Search for new resonance using the boosted Higgs pair production in the 4b final state

Osaka Univ. Nanjo-Lab. Rina Kugou

Search for Resonant di-Higgs Production

Resonant di-Higgs (HH) Production

- HH produced via gluon-gluon fusion (ggF)
- HH is sensitive to new resonances predicted by various BSM theories
 - Spin-0 boson X
 - e.g. predicted by two-Higgs-doublet models (2HDM)

SM Higgs + Scalar doublet → Supersymmetry, PQ symmetry, baryon asymmetry of the Universe ...

- Spin-2 Kaluza-Klein graviton G_{KK}^*

• In bulk Randall–Sundrum (RS) model

Add extra space-time dimensions to unify gravity and electromagnetism \rightarrow Solving the hierarchy problem

HH final state

Large variety of decay modes

_		bb	ww	ττ	ZZ	YY
	bb	34%				
7	ww	25%	4.6%			
/_	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	YY	0.26%	0.10%	0.028%	0.012%	0.0005%

- 4b final state
 - Largest BR
 - Large QCD multi-jet background

Η

2025/2/24

FJPPN 2024 project HEP_17

HH \rightarrow 4b Analysis in Run2

Set upper limits (95% CL) on cross-section of resonant HH production

Largest excess @1100 GeV

- local significance $\therefore 2.3\sigma$ for spin-0 and 2.5σ for spin-2
- global significance : 0.4σ for spin-0 and 0.8σ for spin-2

Statistical uncertainties are dominant mostly from background modeling

Randall-Sundrum (RS) model is excluded for graviton mass between 298 GeV and 1460 GeV

FJPPN 2024 project HEP_17

Analysis Channels

Jet reconstruction

- Using topological cluster
- Clustered by anti-k_T algorithm

Small-R jet Large-R jet Anti-k_⊤ R = 0.4Anti-k_T w/R = 1.0boost 2025/2/24

2 channels for HH \rightarrow 4b Analysis

 Resolved channel : Target low resonance mass (251 GeV $\leq m_X \leq 1.5 TeV$)

4 small-R jets

Boosted channel: Target high resonance mass (900 GeV $\leq m_X \leq 5 TeV$)

2 large-R jets

Focus on Boosted channel

b-tagging Algorithms

paper : <u>ATL-PHYS-PUB-2022-226</u> (DL1r) <u>ATL-PHYS-PUB-2023-021</u> (GN2X)

Mass sculpting

- If H(bb̄) tagging scores are correlated with large R jet masses, background mass distribution after tagging will be similar to the signal distribution
 → undesirable for data-driven background estimation
- GN2X is trained on mass decorrelated Higgs sample
- Modified Higgs samples are used to reduce background mass sculpting → Sculpting within 20%

Motivation

- Search for Spin-2 Kaluza-Klein graviton G_{KK}^* In bulk Randall–Sundrum (RS) model via HH \rightarrow 4b analysis
- RS model is excluded for graviton mass between 298 GeV and 1460 GeV by Run2 Analysis
- Aiming to improve high mass region sensitivity
 - Using run2 + partial run3 data :
 - High statistics due to increase in the luminosity
 - Run2 : 126~139 fb⁻¹
 - Run3 : 183 fb⁻¹ (~2024) + ~150 fb⁻¹ (2025~2026)
 - Using GN2X b-tagger : Improved $H(b\overline{b})$ tagging performance

MC Samples

RS graviton signal sample

Spin-2 Kaluza-Klein graviton G_{KK}^*

- Passed ATLAS detector simulation and reconstruction
- Corresponds to run3 data in 2023
- 2 resonance mass points :
 - 1000GeV
 - 3000GeV

Dijet b-filtered background sample

- Passed ATLAS detector simulation and reconstruction
- Corresponds to run3 data in 2023
- Multi b-jet filter applied during event generation :
 - Jet $p_T \ge 15 \text{ GeV}$
 - \geq 4 jets
 - ≥ 2 b-jets
- JZ filter applied during event generation :
 - Samples are split into several subsamples based on the leading truth jet pt
 - Use JZ3~JZ9+

Event selection

Event selection based on run2 analysis

- 1. At least 2 large R jets with $p_T > 250 \text{ GeV}$
- 2. 2 highest p_T jets are selected as the Higgs candidates
 - Leading (highest p_T) Higgs candidate : H_1
 - Subleading Higgs candidate : *H*₂
- 3. Each Higgs candidate is required to have $|\eta| < 2.0$, m(H) > 50 GeV
- 4. At least 1 Higgs candidate must have $p_T > 450 \text{ GeV}$

 $p_T > 450 \ GeV,$ $|\eta| < 2.0, \qquad H_1 \quad \left\{ \begin{array}{c} b \\ b \\ \overline{b} \end{array} \right\} \quad b \\ \overline{b} \end{array} \right\} \quad p_T > 250 \ GeV,$ $H_2 \quad |\eta| < 2.0, \\ m(H) > 50 \ GeV \qquad \rightarrow \text{Reject large-R jet not originated from } b\overline{b}$

c.l

Categorization

Categorize events using parton truth label ID of small R jet

• SR (Almost 0 events)

• CR

Large R jet mass distribution

Summary

Summary

- Aiming to discover new resonance via Higgs boson pair production in the 4b final state
- Performing boosted analysis on RS graviton MC signal sample and dijet bfiltered background sample using GN2X tagger