

TUG 2025

Separate Universe Approach : Jordan frame or Einstein frame ?

Hugo Holland

Institut d'astrophysique Spatiale

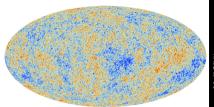
Under the supervision of JULIEN GRAIN

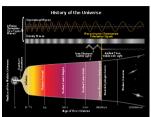
- Stochastic inflation & Separate Universe
- Separate Universe approach in multifield theories
- Non minimal couplings to gravity

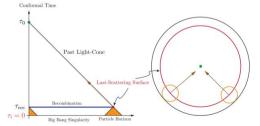
April 14, 2025

Introduction and Motivations

- Conceptual problems
- ightarrow No origin for the initial conditions
- ightarrow Horizon problem
- \rightarrow Flatness problem
- \rightarrow Scale invariance origin
- ightarrow origin of CMB and LSS
- ⇒ Accelerated expansion = Inflation

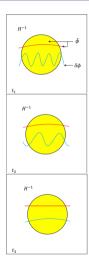






April 14, 2025 3/15

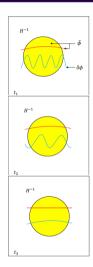
The Separate Universe approach



- In a Hubble patch the long wavelength modes eventually evolve as the background
- GOAL: evolve the superhorizon modes non linearly in homogeneous patches and evolve the subhorizon modes linearly in non homogeneous patches
- When and how should you switch from one description to another?

Figure: Quantum to classical transition of

The Separate Universe approach



- In a Hubble patch the long wavelength modes eventually evolve as the background
- GOAL: evolve the superhorizon modes non linearly in homogeneous patches and evolve the subhorizon modes linearly in non homogeneous patches
- When and how should you switch from one description to another?
- ⇒ Proven to work at leading order in perturbation theory for single field inflation Artigas+ 22 Pattison+ 19
- \Rightarrow Proof doesn't tell **how** to execute this matching correctly \rightarrow if you gauge fix in SU you can't guaranty a good gauge choice in CPT

Figure: Quantum to classical transition of

Applications of the SUA

δN formalism

- Need to know the local initial conditions
- These initial conditions depend on where we coarse grain our universe i.e. the scale at which we define our separate universe approach

April 14, 2025 5

Applications of the SUA

δN formalism

- Need to know the local initial conditions
- These initial conditions depend on where we coarse grain our universe i.e. the scale at which we define our separate universe approach

Stochastic inflation

- Langevin equation : $\dot{\phi}_{\it IR} = \frac{\partial \it V}{\partial \phi} + \xi_{\phi}$
- ullet No gradients \Rightarrow relies on the Separate Universe approach
- Noise defined by sub-horizon modes
- Diffusive effects are given by the expectation value of the noise
- \Rightarrow depends on the scale at which we cut our modes

April 14, 2025 5/15

Applications of the SUA

δ N formalism

- Need to know the local initial conditions
- These initial conditions depend on where we coarse grain our universe i.e. the scale at which we define our separate universe approach

Stochastic inflation

- Langevin equation : $\dot{\phi}_{\it IR} = {\partial {\it V} \over \partial \phi} + \xi_{\phi}$
- ullet No gradients \Rightarrow relies on the Separate Universe approach
- Noise defined by sub-horizon modes
- Diffusive effects are given by the expectation value of the noise
- \Rightarrow depends on the scale at which we cut our modes

 \Rightarrow We **need** to coarse-grain properly at the right scale to define the Separate Universe approach properly

April 14, 2025 5/15

- Stochastic inflation & Separate Universe
- Separate Universe approach in multifield theories
- Non minimal couplings to gravity

April 14, 2025 6/-

Hamiltonian approach & multifield inflation

Stochastic inflation:

Stochastic inflation as I have presented it : suppose Slow Roll, de Sitter universe \Rightarrow simple Langevin equation.

NOT always the case. No SR approximation \Rightarrow no attractor solution \Rightarrow need to keep the complete phase space, i.e. the associated momenta to our field(s) \Rightarrow Hamiltonian framework to keep track of everything.

April 14, 2025 7/

Hamiltonian approach & multifield inflation

Stochastic inflation:

Stochastic inflation as I have presented it : suppose Slow Roll, de Sitter universe \Rightarrow simple Langevin equation.

NOT always the case. No SR approximation \Rightarrow no attractor solution \Rightarrow need to keep the complete phase space, i.e. the associated momenta to our field(s) \Rightarrow Hamiltonian framework to keep track of everything.

Multifield models:

Phenomenology

- Comological collider physics,
- Reheating: coupling inflaton to Standard model,
- PBH, exponential tails, large scale structures...

Theory

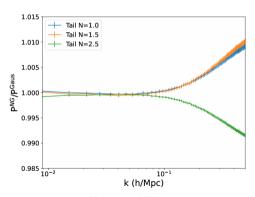
- EFT of inflation.
- non linear couplings,
- non minimally coupled to gravity,
- ⇒ coupling metric for a covariant theory.

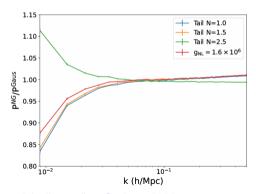
April 14, 2025 7/15

Exponential tails from multiple scalar fields:

a smoking gun?

Multifield models lead to boosts in the power spectrum, which come with exponential tails and non linear effects, some of which can be observed:





Matter and Halo power spectrum for exponential tails, credit to Coulton+ 2024

April 14, 2025 8/15

Multifield hamiltonian constraints

$$S = \int \mathrm{d}^4 x \sqrt{-g} \Big[rac{1}{2} M_{
ho l}^2 \mathcal{R} - rac{1}{2} g^{\mu
u} G_{lJ} \partial_{\mu} \phi^l \partial_{
u} \phi^J - V(\phi^l) \Big]
onumber \ = \int \mathrm{d} au \int \mathrm{d}^3 x \left(\pi_l \dot{\phi}^l + \pi^{ij} \dot{\gamma}_{ij} - N\mathcal{C} - N^l \mathcal{D}_i
ight)$$

No dependance on \dot{N} or $\dot{N}^i \Rightarrow$ they have no properly defined associated momenta \Rightarrow We have constraints. We get them by varying the action with respect with N and N^{i} :

$$\mathcal{C}\equiv rac{\delta s}{\delta \mathsf{N}}=\mathsf{0}$$

$$\mathcal{D}_i \equiv rac{\delta \mathcal{S}}{\delta \mathcal{N}^i} = 0$$

9/15

Multifield hamiltonian constraints

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[rac{1}{2} M_{
ho l}^2 \mathcal{R} - rac{1}{2} g^{\mu
u} G_{lJ} \partial_{\mu} \phi^l \partial_{
u} \phi^J - V(\phi^l)
ight]
onumber \ = \int \mathrm{d} au \int \mathrm{d}^3 x \left(\pi_l \dot{\phi}^l + \pi^{ij} \dot{\gamma}_{ij} - N\mathcal{C} - N^i \mathcal{D}_i
ight)$$

No dependance on \dot{N} or $\dot{N}^i \Rightarrow$ they have no properly defined associated momenta \Rightarrow We have constraints. We get them by varying the action with respect with N and N^i :

$$\mathcal{C}\equivrac{\delta s}{\delta extsf{ iny N}}= extsf{ iny 0}$$

$$\mathcal{D}_i \equiv rac{\delta \mathcal{S}}{\delta \mathcal{N}^i} = 0$$

Derive the second order action -so second order constraints -with and without the SUA

- \rightarrow compare the results and make them match :
 - Match the constraints themselves i.e. give conditions to neglect gradient terms
 - Gauge fix and match the perturbed lapse in the two descriptions

April 14, 2025 9/15

Multifield hamiltonian constraints

$$S = \int \mathrm{d}^4 x \sqrt{-g} \Big[rac{1}{2} M_{
ho l}^2 \mathcal{R} - rac{1}{2} g^{\mu
u} G_{lJ} \partial_{\mu} \phi^l \partial_{
u} \phi^J - V(\phi^l) \Big]
onumber \ = \int \mathrm{d} au \int \mathrm{d}^3 x \left(\pi_l \dot{\phi}^l + \pi^{ij} \dot{\gamma}_{ij} - N\mathcal{C} - N^l \mathcal{D}_i
ight)$$

No dependance on \dot{N} or $\dot{N}^i \Rightarrow$ they have no properly defined associated momenta \Rightarrow We have constraints. We get them by varying the action with respect with N and N^i :

$$\mathcal{C}\equivrac{\delta s}{\delta extsf{ iny N}}= extsf{ iny 0}$$

$$\mathcal{D}_i \equiv rac{\delta \mathcal{S}}{\delta \mathcal{N}^i} = 0$$

Derive the second order action -so second order constraints -with and without the SUA

- \rightarrow compare the results and make them match :
 - Match the constraints themselves i.e. give conditions to neglect gradient terms
 - Gauge fix and match the perturbed lapse in the two descriptions

April 14, 2025 9/15

Validity conditions for SU

Compute equations of motion for $\{Q_c, \mathcal{P}_b, \delta\gamma_1, \delta\pi_1, \delta\gamma_2, \delta\pi_2\}$ and $\{\bar{Q}_c, \bar{\mathcal{P}}_b, \bar{\delta\gamma}_1, \bar{\delta\pi}_1\}$. Compare them at large scales and check when they match. Next step: check whether we have $\delta N = \bar{\delta N}$. The separate universe approach is valid if $\left(\frac{k}{2H}\right)^2 \ll 3\left(1-\epsilon_1\right)$ and if gradient terms can be neglected in:

$$\mathcal{M} = \begin{pmatrix} \frac{v}{4} \left(\frac{k^2}{v^{2/3}} \delta_{ab} + V_{;ab} - \mathcal{R}_{ab} \right) & \frac{\sqrt{3}v^{1/3}}{8} V_{;a} & 0 \\ \frac{\sqrt{3}v^{1/3}}{8} V_{;a}^{T} & \frac{1}{v^{1/3}} \left(\frac{\pi_{\sigma}^2}{v^2} + \frac{V}{2} - \frac{M_{pl}^2 k^2}{4v^{2/3}} \right) & \frac{\sqrt{2}M_{pl}^2 k^2}{24v} \\ 0 & \frac{\sqrt{2}M_{pl}^2 k^2}{24v} & \frac{1}{v^{1/3}} \left(\frac{\pi_{\sigma}^2}{v^2} + \frac{V}{2} - \frac{M_{pl}^2 k^2}{8v^{2/3}} \right) \end{pmatrix}$$

April 14, 2025 10/15

Validity conditions for SU

Compute equations of motion for $\{Q_c, \mathcal{P}_b, \delta\gamma_1, \delta\pi_1, \delta\gamma_2, \delta\pi_2\}$ and $\{\bar{Q}_c, \bar{\mathcal{P}}_b, \bar{\delta\gamma}_1, \bar{\delta\pi}_1\}$. Compare them at large scales and check when they match. Next step : check whether we have $\delta N = \bar{\delta N}$. The separate universe approach is valid if :

$$\left(\frac{k}{aH}\right)^2 \ll 3\left(1-\epsilon_1\right), \quad \left(\frac{k}{aH}\right)^2 \ll 16\left(1-\epsilon_1\right), \quad \left(\frac{k}{aH}\right)^2 \ll m_a^2,$$

where a runs in $\{\sigma,1,\ldots,n-1\}$. Grain, Holland 2025

1 Dynamics play a role here

April 14, 2025 10/15

- Stochastic inflation & Separate Universe
- Separate Universe approach in multifield theories
- Non minimal couplings to gravity

April 14, 2025 11.

Multiple fields in the Jordan frame

In the Jordan frame, the action for *n* scalar fields coupled to gravity can be expressed as follows:

$$\mathcal{S}_J = \int \mathrm{d}^4 x \sqrt{- ilde{g}} \left[\mathit{f}(\phi') ilde{\mathcal{R}} - rac{1}{2} ilde{G}_{IJ} \partial_\mu \phi' \partial^\mu \phi^J + ilde{\mathcal{V}}(\phi')
ight].$$

On can perform a conformal transformation of the metric : $\tilde{g}_{\mu\nu} \to g_{\mu\nu} = \Omega^2(\phi')\tilde{g}_{\mu\nu}$, $\Omega(\phi') = \frac{2f(\phi')}{M_{cl}^2}$.

This leads to the Einstein frame description:

$$\mathcal{S}_J = \int \mathrm{d}^4 x \sqrt{-g} \left[rac{1}{2} \mathcal{R} - rac{1}{2} \mathcal{G}_{IJ} \partial_\mu \phi^I \partial^\mu \phi^J + V(\phi^I)
ight].$$

$$V(\phi') \equiv rac{ ilde{V}(\phi')}{\Omega^4(\phi')}, \quad G_{IJ} \equiv rac{M_{pl}^2}{2f} \left(ilde{G}_{IJ} + rac{3f_{;I}f_{;J}}{f}
ight)$$

April 14, 2025 12/

SUA validity conditions in the Jordan Frame

We get a more complicated mass matrix

$$\mathcal{M} = \begin{pmatrix} \frac{v}{4} \left(\frac{k^2}{v^2/^3} \delta_{ab} + \tilde{V}_{;ab} - \tilde{\mathcal{R}}_{ab} + F_{;a} F_{;b} - \frac{1}{2} F_{;ab} \right) & \frac{\sqrt{3} v^{1/3}}{8} \tilde{V}_{;a} + \frac{\sqrt{3} v^{1/3} \theta^2}{8 M_{pl}^2} \frac{F_{;a}}{F^2} - F_{;a} \frac{M_{pl}^2 k^2}{3 \sqrt{2} v^{1/3}} & F_{;a} \frac{M_{pl}^2 k^2}{3 \sqrt{2} v^{1/3}} \\ & \frac{\sqrt{3} v^{1/3}}{8} \tilde{V}_{;a}^T + \frac{\sqrt{3} v^{1/3} \theta^2}{8 M_{pl}^2} \frac{F_{;a}^T}{F^2} - F_{;a}^T \frac{M_{pl}^2 k^2}{3 \sqrt{2} v^{1/3}} & \frac{1}{v^{1/3}} \left(\frac{\pi_\sigma^2}{v^2} + \frac{V}{2} - \frac{M_{pl}^2 k^2}{4 v^{2/3}} \right) & \frac{\sqrt{2} M_{pl}^2 k^2}{24 v} \\ & F_{;a}^T \frac{M_{pl}^2 k^2}{3 \sqrt{2} v^{1/3}} & \frac{\sqrt{2} M_{pl}^2 k^2}{24 v} & \frac{1}{v^{1/3}} \left(\frac{\pi_\sigma^2}{v^2} + \frac{V}{2} - \frac{M_{pl}^2 k^2}{8 v^{2/3}} \right) \end{pmatrix}$$

How can I neglect gradients here? How many conditions do I get from doing this?

April 14, 2025 13/15

SUA validity conditions in the Jordan Frame

We get a more complicated mass matrix

$$\mathcal{M} = \begin{pmatrix} \frac{v}{4} \left(\frac{k^2}{v^{2/3}} \delta_{ab} + \tilde{V}_{;ab} - \tilde{\mathcal{R}}_{ab} + F_{;a} F_{;b} - \frac{1}{2} F_{;ab} \right) & \frac{\sqrt{3} v^{1/3}}{8} \tilde{V}_{;a} + \frac{\sqrt{3} v^{1/3} \theta^2}{8 M_{pl}^2} \frac{F_{;a}}{F^2} - F_{;a} \frac{M_{pl}^2 k^2}{3 v^{1/3}} & F_{;a} \frac{M_{pl}^2 k^2}{3 \sqrt{2} v^{1/3}} \\ & \frac{\sqrt{3} v^{1/3}}{8} \tilde{V}_{;a}^T + \frac{\sqrt{3} v^{1/3} \theta^2}{8 M_{pl}^2} \frac{F_{;a}^T}{F^2} - F_{;a}^T \frac{M_{pl}^2 k^2}{3 v^{1/3}} & \frac{1}{v^{1/3}} \left(\frac{\pi_\sigma^2}{v^2} + \frac{V}{2} - \frac{M_{pl}^2 k^2}{4 v^{2/3}} \right) & \frac{\sqrt{2} M_{pl}^2 k^2}{24 v} \\ & F_{;a}^T \frac{M_{pl}^2 k^2}{3 \sqrt{2} v^{1/3}} & \frac{\sqrt{2} M_{pl}^2 k^2}{24 v} & \frac{1}{v^{1/3}} \left(\frac{\pi_\sigma^2}{v^2} + \frac{V}{2} - \frac{M_{pl}^2 k^2}{8 v^{2/3}} \right) \end{pmatrix}$$

How can I neglect gradients here ? How many conditions do I get from doing this ?

$$\left(\frac{k}{aH}\right)^2 \ll \alpha V_{;a} + \beta \frac{F_{;a}}{F^2}$$

Why is there a new set of conditions?

The background quantities have also been changes, making any direct comparison inaccurate!

April 14, 2025 13/15

A two field case study - work in progress

We can't diagonalise the two matrix formally:

- $n \text{ fields} \Rightarrow (n+2)x(n+2) \text{ matrices}$
- model dependance, in particular on $V(\phi^l)$ and $G_{ll}(\phi^l)$.

14/15

A two field case study - work in progress

We can't diagonalise the two matrix formally:

- $n \text{ fields} \Rightarrow (n+2)x(n+2) \text{ matrices}$
- model dependance, in particular on $V(\phi')$ and $G_{IJ}(\phi')$.

Take a two field model:

$$S = \int \sqrt{-\tilde{g}} \left[\frac{1 + K(\phi_J)}{2} \tilde{\mathcal{R}} + \frac{1}{2} \left((\partial \phi_J)^2 + (\partial \chi_J)^2 \right) - \tilde{V}(\phi_J) \right]$$

$$= \int \sqrt{-g} \left[\frac{1}{2} \mathcal{R} + \frac{1}{2} \left((\partial \phi_E)^2 + e^{2b} (\partial \chi_E)^2 \right) - V(\phi_E) \right],$$

$$b = -\frac{1}{2} log(1 + K)$$

April 14, 2025 14/15

A two field case study - work in progress

We can't diagonalise the two matrix formally:

- $n \text{ fields} \Rightarrow (n+2)x(n+2) \text{ matrices}$
- model dependance, in particular on $V(\phi')$ and $G_{ij}(\phi')$.

Take a two field model:

$$S = \int \sqrt{-\tilde{g}} \left[\frac{1 + \kappa(\phi_J)}{2} \tilde{\mathcal{R}} + \frac{1}{2} \left((\partial \phi_J)^2 + (\partial \chi_J)^2 \right) - \tilde{V}(\phi_J) \right]$$

$$= \int \sqrt{-g} \left[\frac{1}{2} \mathcal{R} + \frac{1}{2} \left((\partial \phi_E)^2 + e^{2b} (\partial \chi_E)^2 \right) - V(\phi_E) \right],$$

$$b = -\frac{1}{2} log(1 + \kappa)$$

- ⇒ compute the two mass matrices and diagonalise them, see what the differences mean.
- \Rightarrow apply this to a complex scalar with a Higgs like potential, where ϕ_J is the modulus and χ_J the argument.

April 14, 2025 14/15

Conclusion and next steps

- We need the separate universe approach to hold for the δN and stochastic formalisms
- Multifield inflation models are interesting for these two formalisms: when does the SUA approach hold?
- We derive the validity conditions in both the Einstein and the Jordan frame
- Quite easy to derive in the former, not so much in the latter
- Next steps: Study a two field toy model to see if the validity conditions can compare easily.

April 14, 2025 15/15