

From the MSSMEFT to the SMEFT

André Lessa

UFABC, São Paulo, Brazil

IRN Terascale

Strasbourg, May 20th 2025

In collaboration with Sabine Kraml, Suraj Prakash and Felix Wilsch

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

- No clear evidence for new physics, despite the large number of dedicated LHC searches.
- How can we make the most of the available data?

To answer these questions we need a concrete UV model→ MSSM

From the MSSMEFT to the SMEFT

MSSM

- The Minimal Supersymmetric SM (MSSM) has many interesting properties:
 - Stabilizes the EW scale
 - Dark Matter candidate
 - Predicts the Higgs mass
 - Almost all the interactions are fixed by the SM gauge and Yukawa couplings, ...

spin 0	spin $1/2$	
$\tilde{q} = (\tilde{u}_L, \tilde{d}_L)$	$q = (u_L, d_L)$	spin $1/2$ spin 1
$\widetilde{u}^{\dagger}_{\widetilde{d}^{\dagger}}$	$\begin{array}{c} u^c \\ d^c \end{array}$	\tilde{G} G
$\tilde{\ell} = (\tilde{\iota} + \tilde{c})$		$ ilde W ext{ } W$
$\ell = (u_L, e_L)$ \widetilde{e}^{\dagger}	$\begin{array}{c c} \ell = (\nu_L, e_L) \\ e^c \end{array}$	\tilde{B} B
$H_u = (H_u^+, H_u^0)$	$\tilde{H}_u = (\tilde{H}_u^+, \tilde{H}_u^0)$	
$H_d = (H_d^0, H_d^-)$	$\tilde{H}_d = (\tilde{H}_d^{\tilde{0}}, \tilde{H}_d^{-})$	

MSSM

- The Minimal Supersymmetric SM (MSSM) has many interesting properties:
 - Stabilizes the EW scale
 - Dark Matter candidate
 - Predicts the Higgs mass
 - Almost all the interactions are fixed by the SM gauge and Yukawa couplings, ...

spin 0	spin $1/2$	
$\tilde{q} = (\tilde{u}_L, \tilde{d}_L)$	$q = (u_L, d_L)$	
$ ilde{u}^{ \intercal}$	u^c	
$ ilde{d}^{\dagger}$	d^c	
$ ilde{\ell} = (ilde{ u}_L, ilde{e}_L)$	$\ell = (\nu_L, e_L)$	
$ ilde{e}^{\dagger}$	e^{c}	
$H_u = (H_u^+, H_u^0)$	$\tilde{H}_u = (\tilde{H}_u^+, \tilde{H}_u^0)$	
$H_d = (H_d^0, H_d^-)$	$\tilde{H}_d = (\tilde{H}_d^0, \tilde{H}_d^-)$	

spin $1/2$	spin 1
$ ilde{G}$	G
$ ilde{W}$	W
\widetilde{B}	В

• **R-odd** and **R-even** fields

MSSM

- The Minimal Supersymmetric SM (MSSM) has many interesting properties:
 - Stabilizes the EW scale
 - Dark Matter candidate
 - Predicts the Higgs mass
 - Almost all the interactions are fixed by the SM gauge and Yukawa couplings, ...

spin 0	spin $1/2$
$\widetilde{q} = (\widetilde{u}_L, \widetilde{d}_L)$	$q = (u_L, d_L)$
u' \tilde{i}^{+}	u^{c}
~ ~	
$\ell = (ilde{ u}_L, ilde{e}_L)$	$\ell = (\nu_L, e_L)$
e	
$H_u = (H_u^+, H_u^0)$	$H_u = (H_u^+, H_u^0)$
$H_d = (H_d^0, H_d^-)$	$H_d = (H_d^0, H_d^-)$

spin $1/2$	spin 1
$ ilde{G}$	G
ilde W	W
\tilde{B}	В

- **R-odd** and **R-even** fields
- Higgs Sector: Type-II 2HDM

• If the BSM fields are sufficiently heavy, their impact at low energies can be parametrized by the SM Effective Field Theory (SMEFT):

$$\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) \Rightarrow \mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}(m_{\tilde{q}},...)}{\Lambda^{2}} O_{i}^{(6)} + \mathcal{O}\left(\Lambda^{-4}\right)$$

• If the BSM fields are sufficiently heavy, their impact at low energies can be parametrized by the SM Effective Field Theory (SMEFT):

$$\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) \Rightarrow \mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_{i}^{(6)}(m_{\tilde{q}},...)}{\Lambda^{2}} O_{i}^{(6)} + \mathcal{O}\left(\Lambda^{-4}\right)$$

- Mapping Assumptions:
 - I. all BSM fields are heavy (but not degenerate) \rightarrow 31 fields !
 - II. we consider up to dim-6 operators
 - III. we do not include running between intermediate BSM scales

André Lessa | UFABC

MSSM to SMEFT

• However: $\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) \neq \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{BSM}}$

• However: $\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) \neq \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{BSM}}$

since the Higgs sector of the MSSM corresponds to a type-II 2HDM:

 $\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) = y_u \bar{u}_R Q_L H_u + y_d \bar{d}_R Q_L H_d + ... \neq Y_u \bar{u}_R Q_L H + Y_d \bar{d}_R Q_L H^c$

where both doublets acquire VEVs:

$$\langle H_u^0 \rangle \equiv \frac{v_u}{\sqrt{2}} \qquad \langle H_d^0 \rangle \equiv \frac{v_u}{\sqrt{2}} \qquad \tan \beta = \frac{v_u}{v_d} \qquad v^2 \equiv v_u^2 + v_d^2 = (246 \text{ GeV})^2$$

• However: $\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) \neq \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{BSM}}$

since the Higgs sector of the MSSM corresponds to a type-II 2HDM:

 $\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) = y_u \bar{u}_R Q_L H_u + y_d \bar{d}_R Q_L H_d + ... \neq Y_u \bar{u}_R Q_L H + Y_d \bar{d}_R Q_L H^c$

where both doublets acquire VEVs:

$$\langle H_u^0 \rangle \equiv \frac{v_u}{\sqrt{2}} \qquad \langle H_d^0 \rangle \equiv \frac{v_u}{\sqrt{2}} \qquad \tan \beta = \frac{v_u}{v_d} \qquad v^2 \equiv v_u^2 + v_d^2 = (246 \text{ GeV})^2$$

• How to integrate out the heavy degrees of freedom in this case?

• The decoupling limit ($m_{\Phi} \gg m_{H}$) leads to alignment, thus making the SM-like Higgs doublet a linear combination of H_u and H_d :

$$\begin{pmatrix} H \\ \Phi \end{pmatrix} = \begin{pmatrix} s_{\gamma} & -c_{\gamma} \\ c_{\gamma} & s_{\gamma} \end{pmatrix} \begin{pmatrix} H_u \\ H_d^c \end{pmatrix} \qquad \tan 2\gamma = \frac{2b}{m_{H_u}^2 - m_{H_d}^2}$$

• The decoupling limit ($m_{\Phi} \gg m_{H}$) leads to alignment, thus making the SM-like Higgs doublet a linear combination of H_u and H_d :

$$\begin{pmatrix} H \\ \Phi \end{pmatrix} = \begin{pmatrix} s_{\gamma} & -c_{\gamma} \\ c_{\gamma} & s_{\gamma} \end{pmatrix} \begin{pmatrix} H_u \\ H_d^c \end{pmatrix} \qquad \tan 2\gamma = \frac{2b}{m_{H_u}^2 - m_{H_d}^2}$$

in this limit:

$$\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) = (y_u s_\gamma) \,\bar{u}_R Q_L H + (y_d c_\gamma) \,\bar{d}_R Q_L H^c + (y_u c_\gamma) \,\bar{u}_R Q_L \Phi + ...$$
$$= \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{BSM}}$$

• The decoupling limit ($m_{\Phi} \gg m_{H}$) leads to alignment, thus making the SM-like Higgs doublet a linear combination of H_u and H_d :

$$\begin{pmatrix} H \\ \Phi \end{pmatrix} = \begin{pmatrix} s_{\gamma} & -c_{\gamma} \\ c_{\gamma} & s_{\gamma} \end{pmatrix} \begin{pmatrix} H_u \\ H_d^c \end{pmatrix} \qquad \tan 2\gamma = \frac{2b}{m_{H_u}^2 - m_{H_d}^2}$$

in this limit:

$$\mathcal{L}_{\text{MSSM}}(m_{\tilde{q}},...) = (y_u s_{\gamma}) \,\bar{u}_R Q_L H + (y_d c_{\gamma}) \,\bar{d}_R Q_L H^c + (y_u c_{\gamma}) \,\bar{u}_R Q_L \Phi + ...$$
$$= \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{BSM}}$$

• In this basis it is possible to integrate out the BSM fields:

From the MSSMEFT to the SMEFT

- dim-6 Operators:
 - All the R-odd fields (squarks, sleptons, gauginos) appear in pairs when coupling to the SM fields:

- dim-6 Operators:
 - All the R-odd fields (squarks, sleptons, gauginos) appear in pairs when coupling to the SM fields:

- dim-6 Operators:
 - All the R-odd fields (squarks, sleptons, gauginos) appear in pairs when coupling to the SM fields:

• Tree level operators are only generated by the heavy Higgs:

- dim-6 Operators:
 - All the R-odd fields (squarks, sleptons, gauginos) appear in pairs when coupling to the SM fields:

• Tree level operators are only generated by the heavy Higgs:

$$C_{W} \rightarrow \hbar \left(-\frac{1}{9} g_{2}^{3} LF_{3,0}[m_{2}] + \frac{4}{15} g_{2}^{3} LF_{5,-2}[m_{2}] - \frac{1}{18} \sum_{p} g_{2}^{3} LF_{3,0}[m_{\tilde{l}}^{p}] + \frac{1}{8} \sum_{p} g_{2}^{3} LF_{4,-1}[m_{\tilde{l}}^{p}] - \frac{1}{15} \sum_{p} g_{2}^{3} LF_{5,-2}[m_{\tilde{l}}^{p}] - \frac{1}{6} \sum_{p} g_{2}^{3} LF_{3,0}[m_{\tilde{q}}^{p}] + \frac{3}{8} \sum_{p} g_{2}^{3} LF_{4,-1}[m_{\tilde{q}}^{p}] - \frac{1}{5} \sum_{p} g_{2}^{3} LF_{5,-2}[m_{\tilde{q}}^{p}] - \frac{1}{18} g_{2}^{3} LF_{3,0}[m_{\Phi}] + \frac{1}{8} g_{2}^{3} LF_{4,-1}[m_{\Phi}] - \frac{1}{15} g_{2}^{3} LF_{5,-2}[m_{\Phi}] - \frac{1}{18} g_{2}^{3} LF_{3,0}[\tilde{\mu}] + \frac{2}{15} g_{2}^{3} LF_{5,-2}[\tilde{\mu}] \right)$$

 $m_1 s_{\beta} \tilde{\mu} c_{\beta} g_1^4 LF_{3,1,0} [\tilde{\mu}, m_1] +$ $m_1 s_{\beta} \tilde{\mu} c_{\beta} g_1^4 LF_{4,1,-1} [\tilde{\mu}, m_1]$ $m_1 s_{\beta} \tilde{\mu} c_{\beta} g_1^4 LF_{5,1,-2} [\tilde{\mu}, m_1] -$

 $-\frac{3}{4} m_2 s_{\beta} \tilde{\mu} c_{\beta} g_1^2 g_2^2 LF_{3,1,0} [\tilde{\mu}, m_2] +$ + $\frac{3}{2}$ m₂ s_{β} $\tilde{\mu}$ c_{β} g₁² g₂² LF_{4,1,-1} [$\tilde{\mu}$, m₂] - $-\frac{3}{2} m_2 s_{\beta} \tilde{\mu} c_{\beta} g_1^2 g_2^2 LF_{5,1,-2} [\tilde{\mu}, m_2]$

Matching Results

$$C_{W} \rightarrow \tilde{\hbar} \left(-\frac{1}{9} g_{2}^{3} LF_{3,0}[m_{2}] + \frac{4}{15} g_{2}^{3} LF_{5,-2}[m_{2}] - \frac{1}{18} \sum_{p} g_{2}^{3} LF_{3,0}[m_{\tilde{l}}^{p}] + \frac{1}{8} \sum_{p} g_{2}^{3} LF_{4,-1}[m_{\tilde{l}}^{p}] - \frac{1}{15} \sum_{p} g_{2}^{3} LF_{5,-2}[m_{\tilde{l}}^{p}] - \frac{1}{6} \sum_{p} g_{2}^{3} LF_{3,0}[m_{\tilde{q}}^{p}] + \frac{3}{8} \sum_{p} g_{2}^{3} LF_{4,-1}[m_{\tilde{q}}^{p}] - \frac{1}{5} \sum_{p} g_{2}^{3} LF_{5,-2}[m_{\tilde{q}}^{p}] - \frac{1}{18} g_{2}^{3} LF_{3,0}[m_{\Phi}] + \frac{1}{8} g_{2}^{3} LF_{4,-1}[m_{\Phi}] - \frac{1}{15} g_{2}^{3} LF_{5,-2}[m_{\Phi}] - \frac{1}{18} g_{2}^{3} LF_{3,0}[\tilde{\mu}] + \frac{2}{15} g_{2}^{3} LF_{5,-2}[\tilde{\mu}] \right)$$

$$\begin{aligned} & \int_{a}^{b} \int_{a}^{b} \sum_{p} c_{2,\beta} g_{1}^{4} LF_{3,0} \left[m_{q}^{p} \right] - \frac{1}{36} \sum_{p} c_{2,\beta} g_{1}^{4} LF_{4,-1} \left[m_{q}^{p} \right] - \frac{1}{2} g_{1}^{2} c_{\beta}^{2} \overline{y} \overline{y}^{pr} J^{pr} LF_{3,0} \left[m_{q}^{p} \right] - \frac{1}{4} \sum_{p} c_{2,\beta} g_{1}^{4} LF_{4,-1} \left[m_{q}^{p} \right] - \frac{1}{2} g_{2}^{2} c_{\beta}^{2} \overline{y} \overline{y}^{pr} J^{pr} LF_{3,0} \left[m_{q}^{p} \right] - \frac{1}{4} \sum_{p} c_{2,\beta} g_{1}^{4} LF_{4,-1} \left[m_{q}^{p} \right] - \frac{1}{2} g_{2}^{2} c_{\beta}^{2} \overline{y} \overline{y}^{pr} J^{pr} LF_{3,0} \left[m_{q}^{p} \right] - \frac{1}{4} g_{2}^{2} (c_{\beta} \overline{a} \overline{v}^{pr} - s_{\beta} \overline{\mu} \overline{y} \overline{v}^{pr}) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{v}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - s_{\beta, \bar{\mu}} \overline{y} \overline{y}^{pr} \right) \left(c_{\beta, a} \overline{v}^{pr} - \overline{v} \overline{v} \right) \left[\overline{v}_{\beta, n} \overline{v}_{\beta} - \overline{v}^{pr} \right] \right) \right] \right] \\ = \frac{1}{4} g_{1}^{2} \left(c_{\beta, \overline{a}} \overline{v}^{pr} - s_{\beta, \overline{\mu}} \overline{y} \overline{y}^{pr} \right) \left[F_{3,1,1} \left[\overline{m}_{q}^{p} - \overline{m} \right] \right] \\ = \frac{1}{4} g_{1}^{2} \left(c_{\beta, \overline{a}} \overline{v}^{pr} - \overline{v} \overline{v} \overline{v} \right) \left[\overline{v}_{2,2,1} \left[\overline{m}_{q}^{p} - \overline{v} \right] \right] \right] \\ = \frac{1}{4} g_{1}^{2} \left(c_{\beta, \overline{a}} \overline{v}^{pr} - \overline{v} \overline{v} \overline{v} \right) \left[\overline{v}_{2,2,1} \left[\overline$$

$$C_{W} \rightarrow \hbar \left(-\frac{1}{9} g_{2}^{3} LF_{3,0}[m_{2}] + \frac{4}{15} g_{2}^{3} LF_{5,-2}[m_{2}] - \frac{1}{18} \sum_{p} g_{2}^{3} LF_{3,0}[m_{\tilde{l}}^{p}] + \frac{1}{8} \sum_{p} g_{2}^{3} LF_{4,-1}[m_{\tilde{l}}^{p}] - \frac{1}{15} \sum_{p} g_{2}^{3} LF_{5,-2}[m_{\tilde{l}}^{p}] - \frac{1}{6} \sum_{p} g_{2}^{3} LF_{3,0}[m_{\tilde{q}}^{p}] + \frac{3}{8} \sum_{p} g_{2}^{3} LF_{4,-1}[m_{\tilde{q}}^{p}] - \frac{1}{5} \sum_{p} g_{2}^{3} LF_{5,-2}[m_{\tilde{q}}^{p}] - \frac{1}{18} g_{2}^{3} LF_{3,0}[m_{\tilde{\Phi}}] + \frac{1}{8} g_{2}^{3} LF_{4,-1}[m_{\tilde{\Phi}}] - \frac{1}{15} g_{2}^{3} LF_{5,-2}[m_{\tilde{\Phi}}] - \frac{1}{18} g_{2}^{3} LF_{3,0}[\tilde{\mu}] + \frac{2}{15} g_{2}^{3} LF_{5,-2}[\tilde{\mu}] \right)$$

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

• SMEFT Lagrangian: only 8 (out of 22) WCs are LI!

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

• SMEFT Lagrangian: only 8 (out of 22) WCs are LI!

$$\begin{aligned} \mathcal{L}_{\text{SMEFT}} &= C_{uG}^{33} \left(\bar{t} \sigma^{\mu\nu} T^{A} t \right) \left(\epsilon \varphi^{*} G_{\mu\nu}^{A} \right) + C_{G} f^{ABC} G_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} \\ &+ C_{qu}^{(8)3311} (\bar{t}_{L} \gamma^{\mu} T^{A} t_{L}) \left(\bar{Q} \gamma_{\mu} T^{A} Q \right) + C_{qu}^{(8)1133} (\bar{t}_{R} \gamma_{\mu} T^{A} t_{R}) \left(\bar{Q} \gamma_{\mu} T^{A} Q + \bar{t}_{L} \gamma_{\mu} T^{A} t_{L} \right) \\ &+ 4 C_{qq}^{(1)3333} (\bar{t}_{L} \gamma_{\mu} t_{L}) (\bar{t}_{L} \gamma_{\mu} t_{L}) + C_{uu}^{3333} (\bar{t}_{R} \gamma_{\mu} t_{R}) (\bar{t}_{R} \gamma_{\mu} t_{R}) \\ &+ \frac{1}{4} C_{qd}^{(1)3311} (\bar{t}_{L} \gamma^{\mu} t_{L}) \left(4 \bar{d}_{R} \gamma_{\mu} d_{R} - 2 \bar{Q}_{L} \gamma_{\mu} Q_{L} + 3 \bar{t}_{L} \gamma_{\mu} t_{L} \right) \\ &+ C_{qu}^{(1)1133} (\bar{t}_{R} \gamma^{\mu} t_{R}) \left(4 \bar{u}_{R} \gamma_{\mu} u_{R} - 2 \bar{d}_{R} \gamma_{\mu} d_{R} + \bar{Q}_{L} \gamma_{\mu} Q_{L} \right) + \ldots \end{aligned}$$

André Lessa | UFABC

11

Conclusions

• Current tools allows us to map any BSM model to SMEFT

- Current tools allows us to map any BSM model to SMEFT
- For the MSSM we find:
 - A large number of relevant operators, but mostly loop suppressed
 - Strong correlation between the operators
- The results were validated against some well known results in the literature

- Current tools allows us to map any BSM model to SMEFT
- For the MSSM we find:
 - A large number of relevant operators, but mostly loop suppressed
 - Strong correlation between the operators
- The results were validated against some well known results in the literature

• Next steps:

- Study of the coefficients within more general MSSM scenarios
- Constraints from SM measurements
- Combination with direct searches
- RGE evolution between BSM hierarchies

• ...

- Current tools allows us to map any BSM model to SMEFT
- For the MSSM we find:
 - A large number of relevant operators, but mostly loop suppressed
 - Strong correlation between the operators
- The results were validated against some well known results in the literature

• Next steps:

• ...

- Study of the coefficients within more general MSSM scenarios
- Constraints from SM measurements
- Combination with direct searches
- RGE evolution between BSM hierarchies

Thanks!

Backup

• Dim-4 matching conditions (threshold corrections)

• Dim-4 matching conditions (threshold corrections)

• Dim-4 matching conditions (threshold corrections)

Dim-4 matching conditions (threshold corrections)

$$\lambda(\bar{\mu}) = c_{2\gamma}^2 \, \frac{g_1^2(\bar{\mu}) + g_2^2(\bar{\mu})}{4} + \frac{1}{16\pi^2} \, \Delta_\lambda(\bar{\mu})$$

hierarchy in the BSM sector (requires RGE running)

- Dim-4 matching conditions (threshold corrections)
 - Gauge couplings: $g_{1}^{\text{SMEFT}} = g_{1}^{\text{MSSM}} - \frac{g_{1}^{3}}{16\pi^{2}} \left\{ \sum_{p} \left[\frac{1}{36} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{q}}^{p})^{2}} + \frac{2}{9} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{u}}^{p})^{2}} + \frac{1}{18} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{d}}^{p})^{2}} + \frac{1}{18} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{d}}^{p})^{2}} + \frac{1}{12} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{d}}^{p})^{2}} + \frac{1}{12} \log \frac{\bar{\mu}^{2}}{m_{\Phi}^{2}} + \frac{1}{3} \log \frac{\bar{\mu}^{2}}{\tilde{\mu}^{2}} \right\}$ $g_{2}^{\text{SMEFT}} = g_{2}^{\text{MSSM}} + ..., \ g_{3}^{\text{SMEFT}} = g_{3}^{\text{MSSM}} + ...$
 - Higgs quartic:

$$\lambda(\bar{\mu}) = c_{2\gamma}^2 \, \frac{g_1^2(\bar{\mu}) + g_2^2(\bar{\mu})}{4} + \frac{1}{16\pi^2} \, \Delta_\lambda(\bar{\mu})$$

• Yukawa couplings:

$$Y_{u}^{pr}(\bar{\mu}) = s_{\gamma} y_{u}^{pr}(\bar{\mu}) + \frac{1}{16\pi^{2}} \Delta_{Y_{u}}(\bar{\mu})$$
$$Y_{d,e}^{pr}(\bar{\mu}) = c_{\gamma} y_{d,e}^{pr}(\bar{\mu}) + \frac{1}{16\pi^{2}} \Delta_{Y_{d,e}}(\bar{\mu})$$

Large logs if there is a large hierarchy in the BSM sector (requires RGE running)

- Dim-4 matching conditions (threshold corrections)
 - Gauge couplings: $g_{1}^{\text{SMEFT}} = g_{1}^{\text{MSSM}} - \frac{g_{1}^{3}}{16\pi^{2}} \left\{ \sum_{p} \left[\frac{1}{36} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{q}}^{p})^{2}} + \frac{2}{9} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{u}}^{p})^{2}} + \frac{1}{18} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{d}}^{p})^{2}} \right. \\ \left. + \frac{1}{12} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{\ell}}^{p})^{2}} + \frac{1}{6} \log \frac{\bar{\mu}^{2}}{(m_{\tilde{e}}^{p})^{2}} \right] + \frac{1}{12} \log \frac{\bar{\mu}^{2}}{m_{\Phi}^{2}} + \frac{1}{3} \log \frac{\bar{\mu}^{2}}{\tilde{\mu}^{2}} \right\}$ $g_{2}^{\text{SMEFT}} = g_{2}^{\text{MSSM}} + \dots, \ g_{3}^{\text{SMEFT}} = g_{3}^{\text{MSSM}} + \dots$ Large logs if there is a large
 - Higgs quartic:

$$\lambda(\bar{\mu}) = c_{2\gamma}^2 \, \frac{g_1^2(\bar{\mu}) + g_2^2(\bar{\mu})}{4} + \frac{1}{16\pi^2} \, \Delta_\lambda(\bar{\mu})$$

• Yukawa couplings:

$$Y_{u}^{pr}(\bar{\mu}) = s_{\gamma} y_{u}^{pr}(\bar{\mu}) + \frac{1}{16\pi^{2}} \Delta_{Y_{u}}(\bar{\mu})$$
$$Y_{d,e}^{pr}(\bar{\mu}) = c_{\gamma} y_{d,e}^{pr}(\bar{\mu}) + \frac{1}{16\pi^{2}} \Delta_{Y_{d,e}}(\bar{\mu})$$

Large logs if there is a large hierarchy in the BSM sector (requires RGE running)

• Higgs mass:

$$m_{h^0}^2 = \lambda v^2 \left(1 - \frac{3v^2}{\lambda} C_H \right)$$
$$= \cos^2(2\gamma) m_Z^2 \left[1 - 3\sin^2(2\gamma) \frac{m_Z^2}{m_\Phi^2} + \text{loop corrections} \right]$$

• Higgs mass:

$$m_{h^0}^2 = \lambda v^2 \left(1 - \frac{3v^2}{\lambda} C_H \right)$$
$$= \cos^2(2\gamma) m_Z^2 \left[1 - 3\sin^2(2\gamma) \frac{m_Z^2}{m_\Phi^2} + \text{loop corrections} \right]$$

• This is the well-known result that at tree level the Higgs mass is smaller than m_z

• Higgs mass:

$$m_{h^0}^2 = \lambda v^2 \left(1 - \frac{3v^2}{\lambda} C_H \right)$$
$$= \cos^2(2\gamma) m_Z^2 \left[1 - 3\sin^2(2\gamma) \frac{m_Z^2}{m_\Phi^2} + \text{loop corrections} \right]$$

- This is the well-known result that at tree level the Higgs mass is smaller than m_z
- Large loop corrections are needed to achieve $m_h = 125 \text{ GeV}$

Warsaw Basis

1-4: Bosonic Operators

1: X^3 2: H^6					4: $X^2 H^2$				
Q_G	$\frac{1}{g_{3}^{3}}f^{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	Q_H	$(H^{\dagger}H)^3$	Q_{HG}	$\frac{1}{g_3^2}(H^{\dagger}H)G^A_{\mu\nu}G^{A\mu\nu}$	Q_{HB}	$\frac{1}{g_1^2}(H^{\dagger}H)B_{\mu\nu}B^{\mu\nu}$		
$Q_{\tilde{G}}$	$\frac{1}{g_{3}^{3}}f^{ABC}\tilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	3: H^4D^2		$Q_{H\bar{G}}$	$\frac{1}{g_3^2}(H^{\dagger}H)\tilde{G}^A_{\mu\nu}G^{A\mu\nu}$	$Q_{H\bar{B}}$	$\frac{1}{g_1^2}(H^{\dagger}H)\tilde{B}_{\mu\nu}B^{\mu\nu}$		
Q_W	$\frac{1}{g_2^3} \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{H\square}$	$(H^\dagger H) \Box (H^\dagger H)$	Q_{HW}	$\frac{1}{g_2^2}(H^\dagger H) W^I_{\mu\nu} W^{I\mu\nu}$	Q_{HWB}	$\frac{1}{g_2g_1}(H^\dagger\tau^I H)W^I_{\mu\nu}B^{\mu\nu}$		
$Q_{\tilde{W}}$	$\frac{1}{g_2^3} \varepsilon^{IJK} \tilde{W}^{I\nu}_\mu W^{J\rho}_\nu W^{K\mu}_\rho$	Q_{HD}	$(H^\dagger D_\mu H)^* (H^\dagger D^\mu H)$	$Q_{H\tilde{W}}$	$\frac{1}{g_2^2}(H^\dagger H) \tilde{W}^I_{\mu\nu} W^{I\mu\nu}$	$Q_{H\tilde{W}B}$	$\frac{1}{g_2g_1}(H^\dagger\tau^I H)\tilde{W}^I_{\mu\nu}B^{\mu\nu}$		

5–7: Fermion Bilinears (ψ^2)

5–7: Fermion Bilinears (ψ^2)							7: $\psi^2 H^2 D$ – Hermitian + Q_{Hud}				
non-Hermitian $(\bar{L}R)$							$(\bar{L}L)$		$(\bar{R}R)$		$(\bar{R}R')$ + H.c.
5: $\psi^2 H^3$ + H.c.	5: $\psi^2 H^3$ + H.c. 6: $\psi^2 X H$ + H.c.					$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{\ell}_{p}\gamma^{\mu}\ell_{r})$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{Hud}	$i(\bar{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
$Q_{eH} = (H^{\dagger}H)(\bar{\ell}_p e_r H)$	$Q_{eW} = \frac{1}{g_2} (\bar{\ell}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$Q_{uG} = \frac{1}{g_3} (\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G_{\mu}$	Q_{dG}	$\frac{1}{g_3}(\bar{q}_p\sigma^{\mu\nu}T^Ad_r)HG^A_{\mu\nu}$		$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{\ell}_{p}\tau^{I}\gamma^{\mu}\ell_{r})$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$		
$Q_{uH} = (H^{\dagger}H)(\bar{q}_p u_r \tilde{H})$	$Q_{eB} = \frac{1}{g_1} (\bar{\ell}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$Q_{uW} = \frac{1}{g_2} (\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu}$	Q_{dW}	$\frac{1}{g_2}(\bar{q}_p\sigma^{\mu\nu}d_r)\tau^I HW^I_{\mu\nu}$		$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{dH} (H^{\dagger}H)(\bar{q}_p d_r H)$		$Q_{uB} = \frac{1}{g_1} (\bar{q}_p \sigma^{\mu\nu} u_r) \bar{H} B_{\mu\nu}$	Q_{dB}	$\frac{1}{g_1}(\bar{q}_p\sigma^{\mu\nu}d_r)HB_{\mu\nu}$		$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$				

8: Fermion Quadrilinears (ψ^4)

		non-Hermitian						
$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$	$(\overline{L}R)(\overline{L}R)$ + H.c.		
Q_{ll}	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu \ell_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{e}_s \gamma^\mu e_t)$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^i u_r) \varepsilon_{ij} (\bar{q}_s^j d_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{\ell}_p \gamma_\mu \ell_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{quqd}^{(8)}$	$(\bar{q}_p^i T^A u_r) \varepsilon_{ij} (\bar{q}_s^j T^A d_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{lequ}^{(1)}$	$(\bar{\ell}_p^i e_r) \varepsilon_{ij}(\bar{q}_s^j u_t)$	
$Q_{lq}^{(1)}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$	$Q_{lequ}^{(3)}$	$(\bar{\ell}_p^i \sigma_{\mu\nu} e_r) \varepsilon_{ij} (\bar{q}_s^j \sigma^{\mu\nu} u_t)$	
$Q_{lq}^{(3)}$	$(\bar{\ell}_p \gamma_\mu \tau^I \ell_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	($(\bar{L}R)(\bar{R}L) + H.c.$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	Q_{ledq}	$(\bar{\ell}_p^i e_r)(\bar{d}_s q_{ti})$	

• Why not simply consider the general (model-independent) SMEFT framework?

- Why not simply consider the general (model-independent) SMEFT framework?
 - Many free parameters! (~2,500 @ dim-6)
 - The coefficients induced by a full BSM model can be strongly correlated
 - The BSM effects can be enhanced or suppressed with respect to single parameter fits
 - It allows for a direct comparison with on-shell searches

• Two approaches:

 Consider the full MSSM, compute the physical masses after EWSB and only then integrate the fields → mapping to HEFT

$$\begin{split} V_{h^0}^{\text{HEFT}} &= \left(h^0\right)^2 \cos^2(2\beta) \, \frac{g_1^2 + g_2^2}{8} \, v^2 \left[1 - \sin^2(2\beta) \, \frac{g_1^2 + g_2^2}{4} \, \frac{v^2}{m_{\Phi}^2}\right] \\ &+ \left(h^0\right)^3 \cos^2(2\beta) \, \frac{g_1^2 + g_2^2}{8} \, v \left[1 - 3\sin^2(2\beta) \, \frac{g_1^2 + g_2^2}{4} \, \frac{v^2}{m_{\Phi}^2}\right] \\ &+ \left(h^0\right)^4 \cos^2(2\beta) \, \frac{g_1^2 + g_2^2}{32} \left[1 - 13\sin^2(2\beta) \, \frac{g_1^2 + g_2^2}{4} \, \frac{v^2}{m_{\Phi}^2}\right] \\ &- \left(h^0\right)^5 3\sin^2(4\beta) \, \frac{\left(g_1^2 + g_2^2\right)^2}{256} \, \frac{v}{m_{\Phi}^2} \\ &- \left(h^0\right)^6 \sin^2(4\beta) \, \frac{\left(g_1^2 + g_2^2\right)^2}{512} \, \frac{1}{m_{\Phi}^2} \,, \end{split}$$

2) Integrate out the heavy scalars before EWSB \rightarrow mapping to SMEFT $V_{\text{Higgs}}^{\text{SMEFT}} = M_H^2 |H|^2 + \frac{\lambda}{2} |H|^4 - C_H |H|^6$ $\lambda = \cos^2(2\gamma) \frac{g_1^2 + g_2^2}{4}$ $C_H = \frac{\sin^2(4\gamma)}{m_{\Phi}^2} \frac{(g_1^2 + g_2^2)^2}{64}$

• Both approaches give the same results up to leading order in the EFT expansion:

$$V_{\rm Higgs}^{\rm SMEFT} = V_{h^0}^{\rm HEFT} + \mathcal{O}(v^4/\Lambda^4)$$

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

 $m_{\tilde{t}_R}, m_1 \rightarrow \text{Free parameters}$

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

 $m_{\tilde{t}_R}, m_1 \rightarrow \text{Free parameters}$

• At the LHC:

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

 $m_{\tilde{t}_R}, m_1 \rightarrow \text{Free parameters}$

• At the LHC:

• "Light" Stop-Bino case: $v \ll m_{\tilde{t}_R}, m_1 \ll m_{SUSY}$

$$\mathcal{L}_{BSM} \to \frac{1}{2} \bar{\tilde{B}} \left(i \gamma^{\mu} \partial_{\mu} - m_1 \right) \tilde{B} + |D_{\mu} \tilde{t}|^2 - m_{\tilde{t}_R}^2 |\tilde{t}|^2 - \left(\frac{2\sqrt{2}}{3} g_1 \tilde{t}^{\dagger} \bar{\tilde{B}} t_R + h.c. \right)$$

 $m_{\tilde{t}_R}, m_1 \rightarrow \text{Free parameters}$

• At the LHC:

EFT Coefficients

• Toy Model:

J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You (2012.02779)

 -0.42^{+11}_{-12}

 $-1.0^{+0.38}_{-2.5}$

 ${\cal O}_{td}^{(8)}$

André Lessa | UFABC

More Results

• Distributions for heavy masses:

More Results

