 
• generate events using NN surrogate, which is much faster to evaluate

→ Fast high-precision event generation
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Does it work?
[Janßen et al.,2301.13562]
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𝑓!"" =
𝑇#$%&'%('
𝑇#)((*+%$!

Large speed-ups possible!

Can we also control the uncertainties?



Regression with uncertainties
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Statistical unc ±2𝜎

Systematic unc ±2𝜎

• statistical uncertainty 0= lack of training data 

• systematic uncertainty 0= noise in the data, lack in model expressivity

[Yi&Bessa, 2505.02743]



Modelling the systematic uncertainty
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• log-likelihood loss:

ℒ = − 3
"!,$!∈&"#$%&

log	𝑝 𝐴'()*(𝑥+) 𝑥+, 𝜃

• assume Gaussian likelihood: 𝑝 𝐴|𝑥, 𝜃 = 𝒩(𝐴 𝑥 , 𝜎,-,'! 𝑥 )

• NN learns both: 𝐴(𝑥) and 𝜎,-,'(𝑥)

⇒ heteroskedastic	loss: 	ℒ =3
+

IJ 𝐴 𝑥+ − 𝐴'()* 𝑥+
!

2𝜎,-,'! 𝑥+
+ log MN𝜎,-,' 𝑥+

• Constant 𝜎,-,' → MSE loss

true amplitudessum over training dataset

phase-space point

NN parameters



Modelling the statistical uncertainty
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• spread of network predictions ∼ statistical uncertainty
• less data → higher spread

individual NNs

𝑤 ∼ 1/ 𝑁$(%,&

Rough  picture
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Bringing it all together
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𝜎!"!# = 𝜎$%$!# + 𝜎$!&!#

Combined learnable modelling of systematic and statistical uncertainties!



Behavior of uncertainties 
[HB et al.,2412.12069]
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Test: apply different levels of Gaussian noise to amplitudes

• statistical uncertainty decreases with more training data

• systematic uncertainty converges to level of applied noise

𝐴$(%,& ∼ 𝒩(𝐴$()!, 𝜎$(%,&- ) 
	𝜎$(%,& = 𝑓#.!%(𝐴$()!



Behavior of uncertainties 
[HB et al.,2412.12069]
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NNs can reliably extract noise level!

→ Are these uncertainties calibrated?

ensemble



Calibration of uncertainties
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ensemble
• statistical uncertainties negligible for 

our application

• define systematic pull:

𝑡#/#$ =
𝐴 𝑥 − 𝐴$(%,&(𝑥)

𝜎#/#$(𝑥)

• if calibrated, 𝑡#/#$ distribution should 
follow 𝒩(0, 1)

Almost perfectly calibration → reliable uncertainty estimate

Same techniques also applicable to all kind of other problems!



Fully exploiting the data
not only do we have a lot of data but it’s also high-dimensional
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Simulation-Based Inference (SBI)



Classical parameter inference 
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• Reduce dimension of phase space                             
→ summary statistics

• Bin summary statistics

• Compare resulting histogram to SM/BSM 
predictions

Advantage: humanly digestible plots

Disadvantage: loss of information

[Elmer et al.,2312.12502]



Full likelihood
• Monte-Carlo simulation chain allows us to sample full likelihood 𝑝(𝑥|𝜃). But cannot directly 

compute it.

• train classifier 𝐷 to distinguish BSM sample (∼ 𝑝 𝑥 𝜃 ) and SM sample (∼ 𝑝 𝑥 𝜃. ) :

𝐷/0' 𝑥|𝜃, 𝜃. =
𝑝 𝑥 𝜃.

𝑝 𝑥 𝜃 + 𝑝(𝑥|𝜃.)
→ likelihood	ratio

𝑝 𝑥 𝜃
𝑝(𝑥|𝜃.)

=
1 − 𝐷/0'
𝐷/0'

• Neyman-Pearson lemma: likelihood ratio is most powerful statistical test

Henning Bahl 23

Unbinned multi-dimensional inference without information loss

phase space 
point

theory 
parameters



Pheno examples: VBF with 𝐻 → 4ℓ
[Brehmer et al., 1805.00013]
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Huge potential to improve sensitivity of a wide variety of measurements/searches

But is SBI also viable in a realistic analysis including uncertainties etc.?
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1st experimental SBI analysis
[ATLAS-CONF-2024-016]

• Goal: measure off-shell signal strength 
in 𝐻 → 𝑍𝑍 channel

• Full treatment of statistical and 
systematic uncertainties

• Large sensitivity improvement for low 
𝜇/112,3*44

Proves potential of SBI for full experimental analysis



Conclusions

Henning Bahl 26



Conclusions
• Particle physics is in the precision era                                                                             
→ huge amounts of multidimensional data

• ML methods excel in such an environment

• Huge potential for increasing

• speed → e.g., amplitude surrogates
• sensitivity → e.g., simultation-based inference

• Uncertainty-aware NNs allow for controlled modelling
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ML methods will be indispensable for the future of particle physics
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Neutrino masses
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Thanks for your attention!



Appendix
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Upcoming talks
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Encoding our physics knowledge
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Bayesian neural networks
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Repulsive ensembles
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Advanced SBI tools
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• target: SMEFT operators in 𝑊±𝑍 production
• numerically stable results
• significantly better bounds than for histogram
• variety of cross-checks allows validating 

results 

[HB et al.,2410.07315]
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• target: SMEFT operators in 𝑊±𝑍 production
• numerically stable results
• significantly better bounds than for histogram
• variety of cross-checks allows validating 

results 

[HB et al.,2410.07315]

Future directions:
• application to masses, NLO corrections
• more pheno studies
• work towards real data application
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Simulation-based inference
[Brehmer et al.,1906.01578,1805.12244,1805.00013,1805.00020,1808.00973]
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• Allows to extract the full available information (maximal sensitivity).
• No information loss due to binning (as for BDT analysis).
• No approximation of shower and detector effects (as for matrix-element approach). 
• Use implementation in public code MadMiner designed to work with MadGraph + Pythia + 

Delphes. [Brehmer,Kling,Espejo,Cranmer,1907.10621]

[Brehmer et 
al.,1805.00013]

Matrix element 
information


