Long-Lived Axion-Like Particles at the Future Circular Electron-Positron Collider

Elnura Bakhishova¹

Supervised by: Prof. Freya Blekman^{1,2}, Dr. Juliette Alimena², Lovisa Rygaard^{1,2}

Link to thesis: https://bib-pubdb1.desy.de/record/625748

GraSPA 2025 Annecy

Future Circular Collider (FCC)

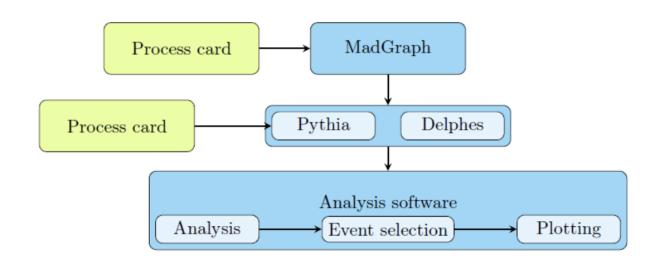
• Proposed to be built at CERN with a circumference of 90.7 km (~3x LHC)

1st stage of FCC: e+e- collisions (FCC-ee) \rightarrow Z-pole run ($\sqrt{s} = 91 \text{ GeV}$)

! enormous data set → ALPs could be produced in large quantities at FCC-ee

Machine parameters:

Overview


 $\sqrt{s} = 91 \text{ GeV}$ $\mathcal{L} = 205ab^{-1}$

Goal: Studying the sensitivity of the FCC-ee to an ALP signature during the Z-pole run

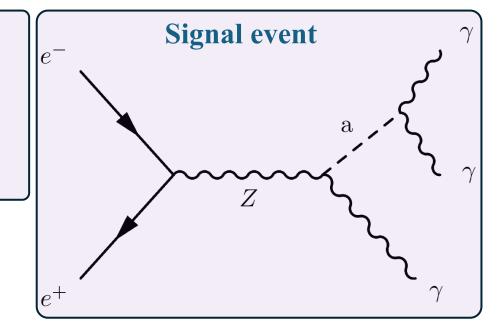
How?

- Using simulation and analysis software to produce samples of defined ALP signal event & background events
- Making event selections

Axion-Like Particle (ALP)

- ALP = BSM, hypothetical, pseudoscalar particle
- ALP is a generalization of axion with independent mass and coupling strength
- Long-lived due to weak coupling to SM particles

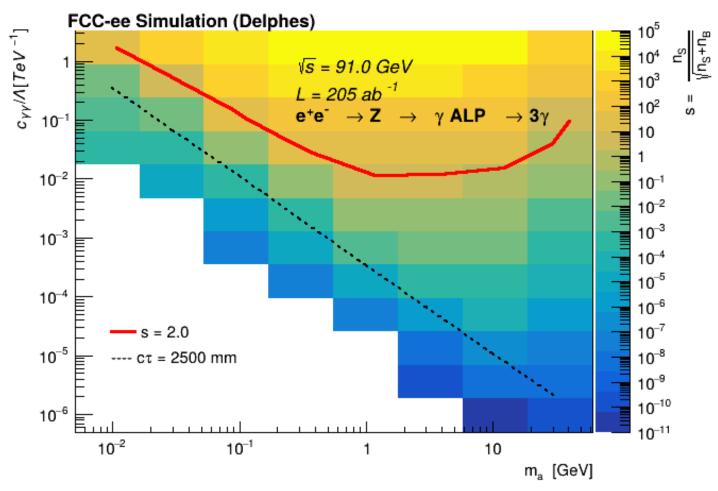
Axion-Like Particle (ALP)


- ALP = BSM, hypothetical, pseudoscalar particle
- ALP is a generalization of axion with independent mass and coupling strength
- Long-lived due to weak coupling to SM particles

Signal event
$$e^+e^- \rightarrow Z \rightarrow a\gamma \rightarrow \gamma\gamma\gamma$$

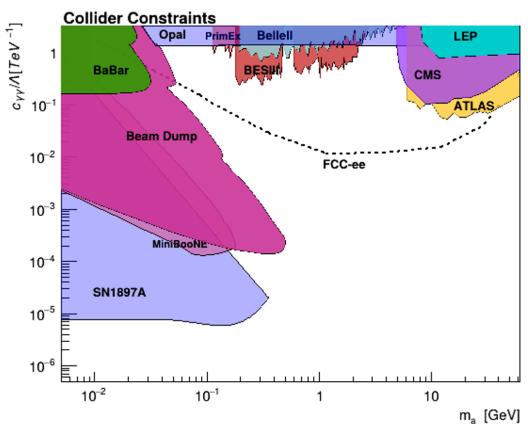
- 3 final state photons
- 1M events produced for various ALP parameter settings

Varied in analysis: ALP mass & ALP-photon coupling $c_{\nu\nu}$


→ Influences cross-section and lifetime

Projected sensitivity for ALP at the FCC-ee

Sensitivity for ALP signal detection at FCC-ee is determined with the expected number of signal events (n_S) and background events (n_B) during the complete Z-pole run:


$$s = \frac{n_S}{\sqrt{n_S + n_B}}$$

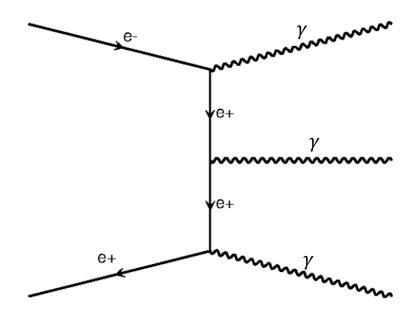
The red line corresponds to ~95% CL

Comparison to existing collider constraints

Constraints from other collider searches on the ALP parameter space indicate that FCC-ee would reach so far uncovered parameter space!

Projected sensitivity of FCC-ee to the ALP signal process at 95% confidence level limit (black dashed line) in the ALP-photon coupling versus ALP mass plane

Backup

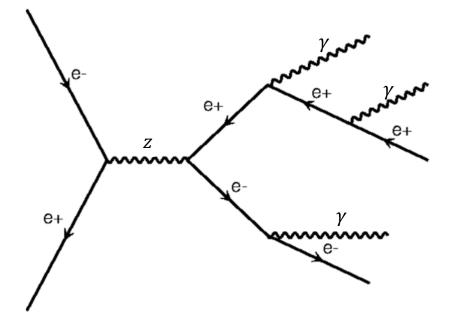

Background events

= processes that could mimic the ALP signal event

$$Diphoton: e^+e^- \to \gamma\gamma$$

$$Triphoton: e^+e^- \to \gamma\gamma\gamma$$

$$Quadphoton: e^+e^- \to \gamma\gamma\gamma\gamma$$



$$e^{+}e^{-} \rightarrow e^{+}e^{-}$$

$$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma$$

$$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma\gamma$$

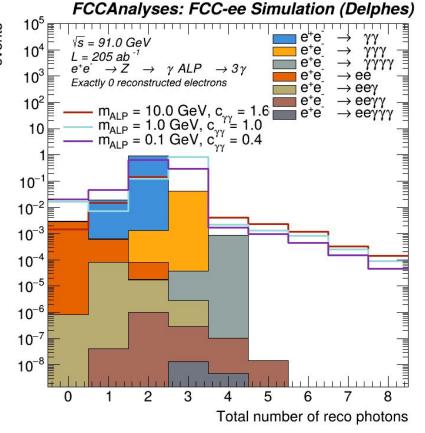
$$e^{+}e^{-} \rightarrow e^{+}e^{-}\gamma\gamma\gamma$$

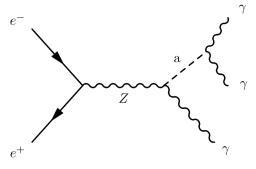
Event selections

Total number of background events for Z-pole run: $\sim 10^{11}$ Total number of signal events for Z-pole run depends on ALP parameters: 10^{-4} - 10^{8}

Increase signal-to-background ratio by applying event selection criteria to the collision events, thereby increasing the sensitivity for ALP signal detection at FCC-ee

Selections on final state particles, angular separation between particles, momentum...

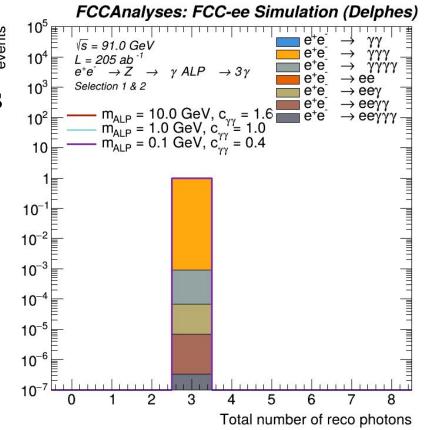

Event selections


Total number of background events for Z-pole run: $\sim 10^{11}$ Total number of signal events for Z-pole run depends on ALP parameters: 10^{-4} - 10^{8}

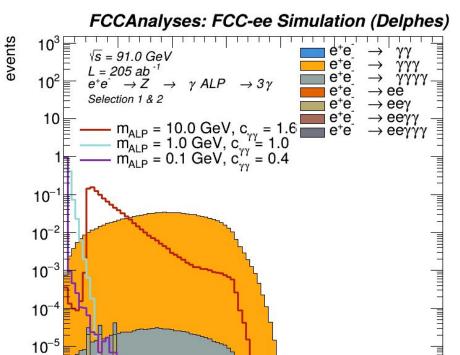
		Selection Criteria	
Selection 1	Vetoes No reconstructed electrons		
Selection 2	Final State Exactly 3 reconstructed photons		
Selection 3	Angles	Angles $\min \Delta R < 1$	
Selection 4	Momentum	$p > 42 \text{ GeV for leading photon } (photon_0)$	

Table 3: Summary of the event selections.

Final state: 3 photons

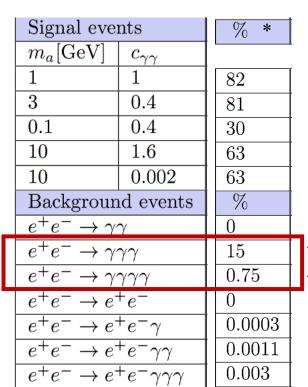


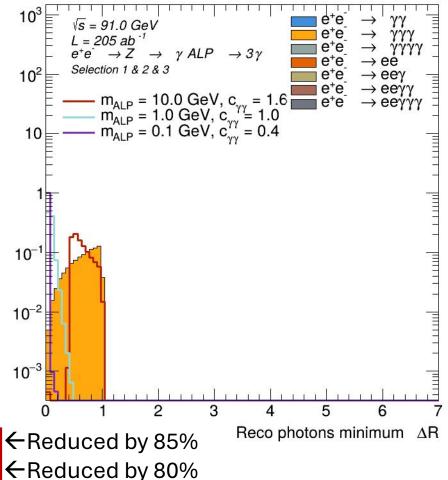
Selection2:


Require exactly 3 reco photons

Signal events		% *	
$m_a[{ m GeV}]$	$c_{\gamma\gamma}$		
1	1	82	
3	0.4	81	
0.1	0.4	30	
10	1.6	80	
10	0.002	81	
Background events		%	
$e^+e^- \to \gamma\gamma$		0	
$e^+e^- \to \gamma\gamma\gamma$		97	
$e^+e^- \to \gamma\gamma\gamma\gamma$		3.9	
$e^+e^- \rightarrow e^+e^-$		0	
$e^+e^- \rightarrow e^-$	0.0003		
$e^+e^- \rightarrow e^-$	0.003		
$e^+e^- \rightarrow e^-$	0.0082		

*Values and plots already include prior selection requirements


Angles: Require $\min \Delta R < 1$


Reco photons minimum ΔR

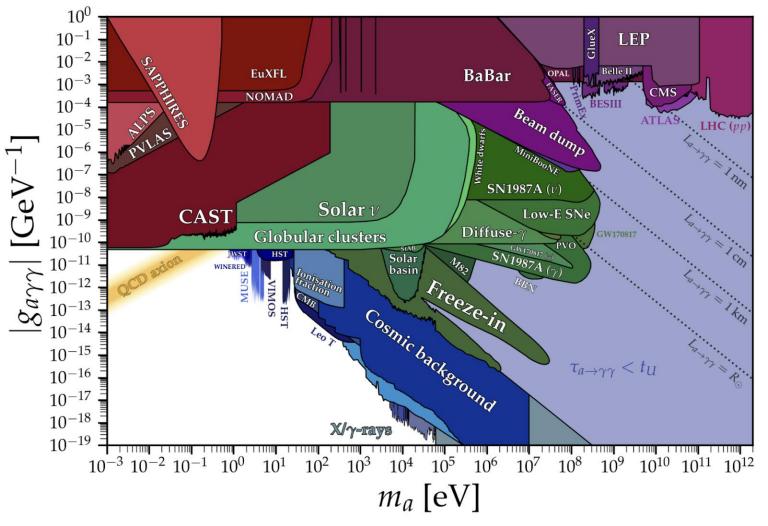
 10^{-6}

Selection3: Require $min\Delta R < 1$ for reco photons

FCCAnalyses: FCC-ee Simulation (Delphes)

*Values and plots already include prior selection requirements

Cut flow table


		Before sele	ctions
Signal events		N_{exp}	%
$m_a[{ m GeV}]$	$c_{\gamma\gamma}$		
1	1	2.75 e + 08	100
3	0.4	4.39e + 07	100
0.1	0.4	$4.40 \mathrm{e}{+07}$	100
10	1.6	6.79e + 08	100
10	0.002	1.06e + 03	100
Background events		N_{exp}	%
$e^+e^- \to \gamma\gamma$		$1.38\mathrm{e}{+10}$	100
$e^+e^- \to \gamma\gamma\gamma$		$6.14\mathrm{e}{+08}$	100
$e^+e^- \to \gamma\gamma\gamma\gamma$		1.29 e + 07	100
$e^+e^- \rightarrow e^+e^-$		$4.52e{+11}$	100
$e^+e^- \rightarrow e^+e^-\gamma$		$1.19e{+10}$	100
$e^+e^- \rightarrow e^+e^-\gamma\gamma$		2.00e + 08	100
$e^+e^- \rightarrow e^+e^-\gamma\gamma\gamma$		2.38e + 06	100

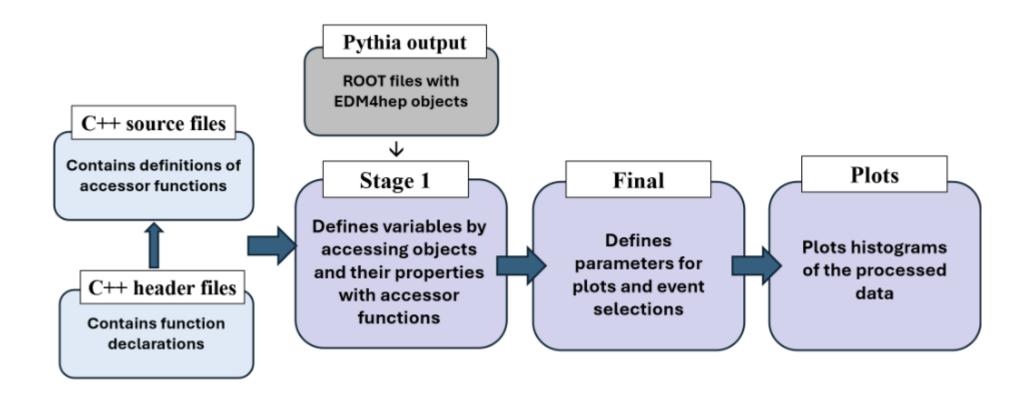
→Background events have been significantly reduced while maintaining as much of the signal events as possible

After all selections		
N_{exp}	%	
$2.26\mathrm{e}{+08}$	82	
$3.54\mathrm{e}{+07}$	81	
$1.29\mathrm{e}{+07}$	29	
$4.25\mathrm{e}{+08}$	63	
$6.65\mathrm{e}{+02}$	63	
N_{exp}	%	
0.	0	
$9.16\mathrm{e}{+07}$	15	
2.16e+04	0.17	
0.	0	
$1.19\mathrm{e}{+04}$	0.0001	
$2.00 \mathrm{e}{+02}$	0.0001	
0.	0	

Table: Cut flow table of the sequential application of the four event selections. The table displays the ALP mass and coupling strength of selected signal samples and all background events. N_exp is the expected number of events that remain at each stage of the applied selection for the Z-pole run at the FCC-ee. The % columns show what percentage of the initial number of events (prior to any selections) remain after the specified selections.

ALP constraints – zoomed out

ALP couplings and Wilson coefficients


After EW symmetry breaking the U(1) gauge boson mixes with the neutral SU(2) gauge bosons to produce a photon (mediator of EM interaction) & Z boson (neutral mediator of weak force)

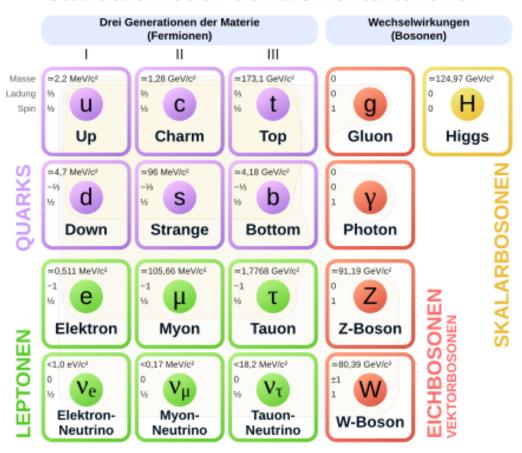
$$C_{\gamma\gamma} = C_{WW} + C_{BB},$$

 $C_{\gamma Z} = c_w^2 C_{WW} - s_w^2 C_{BB},$
 $C_{ZZ} = c_w^4 C_{WW} + s_w^4 C_{BB},$

- Coupling to SU(2) gauge boson (C_WW) set to 0, we assume ALP only couples to U(1) gauge bosons (C_BB)
- Parameters fixed at zero allow analysis of simulations with direct dependencies on C_yy

$$C_{\gamma\gamma}^{\text{eff}} (m_a \gg \Lambda_{QCD}) = C_{\gamma\gamma} + \sum_f \frac{N_c^f Q_f^2}{16\pi^2} c_{ff} B_1(\tau_f) + \frac{2\alpha}{\pi} \frac{C_{WW}}{s_w^2} B_2(\tau_W)$$

Methodology


Standard Model

- Developed in 1970s
- Successfully verified by many experiments
- Includes 3 of the 4 fundamental forces

Unexplained:

- Dark matter, dark energy
- Baryon asymmetry
- Neutrino mass
- Gravity not incorporated

Standardmodell der Elementarteilchen

