

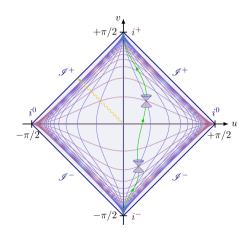
Review talk: Symmetries of asymptotically flat spacetimes

Céline Zwikel

October 2025

4d asymptotically flat spacetimes

- Spacetimes that are asymptotically Minkowski
- Why? Detectors are very far from the sources (BH mergers, etc)



[Figure Neutelings]

Céline Zwikel October 2025

Table of content

1. Asymptotic symmetries as symmetries for gravity

2. Asymptotically flat spacetimes and BMS group

3. More symmetries

4. Conclusion

Asymptotic symmetries as symmetries for gravity

Observables in gravity need a boundary

- How to define energy in gravity?
- Locally, it is impossible because of equivalence principle.

Observables in gravity need a boundary

- How to define energy in gravity?
- Locally, it is impossible because of equivalence principle.
- One needs a BOUNDARY to define a charge/generator associated to a symmetry via Noether procedure
- Same for electromagnetism: electric charge is measured using the Gauss law

Asymptotic symmetries

To get a charge:

- 1. Boundary
- 2. Symmetry

Asymptotic symmetries

To get a charge:

- 1. Boundary
- 2. Symmetry
- In general solutions of Einstein equations do not have a Killing vector

$$\nabla_{\mu}\xi_{\nu} + \nabla_{\nu}\xi_{\mu} = 0$$

- Class of solutions to share the same asymptotic structure
- We will ask the symmetry to only preserve the asymptotic structure
 ASYMPTOTIC SYMMETRY

How to:

Theory:

- 1. Action and equations of motion
- 2. Choice of fall-offs and boundary conditions

Recipe for computing charges in gravity:

- 1. Asymptotic symmetries (preserving those fall-offs)
- 2. Compute the generators/charges (with some subtleties) Charges are the labels of a physical states
- 3. Symmetry algebra

Method: covariant phase space [review: Fiorucci '21] or Hamiltonian [review: Henneaux's lectures at College de France '21-'22 & '22-'23]

• Definition of observables for gravity (ex: energy)

- Definition of observables for gravity (ex: energy)
- Bottom-up approach to new holographic dualities

Celine Zwikel October 2025 8/2:

- Definition of observables for gravity (ex: energy)
- Bottom-up approach to new holographic dualities
- Quantum Gravity: quantum states form a representation of the asymptotic symmetry algebra \rightarrow Non-perturbative handle on Quantum Gravity

- Definition of observables for gravity (ex: energy)
- Bottom-up approach to new holographic dualities
- ullet Quantum Gravity: quantum states form a representation of the asymptotic symmetry algebra ullet Non-perturbative handle on Quantum Gravity

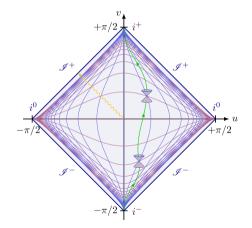
• Connection with low energy physics (infrared red triangle)

Asymptotically flat spacetimes and BMS

group

4d asymptotically flat spacetime

- Past and future timelike infinity (i_\pm)
- Past and future null infinity (\mathscr{I}_{\pm})
- Spatial infinity (i_0)



Focus on future null infinity [Bondi et al. '61, Sachs '61]

• Bondi coordinates: u retarded time, r radial coordinates, x^A angular coordinates on a 2-sphere $(q_{AB}=d\theta^2+\sin^2\theta d\phi^2)$

$$ds_{\mathsf{Mink}}^2 = -du^2 - 2dudr + r^2 q_{AB} dx^A dx^B$$

Focus on future null infinity [Bondi et al. '61, Sachs '61]

• Bondi coordinates: u retarded time, r radial coordinates, x^A angular coordinates on a 2-sphere $(q_{AB}=d\theta^2+\sin^2\theta d\phi^2)$

$$ds^2_{\mathsf{Mink}} = -du^2 - 2dudr + r^2q_{AB}dx^Adx^B$$

• First correction in r

$$ds^{2} = -\left(1 - \frac{1}{r}2M + ...\right)du^{2} - 2dudr + r^{2}\left(q_{AB} + \frac{1}{r}C_{AB} + ...\right)dx^{A}dx^{B} + ...$$

M is the mass aspect, C_{AB} is the shear (related to gravitational radiation)

 Céline Zwikel
 October 2025
 11/2

Focus on future null infinity [Bondi et al. '61, Sachs '61]

• Bondi coordinates: u retarded time, r radial coordinates, x^A angular coordinates on a 2-sphere $(q_{AB}=d\theta^2+\sin^2\theta d\phi^2)$

$$ds^2_{\mathsf{Mink}} = -du^2 - 2dudr + r^2q_{AB}dx^Adx^B$$

• First correction in r

$$ds^{2} = -\left(1 - \frac{1}{r}2M + ...\right)du^{2} - 2dudr + r^{2}\left(q_{AB} + \frac{1}{r}C_{AB} + ...\right)dx^{A}dx^{B} + ...$$

M is the mass aspect, C_{AB} is the shear (related to gravitational radiation)

Trautman–Bondi mass-loss formula

$$\partial_u \oint M = -\frac{1}{8} \oint \dot{C}_B^A \dot{C}_A^B$$

Symmetry of future null infinity

•
$$\xi$$
 s.t. $g_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r)$

$$\xi^u = T(x^A) + \frac{1}{2}u D_A Y^A$$

$$\xi^r = -\frac{r}{2}D_A Y^A + \dots$$

$$\xi^A = Y^A(x^A) + \dots$$

• T are supertranslations Y^A 6 conf. Killing vectors of the S^2

Symmetry of future null infinity

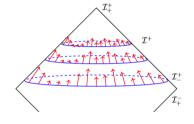
•
$$\xi$$
 s.t. $g_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu} = \eta_{\mu\nu} + \mathcal{O}(1/r)$
$$\xi^u = T(x^A) + \frac{1}{2}u D_A Y^A$$

$$\xi^r = -\frac{r}{2}D_A Y^A + \dots$$

$$\xi^A = Y^A(x^A) + \dots$$

- T are supertranslations Y^A 6 conf. Killing vectors of the S^2
- Algebra

$$\begin{split} & [\xi_{(T_1,Y_1)},\xi_{(T_2,Y_2)}] = \xi_{(\hat{T},\hat{Y})} \\ & \hat{T} = Y_1^A \partial_A T_2 - \frac{1}{2} D_A Y_1^A T_2 - (1 \leftrightarrow 2) \,, \\ & \hat{Y} = \mathcal{L}_{Y_1} Y_2 \end{split}$$



[Figure Lim Zheng Liang]

 Céline Zwikel
 October 2025
 12/2

ullet The charge associated to T is the mass and to Y^A is the angular momentum

$$Q_T = \oint T \, M$$

ullet The charge associated to T is the mass and to Y^A is the angular momentum

$$Q_T = \oint T M$$

• The algebra is BMS $= SL(2,\mathbb{C})_Y \ltimes \mathbb{R}_T$

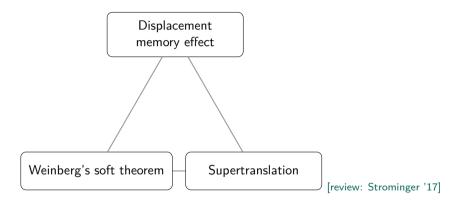
$${Q_{\xi_1}, Q_{\xi_2}} = Q_{[\xi_1, \xi_2]}$$

• Remark: for an coordinate independent derivation of these results [Penrose '64]

Summary:

- BMS is realized at null infinity
- There is an antipodal matching between BMS generators defined at future and null
 infinity [Strominger '13, Troessaert 17' Prabhu et al. '19 '21, Capone et al. 22']
 This is relevant to studying scattering amplitudes
- All five asymptotic boundaries are compatible with BMS [Compère, Gralla, Wei '23]

Infrared triangle



More symmetries at null infinity?

• Asymptotic symmetries are tied to fall-offs. Are there more general fall-offs such that the charge are still well-defined (finite, closure of the algebra, ...) ?

More symmetries at null infinity?

- Asymptotic symmetries are tied to fall-offs. Are there more general fall-offs such that the charge are still well-defined (finite, closure of the algebra, ...) ?
- Yes!

More symmetries at null infinity?

- Asymptotic symmetries are tied to fall-offs. Are there more general fall-offs such that the charge are still well-defined (finite, closure of the algebra, ...) ?
- Yes!
- Consequence 1: the symmetry algebra is typically bigger
- Consequence 2: more inclusivity (more solutions consistently included in the same phase space)

Starting point: Bondi-Sachs gauge

$$g_{rr}=0\,,\quad g_{rA}=0\,,\quad \det g_{AB}=r^4\det q\,,\quad q_{AB}$$
 round 2-sphere
$$T(x^A),\quad Y^A(x^A) \text{ 6 conf. KV (global)} \quad \mathrm{BMS}\ =SL(2,\mathbb{C})_Y\ltimes \mathbb{R}_T$$

$Y^A(x^A)$ conf. KV (local)		
[Barnich, Troessaert '11]	T, Y^A	$eBMS \! = (VirxVir)_Y \ltimes \mathbb{R}_T$
$\delta q_{AB} \neq 0, \delta \det q = 0$		
[Campiglia, Laddha '14, Compere et al. '18]	T, Y^A	$gBMS \! = (Diff(S_2)_Y \ltimes \mathbb{R}_T$
$\delta q_{AB} \neq 0$		
[Barnich, Troessaert '11, Freidel et al. '21]	T, W, Y^A	$WBMS = ((Diff(S_2)_Y \ltimes \mathbb{R}_T) \ltimes \mathbb{R}_W$
$\det g_{AB}$ free		
[Geiller, Zwikel '22, '24]	T, Y^A, W, k_1, k_2	$\big \; (((Diff(S_2)_Y \ltimes \mathbb{R}_T) \ltimes \mathbb{R}_W) \ltimes (\mathbb{R}_{k_1} \otimes \mathbb{R}_{k_2})$

Other generalizations include:

ullet $g_{rA}
eq 0$ [Campoleoni et al '23, Geiller, Mao, Vicenti '25]

Other generalizations include:

- ullet $g_{rA}
 eq 0$ [Campoleoni et al '23, Geiller, Mao, Vicenti '25]
- Polyhomogenous expansion (allowing log terms)
 Compatible with Einstein equations and generated by hyperbolic encounters [Winicour '85, Damour '86, Chrusciel et al. '93, Kroon '98, Christodoulou '02, Kehrberger '21→'24, ...]
 BMS is compatible with such expansion [Geiller, Laddha, Zwikel]

Other generalizations include:

- ullet $g_{rA}
 eq 0$ [Campoleoni et al '23, Geiller, Mao, Vicenti '25]
- Polyhomogenous expansion (allowing log terms)
 Compatible with Einstein equations and generated by hyperbolic encounters [Winicour '85, Damour '86, Chrusciel et al. '93, Kroon '98, Christodoulou '02, Kehrberger '21→'24, ...]
 BMS is compatible with such expansion [Geiller, Laddha, Zwikel]

Subtleties in computing the charges: renormalization, Wald-Zoupas criteria, "correct" bracket for the algebra, slicing, ...

More symmetries at spatial infinity?

• gBMS [Fiorucci, Matulich, Ruzziconi '24]

More symmetries at spatial infinity?

- gBMS [Fiorucci, Matulich, Ruzziconi '24]
- Log BMS [Fuentealba, Henneaux, Troessaert '22] [Girelli, Langenscheidt, Neri, Pollack, Zwikel '25 (to appear)]

Features

- Related to allowing logarithmic terms in the radial expansion of the metric
- Log BMS= BMS + Log supertranslations where log supertranslation have a central charge with supertranslations
- Used for redefining the Lorentz generators such that Poincaré is an ideal of BMS

Now what?

What is the physics behind the new symmetries?

- How are they encoded in the different regions of asymptotically flat space
- New infrared triangles? (yes for certain symmetries)
- How are they encoded in flat holography proposals?

• BMS symmetry has important consequences for infrared physics and in building a flat hologram

• BMS symmetry has important consequences for infrared physics and in building a flat hologram

New symmetries to be investigated and tested!

- BMS symmetry has important consequences for infrared physics and in building a flat hologram
- New symmetries to be investigated and tested!
- This is not tied to general relativity in 4d asymptotically flat spacetimes
 This applies to
 - other theories (ex: twistor theory and celestial symmetries)
 - other dimensions
 - other boundaries (ex: for instance: black hole horizon)
 - with matter and other gauge fields

- BMS symmetry has important consequences for infrared physics and in building a flat hologram
- New symmetries to be investigated and tested!
- This is not tied to general relativity in 4d asymptotically flat spacetimes
 This applies to
 - other theories (ex: twistor theory and celestial symmetries)
 - other dimensions
 - other boundaries (ex: for instance: black hole horizon)
 - with matter and other gauge fields

Mercil