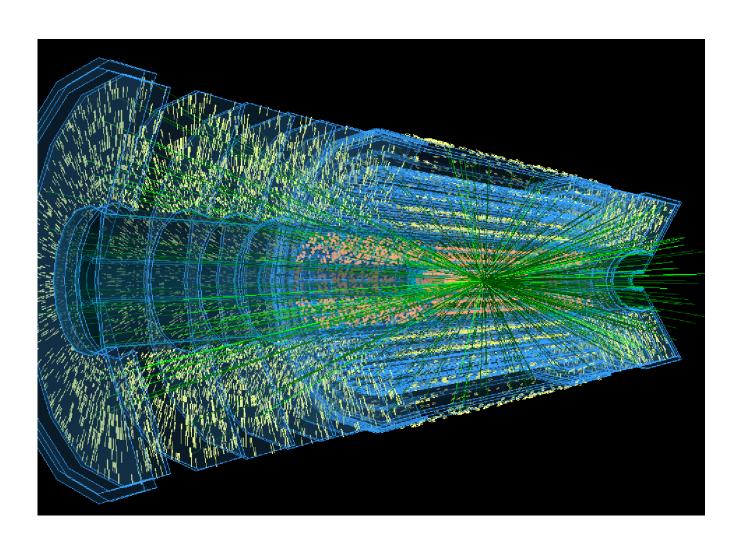
A New Method for HL-LHC CMS MTD Upgrade

Development of an Innovative Method to Characterize the Sensitive Elements of the BTL Detector

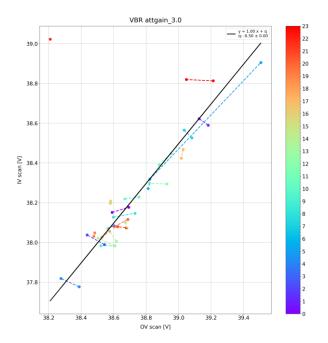

Who is speaking?

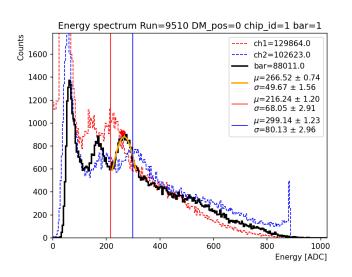
Giacomo Moretti

Lombardy, Italy
Bachelor's student at the University of Milano-Bicocca

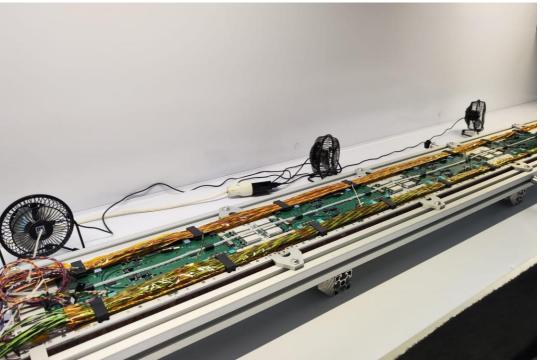
- Over the past three months, I have been working on the research presented in my Bachelor's thesis, focusing on the characterization of sensitive elements in the BTL detector for the CMS experiment.
- I aspire to pursue a career in high-energy particle physics.
- Curious by nature always full of questions.

HL-LHC & CMS Detector Upgrade


- The High-Luminosity LHC (HL-LHC), planned for 2030, will boost both instantaneous and integrated luminosity: more particles interactions.
- Main goals: more precise Higgs boson studies and an extended search for new physics.
- This upgrade presents challenges for the CMS detector:
 - **~200 interactions** per bunch crossing (pileup) and increased radiation and higher data throughput requirements
- To address this, the MIP Timing Detector (MTD) is introduced:
 - Provides tens-of-picosecond time resolution and helps associate tracks to the correct primary vertex, improving event reconstruction



The New Method


- Sensitive elements: LYSO:Ce crystals and Silicon Photomultipliers (SiPMs)
 The crystals emit light when crossed by particles;
 SiPMs detect this light, and the TOFHIR electronics read both time and energy signals.
- Need to characterize parameters of SiPMs
 Current method to characterize not applicable post-installation → No external photon source available
 New approach: Use intrinsic radioactivity of LYSO:Ce (beta decay) as a source of photons to estimate SiPMs
- Energy response modeled as a function of SiPM parameters:
 Peak Extraction from the LYSO spectrum
 Parameter Extraction: fitting data from LYSO and optimizing TOFHIR electronics

Temperature Stability confirmed across conditions

What I learned

- Don't Be Afraid To:
 - Ask for help
 - Be judged
 - Make mistakes
- Be creative in finding new solutions
- Seek collaboration, not selfish glory
- No satisfaction comes from what is easy
- There is still much work to be done in physics.
 The future is in our hands.