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LHC
physics

(experimental)

{ how (which) 

particles 

are produced 

and measured? }

Roberto Covarelli

1.



Experiment = probing/building theories with data
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The Standard Model of particle physics…
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Higgs coupling to fermions (fermion masses)

Gauge bosons

Gauge boson 

coupling to 

fermions (EW, 

QCD)

Higgs coupling to bosons (boson masses)

Higgs self-coupling (Higgs potential)



A theory built (and probed) over time…
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Neutral currents Charm Tau lepton Beauty

W and Z bosons Three families of neutrinos Top quark
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• Through two fundamental quantities:

•  (cross section): probability of a particle of being produced in 

collisions at a given energy (es. 13.6 TeV at LHC)

✓ May be differential, that is, as a function of the energy of the particle, 

the angles of its trajectory, etc.

•  (decay rate): probability of a particle of decaying into certain 

specific final particles

✓ The sum of all 's is the total decay rate, and because of resonance 

theory it is the inverse of its decay time:    = 

How do we compare experiment and 

predictions in a quantum field theory?
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(Classical) interaction cross section
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Flux [L-2 t-1]

Flux 

decrease

per unit of 

time
[L-3 t-1]

[L-3][?]

Effective THICKNESS of material 

(interaction centres per unit length)

Cross section

per target 

particle

[L2] = reaction rate per unit of flux

1 b = 10-28 m2 (roughly the area of a nucleus with A = 100)

𝑑F

𝑑𝑥
[L-2 t-1]
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LHC

pp collider (2008-present)

√s = 7-8-13 TeV



Collider cross-section / Luminosity
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Number of events 

in unit of time

[L2][t-1] [L-2 t-1]

In a collider ring…

Current

Beam sizes (RMS)
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Low Q High Q

ValenceSea

Sea

•  p rotons have substructure! 

✓ partons = quarks & gluons

✓ 3 valence (colored) quarks bound by gluons

✓ Gluons (colored) have self-interactions

✓ Virtual quark pairs can pop-up (sea-quark)

✓ p momentum shared among constituents
• described by p structure functions

• Parton energy not ‘monochromatic’

✓ Parton Distribution Function
• PDF = q(x,Q2),    q = u,d,s,..g

• Kinematic variables

✓ Bjorken-x: fraction of the proton 

     momentum carried by struck parton

• x = pparton/pproton 

✓ Q2 : 4-momentum2 transfer
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Proton colliders



Cross sections at a proton-proton collider
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Example: to produce a particle 

with mass m = 100 GeV

= 100 GeV

= 13.6 TeV → = 0.007



Cross-sections at LHC
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109 events/s

10-1 events/s

~1010

[mH ~ 125 GeV]

1 nb = 10−33 cm2

σtot (13.6 TeV) ~ 108 nb

σH (13.6 TeV) ~ 0.05 nb 

LHC instantaneous luminosity L ~ 1×1034 cm-2s-1

inelastic pp collisions

~ 1 Higgs boson 

every 2 seconds
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• Through two fundamental quantities:

•  (cross section): probability of a particle of being produced in 

collisions at a given energy (es. 13 TeV at LHC)

✓ May be differential, that is, as a function of the energy of the particle, 

the angles of its trajectory, etc.

•  (decay rate): probability of a particle of decaying into certain 

specific final particles

✓ The sum of all 's is the total decay rate, and because of resonance 

theory it is the inverse of its decay time:    = 

How do we compare experiment and 

prediction in a quantum field theory?
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H
Higgs boson

2012: CERN

What do we want to measure?
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… “stable” 

particles from 

unstable particle 

decays!

 = ∞

 =10-24 s

 = 2.2 s



H
Higgs boson

2012: CERN

What do we want to measure?
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hadron

jets

invisible 

in particle 

detectors at 

accelerators

… “stable” 

particles from 

unstable particle 

decays!

interaction 

modes?

interaction 

modes?

decays?

decays?



What do we want to measure?
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e-

e+

μ-

μ+

this is what we are looking for…

… we look for “stable” particles 

from an unstable particle decays

Example: let’s assume a Higgs boson is 

produced at the LHC …

It is a SM particle, we can predict 

how and how frequently



Identifying and measuring “stable” particles

• Particles are characterized by

✓ Mass  [Unit: eV/c2 or eV]

✓ Charge  [Unit: e]

✓ Energy  [Unit: eV]

✓ Momentum [Unit: eV/c or eV]

✓ (+ spin, lifetime, …)

• … and move at relativistic speed (here in “natural” units: ħ = c = 1)
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length contraction

time dilation

Particle identification via 

measurement of:

e.g. (E, p, Q) or (p, β, Q)

 (p, m, Q) ...



Center of mass energy

• In the center-of-mass frame the total momentum is 0

• In laboratory frame, the center of mass energy can be computed as:
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Hint: it can be computed as the “length” of the total four-momentum, that is invariant:

What is the “length” of a the four-momentum of a SINGLE particle? 



Invariant mass
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A collider experiment
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y

z

x

r θ

Φ



Interaction mode cheat sheet (“light” particles)

• electrically charged

• ionization (dE/dx)

• electromagnetic 

shower…
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• electrically charged

• ionization (dE/dx)

• electrically neutral

• pair production

✓ E >1 MeV

• electromagnetic 

shower…

• produce hadron(s) 

jets via QCD 

hadronization 

process



Magnetic spectrometer for ionizing particles

• A system to measure (charged) particle momentum

• Tracking device + magnetic field
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µ = nσ= ρ
NA

A
·σpair

Electromagnetic Showers

Reminder:

X0

Dominant processes 

at high energies ...

Photons	:   Pair production

Electrons	:   Bremsstrahlung

Pair production:

dE

dx
=
E

X0

dE

dx
= 4αNA

Z2

A
r2e ·E ln

183

Z
1
3

σpair ≈
7

9
4αr2eZ

2 ln
183

Z
1
3

=
7

9

ρ

X0

Bremsstrahlung:

E = E0e
− x/ X 0

[X0: radiation length]
[in cm or g/cm2]

Absorption 
coefficient:

After passage of one X0 electron

has only (1/e)th of its primary energy ...

[i.e. 37%]

 

=
7

9

A

NAX0

Calorimeters for showering particles

• Electromagnetic shower

✓ Photons: pair production

• Until below e+e- threshold

✓ Electrons: bremsstrahlung

• Until brem cross-section smaller than 

ionization

• Hadronic showers

✓ Inelastic scattering w/ nuclei

• Further inelastic scattering until 

below pion production threshold

✓ Sequential decays
– π0 → γγ

– Fission fragment: β-decay, γ-decay

– Neutron capture, spallation, …
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Hadronic vs. EM showers
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Particle identification with CMS@LHC
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ALEPH @ LEP
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CMS @ LHC

A Z→e+e- event at LEP and ad LHC



Pile-Up
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PU = number of inelastic interactions 

per beam bunch crossing



Z→μμ event with 25 reconstructed vertices
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April 15th, 2012

~5 cm



A few more words on QCD

• QCD (strong) interactions are carried out by 

massless spin-1 particles called gluons

✓ Gluons are massless

• Long range interaction

✓ Gluons couple to color charges

✓ Gluons have color themselves

• They can couple to other gluons

• Principle of asymptotic freedom 

✓ At short distances strong interactions are weak

• Quarks and gluons are essentially free particles 

• Perturbative regime (can calculate!)

✓ At large distances, higher-order diagrams dominate

• Interaction is very strong

• Perturbative regime fails, have to resort to effective 

models
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quark-quark effective potential

single gluon 

exchange

confinement



Confinement, hadronization, jets
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Additional

information
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(I find you lack of faith disturbing)



Collider experiment coordinates
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y

z

x

r θ

Φ



Before the LHC startup
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mW measurement 

at SppS and LEP-1 

precision 

measurements

mW measurement 

at LEP-2

electroweak fit

and indirect limit on mH

Direct limits on Higgs 

production from LEP-2 

and Tevatron

top quark 

discovery 

(1994)

LHC “no lose theorem”

Either the Higgs boson is discovered, 

or New Physics should manifest to avoid unitarity violation in WW scattering at TeV scale



Total Energy Loss of Electrons
27. Passage of par ticles through matter 19
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Figure 27.10: Fractional energy loss per radiation length in lead as a

function of electron or positron energy. Electron (positron) scattering is

considered as ionization when the energy loss per collision is below 0.255

MeV, and as Møller (Bhabha) scattering when it is above. Adapted from

Fig. 3.2 from Messel and Crawford, Electron-Photon Shower Distribution

Function Tables for Lead, Copper, and Air Absorbers, Pergamon Press,

1970. Messel and Crawford useX0(Pb) = 5.82 g/ cm2, but wehavemodified

the figures to reflect the value given in the Table of Atomic and Nuclear

Propertiesof Materials (X0(Pb) = 6.37 g/ cm2).

At very high energies and except at thehigh-energy tip of the bremsstrahlung

spectrum, thecrosssection can beapproximated in the “completescreening case”

as[38]

dσ/ dk = (1/ k)4αr2
e{ (4

3
− 4

3
y + y2)[Z2(Lrad − f (Z)) + Z Lrad]

+ 1
9(1− y)(Z2 + Z)} ,

(27.26)

where y = k/ E is the fraction of the electron’s energy transfered to the radiated

photon. At small y (the “ infrared limit” ) theterm on thesecond lineranges from

1.7% (low Z) to 2.5% (high Z) of the total. If it is ignored and the first line

simplified with thedefinition of X0 given in Eq. (27.22), wehave

dσ

dk
=

A

X0NAk
4
3

− 4
3
y + y2 . (27.27)

Thiscrosssection (timesk) isshown by thetop curvein Fig. 27.11.

This formula is accurate except in near y = 1, where screening may become

February 2, 2010 15:55

Fractional energy loss per radiation length in lead
as a function of electron or positron energy
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Electron energy loss



Energy Loss – Summary Plot for Muons
4 27. Passage of par ticles through matter
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Fig. 27.1: Stopping power (= −dE/ dx ) for positive muons in copper as a

function of βγ = p/Mc over nine orders of magnitude in momentum (12 orders

of magnitude in kinetic energy). Solid curves indicate the total stopping power.

Data below the break at βγ ≈ 0.1 are taken from ICRU 49 [4], and data

at higher energies are from Ref. 5. Vertical bands indicate boundaries between

different approximations discussed in the text. The short dotted lines labeled

“µ− ” illustratethe“Barkaseffect,” thedependenceof stoppingpower on projectile

chargeat very low energies [6].

27.2.2. Stopping power at intermediate energies :

Themean rateof energy lossby moderately relativistic charged heavy particles,

M1/ δx, iswell-described by the “Bethe-Bloch” equation,

−
dE

dx
= K z2Z

A

1

β2

1

2
ln

2mec
2β2γ2Tmax

I 2
− β2 −

δ(βγ)

2
. (27.3)

It describes the mean rate of energy loss in the region 0.1 <∼ βγ <∼ 1000 for

intermediate-Z materials with an accuracy of a few %. At the lower limit the

projectilevelocity becomescomparabletoatomicelectron “velocities” (Sec. 27.2.3),

February 2, 2010 15:55

P
D

G
 2

0
1
0

Muon energy loss
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Interaction of photons with matter
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HEP, SI and “natural” units
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Quantity HEP units SI units

length 1 fm 10-15 m

charge e 1.602⋅10-19 C 

energy 1 GeV 1.602 x 10-10 J

mass 1 GeV/c2 1.78 x 10-27 kg

ħ = h/2pi 6.588 x 10-25 GeV s 1.055 x 10-34 Js

c 2.988 x 1023 fm/s 2.988 x 108 m/s

ħc 197 MeV fm … 

“natural” units (ħ = c = 1)

mass 1 GeV

length 1 GeV-1 = 0.1973 fm

time 1 GeV-1 = 6.59 x 10-25 s



Relativistic kinematics in a nutshell
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Cross section: magnitude and units
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Proton-proton scattering cross-section
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Fixed target vs. collider
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How much energy should a fixed 

target experiment have to equal 

the center of mass energy of 

two colliding beam?



Syncrotron radiation
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energy lost per revolution

electrons vs. protons

It’s easier to accelerate protons to 

higher energies, but protons are 

fundamentals…



CERN accelerator complex
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Magnetic spectrometer
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Charged particle in 

magnetic field

If the field is constant and we neglect presence of matter, momentum 

magnitude is constant with time, trajectory is helical

Actual trajectory differ from exact helix because of:

• magnetic field inhomogeneity

• particle energy loss (ionization, multiple scattering)



Momentum measurement
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s = sagitta

l = chord

ρ = radius

Momentum resolution due 

to measurement error

measurement error (RMS)smaller for larger number of points

projected track length 

in magnetic field

resolution is improved faster 

by increasing L then B
Momentum resolution gets 

worse for larger momenta
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A
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Electromagnetic Showers

Reminder:

X0

Dominant processes 

at high energies ...

Photons	:   Pair production

Electrons	:   Bremsstrahlung

Pair production:

dE

dx
=
E

X0

dE

dx
= 4αNA

Z2

A
r2e ·E ln

183

Z
1
3
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2 ln
183

Z
1
3

=
7

9

ρ

X0

Bremsstrahlung:

E = E0e
− x/ X 0

[X0: radiation length]
[in cm or g/cm2]

Absorption 
coefficient:

After passage of one X0 electron

has only (1/e)th of its primary energy ...

[i.e. 37%]
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Electromagnetic showers
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Critical energy:



Hadronic showers
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★

Homogeneous Calorimeters

In a homogeneous calorimeter the whole detector volume is filled by a

high-density material which simultaneously serves as absorber as well 

as as active medium ...

Advantage: homogenous calorimeters provide optimal energy resolution

Disadvantage: very expensive

Homogenous calorimeters are exclusively used for electromagnetic

calorimeter, i.e. energy measurement of electrons and photons

Signal Material

Scintillation light BGO, BaF2, CeF3, ...

Cherenkov light Lead Glass

Ionization signal Liquid nobel gases (Ar, Kr, Xe)

★

★

★

Homogeneous calorimeters
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Sampling calorimeters
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Sampling Calorimeters

Simple shower model

! Consider only Bremsstrahlung and (symmetric) pair 
production

! Assume X0 !  ! pair

! After t X0:

! N(t) = 2t

! E(t)/particle = E0/2t

! Process continues until E(t)<Ec

! E(tmax) = E0/2tmax = Ec

! tmax = ln(E0/Ec)/ln2

! Nmax "   E0/Ec

5

Alternating layers of absorber and 

active material [sandwich calorimeter]

Absorber materials:
[high density]

Principle:

Iron (Fe)

Lead (Pb)

Uranium (U)
[For compensation ...]

Active materials:

Plastic scintillator

Silicon detectors

Liquid ionization chamber

Gas detectors

  passive absorber        

    shower (cascade of secondaries)

  active layers   

        incoming particle      

Scheme of a
sandwich calorimeter

Electromagnetic shower



A typical HEP calorimetry system
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σE

E
=
A
√
E

⊕ B ⊕
C

E

Hadronic Calorimeters

Energy resolution:

Fluctuations:

	 Sampling fluctuations

	 Leakage fluctuations

 Fluctuations of electromagnetic 
 fraction 

 Nuclear excitations, fission, 
 binding energy fluctuations ...

	 Heavily ionizing particles

e.g. electronic noise
		 sampling fraction variations

e.g. inhomogeneities
		 shower leakage

Typical:

A:  0.5 – 1.0 [Record:0.35]

B:  0.03 – 0.05

C:  few %

Energy resolution in calorimeters
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Resolution: EM vs. HAD
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Sampling 

fluctuations 

only minor 

contribution to 

hadronic 

energy 

resolution

[AFM Collaboration]
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