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1 Detection of an astrophysical source

1. The ESA astrometry mission, Gaia, is able to measure the parallax of remote stars up to 10 micro-arcsec
(10−5′′). What is the corresponding distance? How does it compare with the radius of the Galaxy?
Answer: 100 kpc vs ∼ 20 kpc

2. Suppose a sun-like star is sitting far from us, at a distance of 1/10 of the previously computed one. As-
tronomers use the magnitude to measure the brightness of an object, usually in a given bandwidth. The
apparent magnitude of a star m⋆ in the V(visible) band can be defined with respect to the Sun for which
m⊙ = −27, it reads:

m⋆ −m⊙ = −2.5 log10

(
F⋆

F⊙

)
, (1)

with F⊙ and F⋆ the flux of the sun and of the star measured at Earth. You can notice that the dimmer
the star, the larger its magnitude. Given that, on a relatively clear sky, the limiting visibility is about 6th
magnitude with the naked eye (mlim ≃ +6), is it possible to distinguish this star?
Answer: m⋆ = +19.5 > +6 so it is not visible

3. Now imagine that, instead of the star, there is a supernova at this specific distance. A typical supernova
releases gravitational energy of 1053 erg, with ∼99% carried by neutrinos, about ∼1% released as kinetic
energy of the ejecta, and ∼0.01% into photons. Assuming that this energy is released within the first several
months (say 100 days) of its life, estimate the photon flux at Earth. Would such a supernova be visible with
naked eye during a night sky? How does it compare with the magnitude of Jupiter of -2.7?
(The solar flux outside the atmosphere, so-called solar constant is F⊙ = 1372 Wm−2.)
Answer: FSN ≃ 10−4 erg s−1 cm−2 = 10−7Wm−2 and mSN = −1.7 namely slightly less bright than Jupiter

4. (Bonus) Cosmic rays (CRs) may be accelerated in supernova shocks, converting ∼10% of the kinetic energy
of the SN. When accelerated, CRs interact with the ambient medium and produce secondary particles,
charged pions π+π− which subsequently decay into leptons and neutrinos, and neutral pions π0 that decay
into γ rays. γ rays and neutrinos are among the secondary particles that are stable and propagate over large
distances. Assume that the luminosity in γ rays is constant during 10 kyr and that they carry approximately
10−7 of the energy of the accelerated CRs. Would Fermi-LAT be able to detect a γ-ray flux at 1GeV within
the first 100 days of a Galactic SN at 10 kpc? Use the following Fig. 1 to compare your result with the
Fermi-LAT point source sensitivity, assuming that the threshold flux scales as:

F (t) = F0

(
∆t

T0

)−1/2

, (2)

where F is the threshold flux for an event of duration ∆t. T0 is the full data taking period which is according
to Fig. 1, 10 years. In fact, the γ-rays luminosity of an SN is probably several orders of magnitude higher at
such an early stage.
Answer: for ∆T = 100 d and T0 = 10 yr the threshold flux is a factor of 0.2 less compared to the one given
in the plot (in other words the sensitivity curve of the plot has increased by a factor of 5), and the flux from
the SN is 10−14 erg s−1 cm−2 and the Fermi sensitivity ∼ 10−12 erg cm−2 s−1, so it will not be detected within
the first 100 d

5. (Bonus) Assuming that the neutrinos produced by inelastic collisions carry an equal amount of power as
the γ rays, would IceCube be able to detect any at neutrino energies of 1 TeV? Use the following graph
(Fig. 2).
Answer: the neutrino flux is 10−5 erg s−1 cm−2 at 1GeV, and 6 × 10−18TeV−1 s−1 cm−2 at 1TeV assuming
a flux dependence of E−2

2 Measuring the Hubble constant H0

For the following exercise, download the jupyter notebook H0-estimation-exercise.ipynb from the detailed timetable
of the school. Follow the instructions therein to calculate the Hubble constant using the data provided of SN Ia
supernovae. You will need to download and use the auxiliary file SCPUnion2.1 AllSNe.txt that contains the
observational data of the supernovae.
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Figure 1: The Fermi-LAT point source sensitivity after 10 years of observations.
Adapted from https://www.slac.stanford.edu/exp/glast/groups/canda/lat Performance.htm

Figure 2: The IceCube point source sensitivity at neutrino energy of 1 TeV after 10 years of operations. Extracted
from https://arxiv.org/pdf/1910.08488.pdf
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3 Newtonian toy cosmology

1. First Friedman equation

Consider a uniform sphere of pressureless dust expanding radially outwards, where dust refers to matter
whose pressure is negligible with respect to its energy density. At time t, the sphere has density ρ(t) and an
expanding radius R(t) = a(t)R0, where a(t) describes the expansion and is called scale factor.

Starting from the total conserved energy for a point of mass m on the surface of the sphere

T + U ≡ −mc2kR2
0

2
,

where the constant is written like so for dimensional reasons, T is the kinetic energy, and U is the gravitational

potential, obtain a relation for H2 ≡
(
ȧ
a

)2
. On the right-hand side, c is the speed of light and k is a constant

related to the curvature, which can be positive, null, or negative. The equation you will obtain is commonly
known as the first Friedman equation, and it describes the kinematics of the Universe.

Answer: The kinetic energy and the potential for the test particle are:

T =
1

2
mȧ2R2

0, (3)

U = −G
mM

aR0
, (4)

where M = 4
3πρa

3R3
0 is the total mass enclosed in the sphere.

By substituting these two expressions, we obtain:

1

2
mȧ2R2

0 −
4

3
πGρma2R2

0 +
1

2
mc2kR2

0 = 0, (5)

then we finally derived: (
ȧ

a

)2

+
c2k

a2
=

8

3
πGρ. (6)

2. Second Friedman equation

Now, considering that the sphere is adiabatically expanding, differentiate the first law of thermodynamics

dU = −p dV

where the total internal energy is U = V ρc2 with respect to a and write down a relation for dρ
da . This equation

is equivalent to the second Friedman equation and relates the expansion of the Universe to its content. If
you want to write the second Friedman equation, differentiate with respect to t the first equation, substitute
the equation you have just derived to find a relation for ä

a .

Answer:

We rewrite the differential equation into

ρc2dV + c2V dρ = −pdV,(
ρ+

p

c2

)
dV + V dρ = 0, (7)

4

3
πa3dρ+

(
ρ+

p

c2

) 4

3
π3a2da = 0,

dρ

da
+
(
ρ+

p

c2

) 3

a
= 0. (8)

In addition, to get the time dependence of this second Friedman equation, we first use the chain rule to get

dρ

dt

1

ȧ
+
(
ρ+

p

c2

) 3

a
= 0. (9)

From Eq. (6), we have

8πG

3

dρ

dt

1

ȧ
=

2

a

(
ä

a
− ȧ2

a2
− c2k

a2

)
, (10)

=
2

a

(
ä

a
− 8

3
πGρ

)
, (11)

where we use again the first Friedman equation on the second step.

Substituting Eq. (11) into Eq. (9), we can finally have

ä

a
+

4πG

3

(
ρ+

3p

c2

)
= 0. (12)
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Component EoS (w value) ρ(a) a(t)

Matter 0

Radiation 1/3

Cosmological constant −1

Table 1: Solution to the toy cosmology equations

3. Evolution of the components of the Universe

Assuming the general equation of state p = w ρ c2 (with w ̸= w(a)), and using the method of variable
separation, solve the differential equation for dρ

da to find how the density depends on the scale factor. Then,
assuming a flat universe (k = 0), substitute in the first Friedman equation and solve it to find how the scale
factor depends on time.

Finally, fill in Table 1.

Answer:

From Eq. (8), we have
dρ

da
+ (1 + w) ρ

3

a
= 0. (13)

The solution to this differential equation can be obtained by variable separation and is

ρ = ρ0a
−3(1+w), (14)

where the ρ0 is a constant.

For different energy components, we have

ρmatter(a) ∝ a−3, (15)

ρrad(a) ∝ a−4, (16)

ρconst(a) ∝ 1., (17)

As for the time dependence, we replace the above relation into Eq. (6), and get the following differential
equation

da

dt
=

(
8

3
πGρ0

) 1
2

a−
1+3w

2 , (18)

which we can again solve by variable separation and obtain these solutions

amatter(t) ∝ t2/3, (19)

arad(t) ∝ a1/2, (20)

aconst(t) ∝ eH0t, (21)

where H0 is the Hubble constant.
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