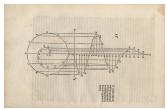
# Evolution and spectrum in non-normal dynamics: a (black hole) gravitational case

José Luis Jaramillo

Institut de Mathématiques de Bourgogne (IMB)
Université Bourgogne Europe
Jose-Luis. Jaramillo-Martin@ube.fr







Théorie, Univers et Gravitation -TUG Saclay, 14-16 October 2025

#### Scheme

- 1 The general problem: linear "non-normal" wave equation
- Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- Conclusions and Perspectives

#### Scheme

- The general problem: linear "non-normal" wave equation
- Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- Conclusions and Perspectives

3/32

### General problem: non-normal dynamics

#### Setting: dissipative linear wave equation

Linear wave equation with dissipation (in the bulk/through boundaries) and source:

$$\left\{ \begin{array}{l} \Box_g \phi + {\color{red} k^a \nabla_a \phi} + V \phi = S(x,t) \\ \text{Possibly "leaky" Boundary Conditions} \end{array} \right.$$

#### Wave dynamics with non-selfadjoint time generator

Cast in "Schrödinger form" (1st-order reduction in time), with  $u = (\phi, \partial_t \phi)$ :

$$\partial_t u(t,x) = iLu(t,x) + S(t,x)$$

with L non-selfadjoint operator acting on appropriate Hilbert (Banach) space.

#### Goal

Discussion of qualitative non-selfadjoint dynamical and spectral phenomena.

### General problem: non-normal dynamics

#### Hyperboloidal non-normal (linear) evolution problem driven by an external source

$$\partial_t u(t,x) = iLu(\tau,x) + S(t,x)$$
 ,  $[L,L^{\dagger}] \neq 0$ 

$$\left[L, L^{\dagger}\right] \neq 0$$

#### Dynamics and spectral theory: characteristic "non-normal" phenomena

Spectral problem of L: Eigenvalue instabilities

$$Lv_n(x) = \omega_n v_n(x)$$
 ,  $L^{\dagger} w_n = \overline{\omega}_n w_n$  ,  $(L^t \alpha_n(x) = \omega_n \alpha_n(x))$ 

Source-less dynamics: Non-modal transient growths

$$(\partial_t - iL)u(\tau, x) = 0$$

Source-driven dynamics: Pseudo-resonances

$$(\partial_t - iL)u(\tau, x) = S(\tau, x)$$

### A gravitational setting: GR perturbation theory

#### GR perturbation theory (sketch!): same background wave operator [cf. L. Sberna's talk]

Writing

$$g_{ab} = g_{ab}^{(0)} + \epsilon h_{ab}^{(1)} + \epsilon^2 h_{ab}^{(2)} + O(\epsilon^3)$$

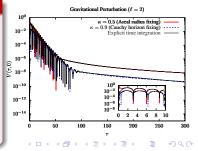
Hierarchical structure:

$$\begin{array}{rcl} \delta G_{ab} \cdot h^{(1)} & = & 0 \\ \delta G_{ab} \cdot h^{(2)} & = & \delta^2 G_{ab}[h^{(1)}, h^{(1)}] \ , \end{array}$$

#### Hierarchy of evolution problems

$$(\partial_{\tau} - iL) u^{(1)} = 0 (\partial_{\tau} - iL) u^{(2)} = S(\tau, x; u^{(1)})$$

- Ring-downs, QNMs (2nd-order QNMs...).
- Self-force calculations.
- ...
- "Wave-Mean Flow" (asymptotic) PDEs.



#### Scheme

- 1 The general problem: linear "non-normal" wave equation
- 2 Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- 4 Conclusions and Perspectives

6/32

#### Normal operators: Spectral Theorem

• **Normality**: denoting the adjoint matrix by  $L^{\dagger}$ , then L is normal iff

$$[L, L^{\dagger}] = LL^{\dagger} - L^{\dagger}L = 0$$

Matrix examples: symmetric, hermitian, orthogonal, unitary...

• **Spectral Theorem** ("moral statement"):

 ${\cal L}_{\,\,}$  is normal iff is unitarily diagonalisable

Note: this depends on the adjoint  $L^{\dagger}$ , then on the Hilbert space (scalar product).

#### Normal operators: Spectral Theorem

• **Normality**: denoting the adjoint matrix by  $L^{\dagger}$ , then L is normal iff

$$[L,L^{\dagger}]=LL^{\dagger}-L^{\dagger}L=0$$

Matrix examples: symmetric, hermitian, orthogonal, unitary...

Spectral Theorem ("moral statement"):

L is normal iff is unitarily diagonalisable

Note: this depends on the adjoint  $L^{\dagger}$ , then on the Hilbert space (scalar product).

#### Normal modes: key notion for "modal (harmonic) analysis"

The eigenvectors  $\hat{v}_n$  of L, i.e.  $L\hat{v}_n = \omega_n \hat{v}_n$ :

- ullet Orthonormal set:  $\langle \hat{v}_i, \hat{v}_i 
  angle_{\scriptscriptstyle G} = \delta_{ij}$  , Complete set:  $\operatorname{Id} = \sum |\hat{v}_n 
  angle \langle \hat{v}_n|$
- Spectral resolution of (homogenerous) evolution problem,  $u(t=0)=u_o(x)$

$$u(t,x) = \sum_{n=0}^{\infty} e^{i\omega_n t} a_n v_n(x)$$
 ,  $a_n = \langle \hat{v}_n, u_0 \rangle_G$ 

#### Normal operators: Spectral Theorem

ullet Normality: denoting the adjoint matrix by  $L^\dagger$ , then L is normal iff

$$[L, L^{\dagger}] = LL^{\dagger} - L^{\dagger}L = 0$$

Matrix examples: symmetric, hermitian, orthogonal, unitary...

• **Spectral Theorem** ("moral statement"):

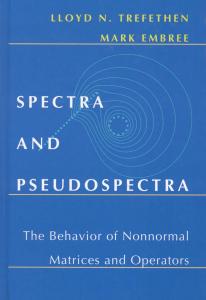
L is normal iff is unitarily diagonalisable

Note: this depends on the adjoint  $L^{\dagger}$ , then on the Hilbert space (scalar product).

#### 'Non-normal' operators, $[L,L^{\dagger}] eq 0$ : no Spectral Theorem

- No spectral theorem: no "normal modes" (no Hilbert basis).
- Eigenfunctions of L non-orthornormal and not complete.
- "Non-modal" effects associated with non-normal operators:
  - Eigenvalue instabilities.
  - Non-modal (linear) transient growths.
  - Pseudo-resonances.

. . . .



#### Plan

- The general problem: linear "non-normal" wave equation
- 2 Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- 4 Conclusions and Perspectives



8/32

#### Example of spectral instability

$$L = a\frac{d^2}{dx^2} + b\frac{d}{dx} + c \quad , \quad a, b, c \in \mathbb{R}$$

#### Example of spectral instability

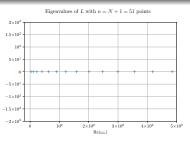
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



#### Example of spectral instability

$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$

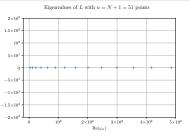
acting on functions in  $L^2([0,1])$ , with homogeneous Dirichlet conditions (Chebyshev finite-dimensional matrix approximates).



 $a = -1, b = 0, c = 1, \epsilon = 0$ 

#### Example of spectral instability

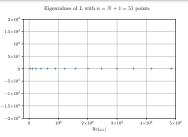
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1$$
,  $b = 0$ ,  $c = 1$ ,  $\epsilon = 10^{-5}$ 

#### Example of spectral instability

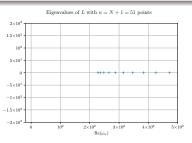
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1$$
,  $b = 0$ ,  $c = 1$ ,  $\epsilon = 10^{-2}$ 

#### Example of spectral instability

$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$

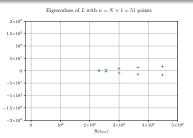


$$a = -1, b = 30, c = 1, \epsilon = 0$$



#### Example of spectral instability

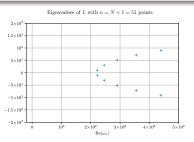
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1$$
,  $b = 30$ ,  $c = 1$ ,  $\epsilon = 10^{-10}$ 

#### Example of spectral instability

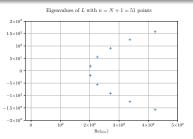
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1, b = 30, c = 1, \epsilon = 10^{-8}$$

#### Example of spectral instability

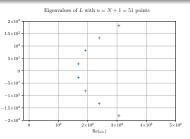
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1$$
,  $b = 30$ ,  $c = 1$ ,  $\epsilon = 10^{-6}$ 

#### Example of spectral instability

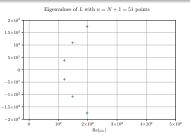
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1$$
,  $b = 30$ ,  $c = 1$ ,  $\epsilon = 10^{-4}$ 

#### Example of spectral instability

$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}} \quad , \quad a, b, c \in \mathbb{R}, \ ||E_{\text{Random}}|| = 1$$



$$a = -1$$
,  $b = 30$ ,  $c = 1$ ,  $\epsilon = 10^{-2}$ 

#### Right- and left-eigenvectors, respectively $\emph{v}_\emph{i}$ and $\emph{w}_\emph{i}$ , of $\emph{L}$

$$Lv_i = \omega_i v_i$$
 ,  $L^{\dagger} w_i = \bar{\omega}_i w_i$   $(\Leftrightarrow w_i^{\dagger} L = \omega_i w_i^{\dagger})$ 

#### Perturbation theory of eigenvalues [cf. Kato 80, ...; e.g. Trefethen, Embree 05]:

$$L(\epsilon) = L + \epsilon \delta L , \quad ||\delta L|| = 1 .$$

$$|\omega_i(\epsilon) - \omega_i| = \epsilon \frac{|\langle w_i, \delta L \ v_i(\epsilon) \rangle|}{|\langle w_i, v_i \rangle|} \le \epsilon \frac{||w_i|| \ ||\delta L \ v_i||}{|\langle w_i, v_i \rangle|} + O(\epsilon^2) \le \epsilon \frac{||w_i|| \ ||v_i||}{|\langle w_i, v_i \rangle|} + O(\epsilon^2).$$

#### Eigenvalue condition number: $\kappa(\omega_i)$

$$\kappa(\omega_i) = \frac{||w_i|| ||v_i||}{|\langle w_i, v_i \rangle|}$$

#### **Pseudospectrum**

Given  $\epsilon > 0$ , the  $\epsilon$ -pseudospectrum  $\sigma_{\epsilon}(L)$  of L is defined as [e.g Trefethen & Embree 05]:

$$\begin{split} \sigma_{\epsilon}(L) &= \left[ \{ \omega \in \mathbb{C}, \text{ such that } \omega \in \sigma(L+\delta L) \text{ for some } \delta L \text{ with } ||\delta L|| < \epsilon \} \right] \\ &= \left\{ \omega \in \mathbb{C}, \text{ such that } ||Lv - \omega v|| < \epsilon \text{ for some } v \text{ with } ||v|| = 1 \right\} \\ &= \left\{ \omega \in \mathbb{C}, \text{ such that } ||(\omega I - L)^{-1}|| > \epsilon^{-1} \right\} \end{split}$$

#### Pseudospectrum

Given  $\epsilon>0$ , the  $\epsilon$ -pseudospectrum  $\sigma_\epsilon(L)$  of L is defined as [e.g Trefethen & Embree 05]:

$$\begin{array}{ll} \sigma_{\epsilon}(L) & = & \{\omega \in \mathbb{C}, \text{ such that } \omega \in \sigma(L+\delta L) \text{ for some } \delta L \text{ with } ||\delta L|| < \epsilon \} \\ & = & \{\omega \in \mathbb{C}, \text{ such that } ||Lv-\omega v|| < \epsilon \text{ for some } v \text{ with } ||v|| = 1 \} \\ & = & \left[ \{\omega \in \mathbb{C}, \text{ such that } ||(\omega I - L)^{-1}|| > \epsilon^{-1} \} \right] \end{array}$$

#### Normal case: bounds on the norm of the resolvent $R_L(\omega) = (\omega I - L)^{-1}$

Given  $\omega \in \mathbb{C}$  and  $\sigma(L)$  the spectrum of L, it holds

$$||(\omega I - L)^{-1}||_2 = \frac{1}{\operatorname{dist}(\omega, \sigma(L))}$$



#### **Pseudospectrum**

Given  $\epsilon > 0$ , the  $\epsilon$ -pseudospectrum  $\sigma_{\epsilon}(L)$  of L is defined as [e.g Trefethen & Embree 05]:

$$\begin{array}{ll} \sigma_{\epsilon}(L) & = & \{\omega \in \mathbb{C}, \text{ such that } \omega \in \sigma(L+\delta L) \text{ for some } \delta L \text{ with } ||\delta L|| < \epsilon \} \\ & = & \{\omega \in \mathbb{C}, \text{ such that } ||Lv-\omega v|| < \epsilon \text{ for some } v \text{ with } ||v|| = 1 \} \\ & = & \{\omega \in \mathbb{C}, \text{ such that } ||(\omega I - L)^{-1}|| > \epsilon^{-1} \} \end{array}$$

#### Non-normal case: bad control on the resolvent $R_L(\omega)$ . **Pseudospectrum**

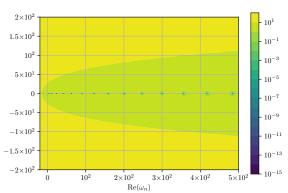
The norm of the resolvent can become very large far from the spectrum:

$$||(\omega I - L)^{-1}||_2 \le \frac{\kappa}{\operatorname{dist}(\omega, \sigma(L))}$$

where  $\kappa$  is a "condition number" assessing the lack of proportionality of 'left' and 'right' eigenvectors of L, and can become very large in the non-normal case.

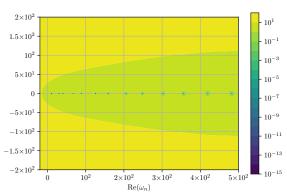
Pseudospectrum of: 
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$$

Spectrum and Pseudospectrum of L with  $log||Random||_2 = -50$ 



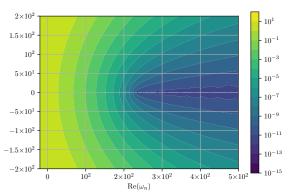
# Pseudospectrum of: $L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$

Spectrum and Pseudospectrum of L with  $log||Random||_2 = 1$ 



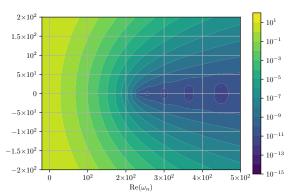
Pseudospectrum of: 
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$$

Spectrum and Pseudospectrum of L with  $\log ||{\rm Random}||_2 = -15$ 



# Pseudospectrum of: $L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$

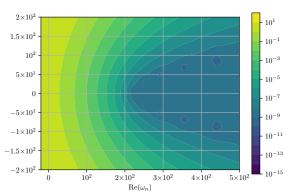
Spectrum and Pseudospectrum of L with  $log||Random||_2 = -10$ 



a=-1 b=30 c=1  $\epsilon=10^{\pm10}$   $\epsilon=10^{\pm10}$   $\epsilon=10^{\pm10}$ 

Pseudospectrum of: 
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$$

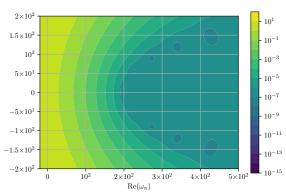
Spectrum and Pseudospectrum of L with  $log||Random||_2 = -8$ 



a=-1 b=30 c=1  $c=10\pm 8$   $\langle \mathbb{P} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle$ 

Pseudospectrum of: 
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$$

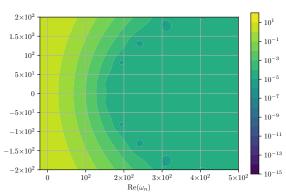
Spectrum and Pseudospectrum of L with  $log||Random||_2 = -6$ 



a=-1 b=30 c=1  $\epsilon=10\pm6$   $\epsilon=10\pm6$ 

Pseudospectrum of: 
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$$

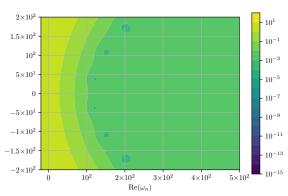
Spectrum and Pseudospectrum of L with  $log||Random||_2 = -4$ 



a=-1 b=30 c=1  $\epsilon=10^{\pm4}$   $\bullet$   $\bullet$   $\bullet$   $\bullet$   $\bullet$   $\bullet$   $\bullet$ 

Pseudospectrum of: 
$$L = a \frac{d^2}{dx^2} + b \frac{d}{dx} + c + \epsilon E_{\text{Random}}$$

Spectrum and Pseudospectrum of L with  $log||Random||_2 = -2$ 



a=-1 b=30 c=1  $\epsilon=10^{\pm2}$   $\langle \mathbb{P} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle \langle \mathbb{R} \rangle$ 

José Luis Jaramillo

The 'role' of random perturbations [Sjöstrand 19; Hager 05, Montrieux, Nonnenmacher, Vogel,...]

Random perturbations improve the analytical behaviour of  $R_L(\omega)!!!$ 

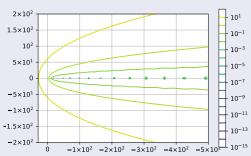
# The relevance of the scalar product: assessing large/small

The illustrative operator:  $L=arac{d^2}{dx^2}+brac{d}{dx}+c$  ,  $a,b,c\in\mathbb{R}$  [Gasperin & JLJ 22]

- Non-selfadjoint in standard  $L^2([0,1])$  for  $b \neq 0$ .
- Formally normal!
- Non-normal: domain of  $L^{\dagger}L$  and  $LL^{\dagger}$  different.
- But actually self-adjoint...

## <u>Cast in Sturm-Liouville</u> form: selfadjoint for appropriate scalar product $\langle \cdot, \cdot \rangle_w!!!$



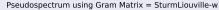


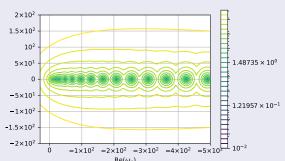
# The relevance of the scalar product: assessing large/small

The illustrative operator:  $L=arac{d^2}{dx^2}+brac{d}{dx}+c$  ,  $a,b,c\in\mathbb{R}$  [Gasperin & JLJ 22]

- Non-selfadjoint in standard  $L^2([0,1])$  for  $b \neq 0$ .
- Formally normal!
- Non-normal: domain of  $L^{\dagger}L$  and  $LL^{\dagger}$  different.
- But actually self-adjoint...

## Cast in Sturm-Liouville form: selfadjoint in appropriate scalar product $\langle \cdot, \cdot \rangle_w$





### Plan

- Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)

## Superposition of two non-orthogonal (eigen-)vectors: growth dynamics

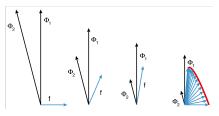
Given two QNMs frequencies  $\omega_1 = \omega_1^R + i\omega_1^I$  and  $\omega_2 = \omega_2^R + i\omega_2^I$ 

$$u_1(t,x) = e^{i\omega_1 t} v_1(x)$$
 ,  $u_2(t,x) = e^{i\omega_2 t} v_2(x)$ 

with  $\omega_1^I > 0$  and  $\omega_2^I > 0$ , consider the superposition

$$u(t,x) = a_1 u_1(t,x) + a_2 u_2(t,x)$$
.

Example [Schmid 07]:  $f = \Phi_1 - \Phi_2$ 



#### Notation

Define:

$$\begin{array}{rcl} a_1 & = & e^{i\varphi_1}|a_1| \\ a_2 & = & e^{i\varphi_2}|a_2| \\ \langle u_1, u_2 \rangle & = & e^{i\delta_{12}}|\langle u_1, u_2 \rangle| \\ \cos \hat{\theta}_{12} & = & \frac{|\langle u_1, u_2 \rangle|}{||u_1|| \ ||u_2||} \end{array}$$

and compute the norm of the u(t,x).

### Transient growth of non-orthogonal vector superpositiom

The norm ||u||(t) evolves according to:

$$||u||^{2}(t) = |a_{1}|^{2}e^{-2\omega_{1}^{I}t} + |a_{2}|^{2}e^{-2\omega_{2}^{I}t} + |a_{1}|^{2}e^{-(\omega_{1}^{I}+\omega_{2}^{I})t}\cos\left((\omega_{2}^{R}+\omega_{1}^{R})t + \Phi_{12}\right)$$

where we have imposed  $||u_1|| = ||u_2|| = 1$  and with  $\Phi_{12} = (\varphi_2 - \varphi_1) + \delta_{12}$ 

### Non-modal transient growth: a genuinely non-normal effect

For "stable" QNM frequencies  $(\omega_1^I > 0, \omega_2^I > 0)$ :

- If  $u_1$  and  $u_2$  are orthogonal then, ||u||(t) is decreasing.
  - If  $u_1$  and  $u_2$  are not orthogonal, an initial transient growth can happen due to the third term.
  - This phenomenon depends on the choice of scalar product (norm).

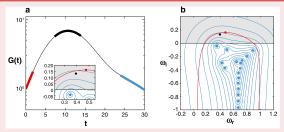
Saclay, 14-16 October 2025

### **Growth function** G(t): maximum possible amplification

$$G(t) = \sup_{u_0 \neq 0} \frac{||u(t)||}{||u_0||} = \sup_{u_0 \neq 0} \frac{||e^{itL}u_0||}{||u_0||} = ||e^{itL}||$$

**Optimal excitation**  $u_0$ : eigenfunction of the maximum (generalised) eigenvalue in the Singular Value Decomposition (eigenfunction of the  $\max \sigma[(e^{itL})^{\dagger}e^{itL})]$ .

Growth factor  $G(t) = ||e^{itL}||$  and pseudospectrum (eg. Poiseuille flow [Schmid 07])



### **Growth function** G(t): maximum possible amplification

$$G(t) = \sup_{u_0 \neq 0} \frac{||u(t)||}{||u_0||} = \sup_{u_0 \neq 0} \frac{||e^{itL}u_0||}{||u_0||} = ||e^{itL}||$$

**Optimal excitation**  $u_0$ : eigenfunction of the maximum (generalised) eigenvalue in the Singular Value Decomposition (eigenfunction of the  $\max \sigma[(e^{itL})^{\dagger}e^{itL})]$ .

### **Pseudospectrum** $\sigma_{\epsilon}(L)$ : (kind of) Fourier-transform of G(t)

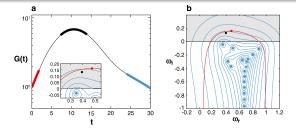
Given  $\epsilon > 0$ , the  $\epsilon$ -pseudospectrum  $\sigma_{\epsilon}(L)$  of L is defined as [e.g Trefethen & Embree 05]:

$$\begin{split} \sigma_{\epsilon}(L) &= \left[ \{ \omega \in \mathbb{C}, \text{ such that } \omega \in \sigma(L+\delta L) \text{ for some } \delta L \text{ with } ||\delta L|| < \epsilon \} \right] \\ &= \left\{ \omega \in \mathbb{C}, \text{ such that } ||Lv-\omega v|| < \epsilon \text{ for some } v \text{ with } ||v|| = 1 \right\} \\ &= \left[ \{ \omega \in \mathbb{C}, \text{ such that } ||(\omega I - L)^{-1}|| = ||R_L(\omega)|| > \epsilon^{-1} \right\} = 0 \end{split}$$

### Plan

- 1 The general problem: linear "non-normal" wave equation
- 2 Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- 4 Conclusions and Perspectives

## Pseudo-resonances



#### Resonances and Pseudo-resonances

If we force the system with an external source  $S(\omega)$  at a (real) frequency  $\omega$ , then:

- For **normal** L: If  $\omega$  is close to a (complex) resonant frequency  $\omega_n$ , where the resolvent ("Green function") "diverges", we have a strong response: **resonance**.
- For non-normal L: If there is no resonant frequency  $\omega_n$ , but the norm of the resolvent (pseudospectrum) is large at that  $\omega$ , we have still a strong response: pseudoresonance.

## Pseudo-resonances

### Driving the (non-normal) linear dynamics with an external force S(t,x) [JLJ 22]

Consider the linear equation driven by a harmonic source:

$$(\partial_t - iL)u(t, x) = S(t, x)$$
 ,  $S(t, x) = e^{i\omega t}s(x)$ 

Then, the solution can be written in terms of the resolvent  $R_L(\omega)$ 

$$u(t,x) = \frac{1}{i}e^{i\omega t} ((\omega - L)^{-1}s)(x) = \frac{1}{i}e^{i\omega t} (R_L(\omega)s)(x)$$

Maximising over all initial data we get

$$R_{\max}(\omega) = \sup_{s \neq 0} \frac{||u||}{||s||} = e^{-\operatorname{Im}(\omega)t} \sup_{s \neq 0} \frac{||(\omega - L)^{-1}s||}{||s||} = e^{-\operatorname{Im}(\omega)t} ||(\omega - L)^{-1}||$$
$$= e^{-\operatorname{Im}(\omega)t} ||R_L(\omega)||$$

And, finally, maximising over **real frequencies**  $\omega$ , we obtain:

$$R_{\max} = \sup_{\omega \in \mathbb{R}} R_{\max}(\omega) = \sup_{\omega \in \mathbb{R}} ||(\omega - L)^{-1}|| = \sup_{\omega \in \mathbb{R}} ||R_L(\omega)||$$

#### Conclusion:

If  $\epsilon$ -pseudospectra lines with small  $\epsilon$  (i.e. large values of  $||R_L(\omega)||$ ) approach the real line, then **pseudo-resonant phenomena** can be expected.

## Plan

- 1 The general problem: linear "non-normal" wave equation
- Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- 4 Conclusions and Perspectives

## Keldysh asymptotic QNM expansions [Besson & JLJ 25]

Homogeneous evolution problem with "non-normal" time generator L

$$\begin{cases} \partial_t u(\tau,x) = iLu(t,x) + S(t,x) , \\ u(t=0,x) = u_0(x) , ||u_0|| < \infty , \end{cases}$$

# Keldysh asymptotic QNM expansions [Besson & JLJ 25]

Dual spectral problems: vectors, covectors (bi-orthonormal bases)  $\langle \alpha_i, v_i \rangle = \delta_{ij}$ 

$$Lv_n = \omega_n v_n$$
,  $L^t \alpha_n = \omega_n \alpha_n$ ,  $v_n \in \mathcal{H}, \alpha_n \in \mathcal{H}^*$ 

If a scalar product available: spectral and adjoint spectral problem

$$L\hat{v}_n = \omega_n \hat{v}_n$$
,  $L^{\dagger} \hat{w}_n = \overline{\omega}_n \hat{w}_n$ ,  $\hat{v}_n, \hat{w}_n \in \mathcal{H}$ 

# Keldysh asymptotic QNM expansions [Besson & JLJ 25]

Dual spectral problems: vectors, covectors (bi-orthonormal bases)  $\langle \alpha_i, v_i \rangle = \delta_{ij}$ 

$$Lv_n = \omega_n v_n$$
,  $L^t \alpha_n = \omega_n \alpha_n$ ,  $v_n \in \mathcal{H}, \alpha_n \in \mathcal{H}^*$ 

If a scalar product available: spectral and adjoint spectral problem

$$L\hat{v}_n = \omega_n \hat{v}_n$$
 ,  $L^{\dagger} \hat{w}_n = \overline{\omega}_n \hat{w}_n$  ,  $\hat{v}_n, \hat{w}_n \in \mathcal{H}$ 

Keldysh expansion  $\langle \alpha_i, v_j \rangle = \langle \hat{w}_i, \hat{v}_j \rangle_G = \delta_{ij}, ||\hat{v}_i||_G = ||\hat{w}_i||_G = 1$  [Besson & JLJ 25]

$$\begin{split} u(t,x) &= \sum_{n=0}^{N_{\mathrm{QNM}}} e^{i\omega_n t} \langle \alpha_n, u_0 \rangle v_n(x) + E_{N_{\mathrm{QNM}}}(t;u_0) \\ &= \sum_{n=0}^{N_{\mathrm{QNM}}} e^{i\omega_n t} \kappa_n \langle \hat{w}_n, u_0 \rangle_{\scriptscriptstyle G} \hat{v}_n(x) + E_{N_{\mathrm{QNM}}}(t;u_0) \\ &\text{with} & ||E_{N_{\mathrm{QNM}}}(t;u_0)|| \leq C(N_{\mathrm{QNM}}, L) e^{-a_{N_{\mathrm{QNM}}} t} ||u_0|| \ , \end{split}$$

# Non-modal analysis

### Beyond spectral analysis: some elements

- QNM spectrum  $\sigma(L) = \lim_{\epsilon \to 0} \sigma_{\epsilon}(L)$ : possibility of spectral instabilities.
- Numerical range W(L) and numerical abscisa  $\omega(L)$  (in  $\lim_{\epsilon \to \infty} \sigma_{\epsilon}(L)$  limit):

$$\begin{array}{rcl} W(L) & = & \{\langle u, Lu \rangle, \text{with } ||u|| = 1, u \in H\} \\ \omega(L) & = & \sup \mathrm{Im} \big( W(L) \big) \\ \omega(L) & = & \frac{d}{dt} \; ||e^{tL}||\Big|_{t=0} \end{array}$$

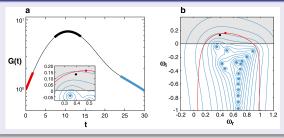
Intermediate/maximum transient, Kreiss constant  $\mathcal{K}(L)$ :

$$\begin{split} \sup_{t \geq 0} G(t) &= \sup_{t \geq 0} ||e^{tL}|| \quad \geq \quad \mathcal{K}(L) \\ \mathcal{K}(L) &= \quad \sup_{\mathrm{Im}(z) > 0} \{|\mathrm{Im}(z)| \cdot ||(L - zI)^{-1}||\} \end{split}$$

 $R_{\max}(\omega) = \sup_{c \neq 0} \frac{||u^{(2)}||}{||s||} = e^{-\operatorname{Im}(\omega)t} ||R_L(\omega)||$ Pseudo-resonances:

## Non-modal analysis

Growth factor  $G(t) = ||e^{itL}||$  and pseudospectrum (eg. Poiseuille flow [Schmid 07])



#### Spectral instability, Transients and Pseudoresonances [Trefethen et al. 93, Tref. & Embrée 05, ...

- Late times: QNM spectrum  $\sigma(L)$ .
- Transients (no source,  $u^{(1)}$ ): consequence of non-orthogonality of QNMs.
  - Initial times: numerical range W(L) and spectral abscisa  $\omega(L)$ .
  - Intermediate/maximum: pseudospectrum  $\sigma_{\epsilon}(L)$  and Kreiss constant  $\mathcal{K}(L)$ .
- Pseudo-resonances (source present,  $u^{(2)}$ ):  $R_{\max}(\omega)$  (with  $\omega \in \text{Re}(\omega)$ ).



# Non-modal analysis

### Dynamics and spectral theory: characteristic "non-normal" phenomena

Spectral problem of L: Eigenvalue (QNM) instabilities

[JIJ, Macedo, Al Sheikh 21; ...;] 
$$Lv_n(x)=\omega_nv_n(x)\quad\text{,}\quad L^\dagger w_n=\overline{\omega}_nw_n\quad\text{,}\quad \left(L^t\alpha_n(x)=\omega_n\alpha_n(x)\right)$$

Source-less dynamics: Non-modal transient growths

JLJ 22, Boyanov, Destounis et al. 23, Carballo & Withers 24, Chen, Wu & Guo 24,

Carballo, Pantelidou & Withers 25, Besson, Carballo, Pantelidou & Withers 25]

$$(\partial_{\tau} - iL)u(\tau, x) = 0$$

Source-driven dynamics: Pseudo-resonances

[JLJ 22, Boyanov, Destounis et al. 23]

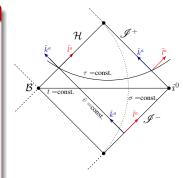
$$(\partial_{\tau} - iL)u(\tau, x) = S(\tau, x)$$

## Scheme

- 1 The general problem: linear "non-normal" wave equation
- Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- 4 Conclusions and Perspectives

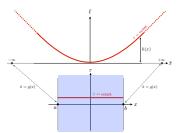
### Hyperboloidal approach to scattering on BHs

- Wave equation with purely outgoing boundary conditions.
- Outgoing BCs naturally imposed at  $\mathscr{I}^+$ .
- Outgoing BCs actually "incorporated" at \$\mathcal{I}^+\$:
  - Geometrically: null cones outgoing.
  - Analytically: BCs encoded into a singular operator, "BCs as regularity conditions".
- **QNM eigenfunctions** not diverging at  $x \to \infty$ : actually **integrable**. Key to Hilbert space.



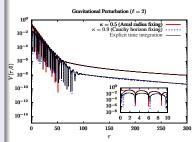
### Hyperboloidal approach to scattering on BHs: QNMs

- B. Schmidt [Schmidt 93; cf. also Friedman & Schutz 75]
- Analysis in the conformally compactified picture [Friedrich; Frauendiener,...]. Micro. Analysis [Vasy 13]
- Framework for BH perturbations [Zenginoglu 11].
- QNMs of asymp. AdS spacetimes [Warnick 15].
- QNM definition as operator eigenvalues [Bizoń...; Bizoń, Chmaj & Mach 20].
- Schwarzschild QNMs [Ansorg & Macedo 16]. (cf. also Reissner-Nordström [Macedo, JLJ, Ansorg 18]).
- "Gevrey" [Gajic & Warnick 20; Galkowski & Zworski 21].



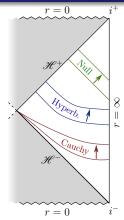
### Hyperboloidal approach to scattering on BHs: QNMs

- B. Schmidt [Schmidt 93; cf. also Friedman & Schutz 75]
- Analysis in the conformally compactified picture [Friedrich; Frauendiener,...]. Micro. Analysis [Vasy 13]
- Framework for BH perturbations [Zenginoglu 11].
- QNMs of asymp. AdS spacetimes [Warnick 15].
- QNM definition as operator eigenvalues [Bizoń ...; Bizoń, Chmaj & Mach 20].
- Schwarzschild QNMs [Ansorg & Macedo 16]. (cf. also Reissner-Nordström [Macedo, JLJ, Ansorg 18]).
- "Gevrey" [Gajic & Warnick 20; Galkowski & Zworski 21].



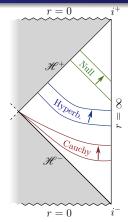
#### BH QNM instability: Spacetime asymptotics

- Asymptotically flat [L. Al Sheikh Ph.D thesis 22]
   [JLJ, R. P. Macedo, L. Al Sheikh 21; E. Gasperin, JLJ 22;
   ...; K. Destounis et al 21; V. Boyanov et al 22; JLJ 22].
- Asymptotically de Sitter [S. Sarkar, M. Rahman, S. Chakraborty 23; JLJ, R. P. Macedo, L. Al Sheikh 21]
- Asymptotically Anti-de Sitter
  - Hyperboloidal slicing
     [D. Areán, D. García-Fariña, K. Landsteiner 23]
  - Null slicing
     [B. Cownden, C. Pantelidou, M. Zilhão 23].
  - Structural assessments [V. Boyanov et al 23].



#### BH QNM instability: Spacetime asymptotics

- Asymptotically flat [L. Al Sheikh Ph.D thesis 22]
   [JLJ, R. P. Macedo, L. Al Sheikh 21; E. Gasperin, JLJ 22;
   ...; K. Destounis et al 21; V. Boyanov et al 22; JLJ 22].
- Asymptotically de Sitter [S. Sarkar, M. Rahman, S. Chakraborty 23; JLJ, R. P. Macedo, L. Al Sheikh 21]
- Asymptotically Anti-de Sitter
  - Hyperboloidal slicing
     [D. Areán, D. García-Fariña, K. Landsteiner 23]
  - Null slicing
     [B. Cownden, C. Pantelidou, M. Zilhão 23].
  - Structural assessments [V. Boyanov et al 23].



### Wave problem in spherically symmetric asymptotically flat case

As starting point, consider the problem for a  $\phi_{\ell m}$  mode in tortoise coordinates:

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r_*^2} + V_\ell\right)\phi_{\ell m} = 0 \quad , \quad t \in ]-\infty, \infty[\ , \ r^* \in ]-\infty, \infty[$$

### Starting point: (scalar) wave equation in "tortoise" coordinates

On a stationary spacetime (with timelike Killing  $\partial_t$ ):

$$\left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial r_*^2} + V_\ell\right)\phi_{\ell m} = 0 ,$$

Dimensionless coordinates:  $\bar{t}=t/\lambda$  and  $\bar{x}=r_*/\lambda$  (and  $\bar{V}_\ell=\lambda^2 V_\ell$ ),

#### Hyperboloidal approach [..., Zenginoğlu 08, 11,..., Macedo 24]

$$\begin{cases} \bar{t} = \tau - h(x) \\ \bar{x} = f(x) \end{cases}.$$

- h(x): implements the hyperboloidal slicing, i.e.  $\tau = \mathrm{const.}$  is a horizon-penetrating hyperboloidal slice  $\Sigma_{\tau}$  intersecting future  $\mathscr{I}^+$ .
- f(x): spatial compactification between  $\bar{x} \in [-\infty, \infty]$  to [a, b].
- Timelike Killing:  $\lambda \partial_t = \partial_{\bar{t}} = \partial_{\tau}$ .

### First-order reduction: $\psi_{\ell m} = \partial_{ au} \phi_{\ell m}$

$$\partial_{ au}u_{\ell m}=iLu_{\ell m}$$
 , with  $u_{\ell m}=egin{pmatrix}\phi_{\ell m}\\psi_{\ell m}\end{pmatrix}$ 

where

$$L = \frac{1}{i} \left( \begin{array}{c|c} 0 & 1 \\ \hline L_1 & L_2 \end{array} \right)$$

$$L_1 = \frac{1}{w(x)} \left( \partial_x \left( p(x) \partial_x \right) - q(x) \right) \qquad \text{(Sturm-Liouville operator)}$$

$$L_2 = \frac{1}{w(x)} \left( 2\gamma(x) \partial_x + \partial_x \gamma(x) \right)$$

$$\text{with} \ \ w(x) = \frac{f'^2 - h'^2}{|f'|} > 0 \ \ , \ \ p(x) = \frac{1}{|f'|} \ \ , \ \ q(x) = |f'| \ V_\ell \ \ , \ \ \gamma(x) = \frac{h'}{|f'|}.$$

### Spectral problem

Taking Fourier transform, dropping  $(\ell, m)$  (convention  $u(\tau, x) \sim u(x)e^{i\omega\tau}$ ):

$$\boxed{L u_n = \omega_n \ u_n} \ .$$

where

$$L = \frac{1}{i} \left( \begin{array}{c|c} 0 & 1 \\ \hline L_1 & L_2 \end{array} \right)$$

$$L_1 = \frac{1}{w(x)} \left( \partial_x \left( p(x) \partial_x \right) - q(x) \right)$$
 (Sturm-Liouville operator)
$$L_2 = \frac{1}{w(x)} \left( 2\gamma(x) \partial_x + \partial_x \gamma(x) \right)$$

### Hyperboloidal approach: No boundary conditions

It holds p(a) = p(b) = 0,  $L_1$  is "singular": **BCs "in-built" in** L.

## A physically motivated scalar product: "energy $(H^1)$ scalar product)

Natural scalar product (where  $V_{\ell} := q(x) > 0$ ):

$$\langle u_1, u_2 \rangle_E = \frac{1}{2} \int_a^b \left( w(x) \bar{\psi}_1 \psi_2 + p(x) \partial_x \bar{\phi}_1 \partial_x \phi_2 + \tilde{V}_\ell \bar{\phi}_1 \phi_2 \right) dx ,$$

associted with the "total energy" of  $\phi$  on  $\Sigma_t$ , defining the "energy norm"

$$||u||_E^2 = \langle u, u \rangle_E = \int_{\Sigma_{\tau}} T_{ab}(\phi, \partial_{\tau}\phi) t^a n^b d\Sigma_{\tau} ,$$

### Spectral problem of a non-selfadjoint operator

- Full operator L: not selfadjoint.
- $L_2$ : dissipative term encoding the energy leaking at  $\mathscr{I}^+$ .
- L selfadjoint in the non-dissipative  $L_2 = 0$  case.

Non-normal dynamics:  $\partial_{\tau}u_{\ell m} = iLu_{\ell m}$ 

# Hyperboloidal approach to BH QNM [Warnick 15, Ansorg & Macedo 16, ...]

### Adjoint operator for the "energy scalar problem"

$$L^{\dagger} = \frac{1}{i} \left( \begin{array}{c|c} 0 & 1 \\ \hline L_1 & L_2 + L_2^{\partial} \end{array} \right)$$

where

$$L_2^{\partial} = 2\frac{\gamma}{w} \left( \delta(x-a) - \delta(x-b) \right)$$

Loss of "self-adjointness" happens at the boundaries (as expected)

### Plan

- - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)

### BH QNMs as an proper eigenvalue problem [Warnick 15, Ansorg & Macedo 16, ...]

$$L u_n = \omega_n u_n .$$

#### The 'definition' versus the 'instability' problem

Different norms for two different questions: the key role of the norm  $\|\cdot\|$ 

#### "Definition" versus "Instability" problem

• **Instability problem**: given a norm, assess spectral instability. For instance, "energy scalar product":

$$\langle u_1,\!u_2\rangle_{\scriptscriptstyle E}\!=\!\frac{1}{2}\!\int_a^b\!\!\!\left(\!w(x)\bar{\psi}_1\psi_2+p(x)\partial_x\bar{\phi}_1\!\partial_x\phi_2+\tilde{V}_\ell\bar{\phi}_1\phi_2\!\right)\!\!dx\ ,$$

associated with the "total energy" of  $\phi$  on  $\Sigma_t$ , defining the "energy norm"

$$||u||_E^2 = \langle u, u \rangle_E = \int_{\Sigma_{\tau}} T_{ab}(\phi, \partial_{\tau}\phi) t^a n^b d\Sigma_{\tau} ,$$

### BH QNMs as an proper eigenvalue problem [Warnick 15, Ansorg & Macedo 16, ...]

$$\left| L u_n = \omega_n \ u_n \right| .$$

#### The 'definition' versus the 'instability' problem

Different norms for two different questions: the key role of the norm  $\|\cdot\|$ 

### "Definition" versus "Instability" problem

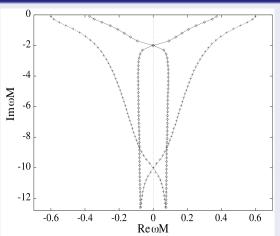
 Definition problem: given an operator, search norm to control eigenvalue instability. In AdS, Sobolev H<sup>p</sup>-norms [Warnick 15] from:

$$\langle u_1, u_2 \rangle_{H^p} = \left\langle \begin{pmatrix} \phi_1 \\ \psi_1 \end{pmatrix}, \begin{pmatrix} \phi_2 \\ \psi_2 \end{pmatrix} \right\rangle_{H^p} = \sum_{j=0}^p \left\langle \begin{pmatrix} \partial_x^j \phi_1 \\ \partial_x^j \psi_1 \end{pmatrix}, \begin{pmatrix} \partial_x^j \phi_2 \\ \partial_x^j \psi_2 \end{pmatrix} \right\rangle_E,$$

leading to

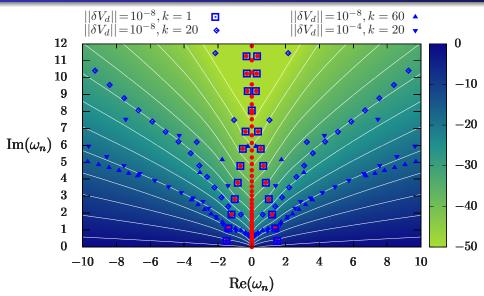
$$\left|\left|\begin{pmatrix}\phi\\\psi\end{pmatrix}\right|\right|_{H^p}^2:=\sum_{j=0}^p\left|\left|\begin{pmatrix}\partial_x^j\phi\\\partial_x^j\psi\end{pmatrix}\right|\right|_E^2$$

### Schwarzschild gravitational QNMs



Schwarzschild QNMs ( $\ell=2$  diamonds,  $\ell=3$  crosses) [e.g. Kokkotas & Schmidt 99; ...]

QNM frequencies  $\omega_n$  and asymptotics in the complex plane



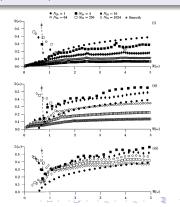
QNMs in Schwarzschild and in perturbed Schwarzschild [JLJ, Macedo, Al Sheikh, 21]



#### Black Hole and Neutron Star QNMs

#### Comparison with:

- Nollert's high-frequency Schwarzschild perturbations.
- Nollert's remark on Neutron Stars (w-modes) curvature QNMs.

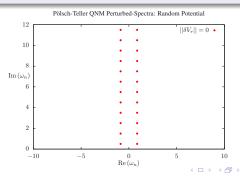


Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

Particularly simple form (scalar field in de Sitter,  $m^2=V_o$  [Bizoń, Chmaj & Mach 20])

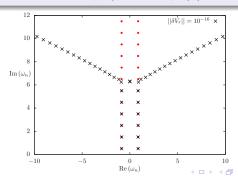
- ullet Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- QNM frequencies:  $\omega_n^{\pm} = \pm \frac{\sqrt{3}}{2} + i \left( n + \frac{1}{2} \right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .



Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

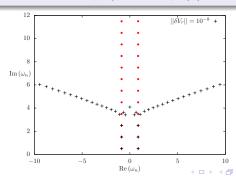
- Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- QNM frequencies:  $\omega_n^\pm = \pm \frac{\sqrt{3}}{2} + i \left( n + \frac{1}{2} \right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .



Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

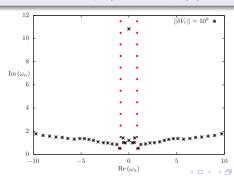
- Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- QNM frequencies:  $\omega_n^\pm = \pm \frac{\sqrt{3}}{2} + i \left( n + \frac{1}{2} \right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .



Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

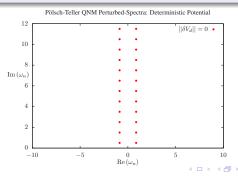
- Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- QNM frequencies:  $\omega_n^{\pm} = \pm \frac{\sqrt{3}}{2} + i \left( n + \frac{1}{2} \right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .



Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

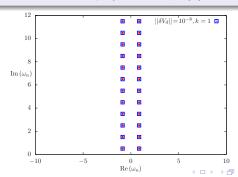
- ullet Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- $\bullet$  QNM frequencies:  $\omega_n^{\pm}=\pm\frac{\sqrt{3}}{2}+i\left(n+\frac{1}{2}\right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .



Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

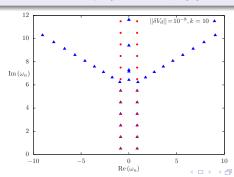
- ullet Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- $\bullet$  QNM frequencies:  $\omega_n^{\pm}=\pm\frac{\sqrt{3}}{2}+i\left(n+\frac{1}{2}\right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .



Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

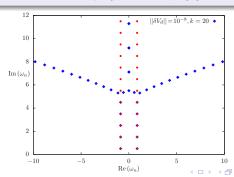
- Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- $\bullet$  QNM frequencies:  $\omega_n^{\pm}=\pm\frac{\sqrt{3}}{2}+i\left(n+\frac{1}{2}\right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^{\pm}, s_n^{\pm})}(\bar{x})$ .

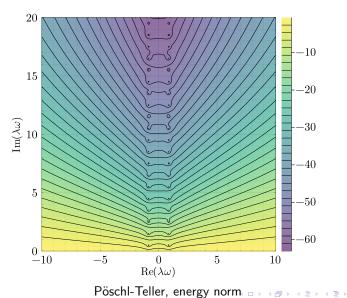


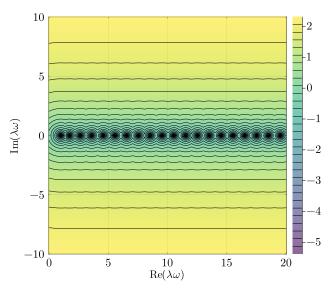
Pöschl-Teller potential [JLJ, Macedo & Al Sheikh 21] (toy-model in [Bizoń, Chmaj & Mach 20])

$$V(x) = V_o \operatorname{sech}^2(x)$$

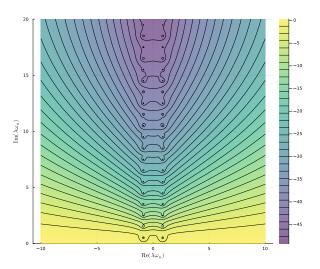
- Integrable potential (QNM completeness [Beyer 99] with  $m^2=V_o!$ ).
- QNM frequencies:  $\omega_n^{\pm} = \pm \frac{\sqrt{3}}{2} + i \left( n + \frac{1}{2} \right)$
- Here, eigenfunctions are Jacobi polynomials:  $\phi_n(\bar{x}) = P_n^{(s_n^\pm, s_n^\pm)}(\bar{x})$ .

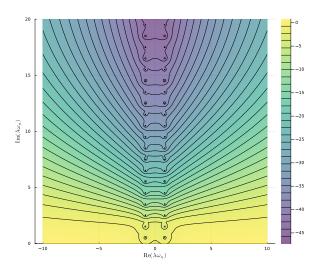


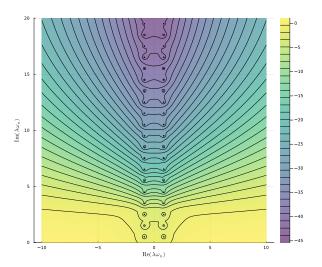


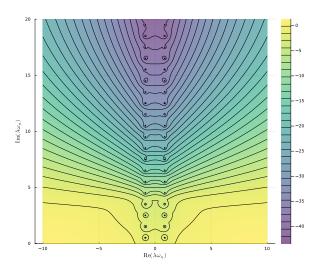


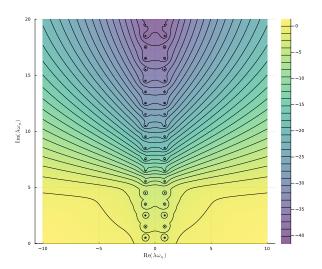
Pöschl-Teller, energy norm:  $L_2 = 0$ 

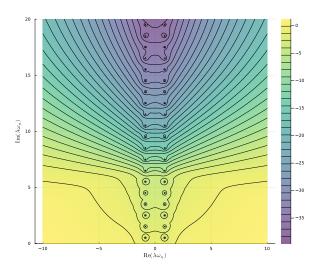


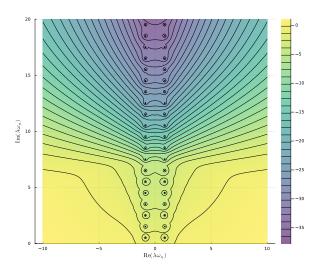




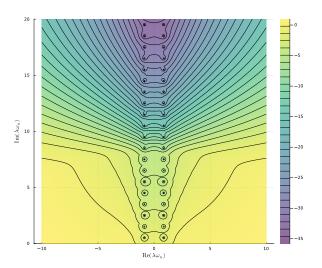


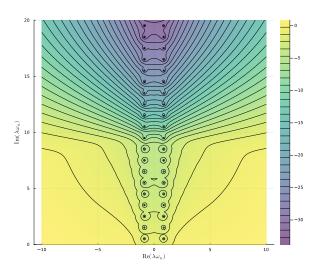


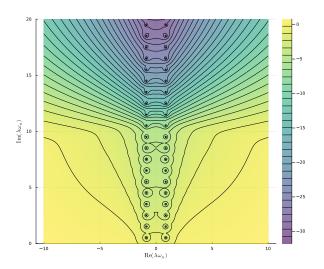


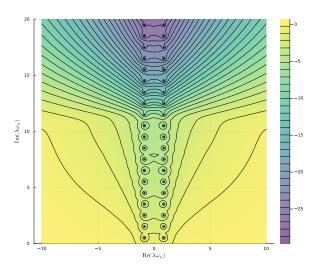


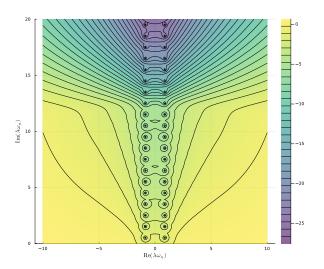


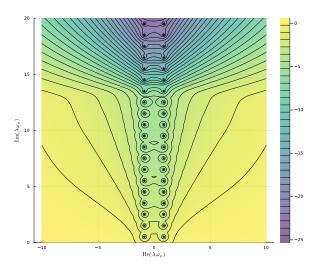


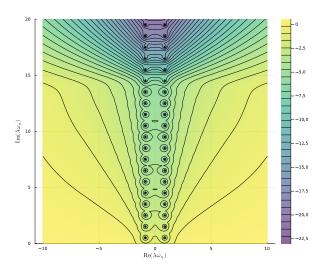


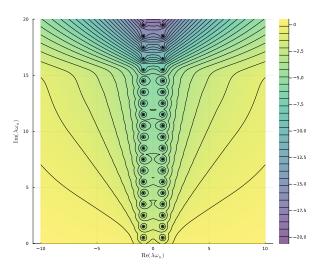


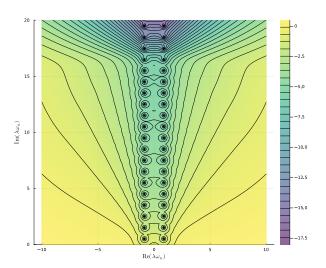




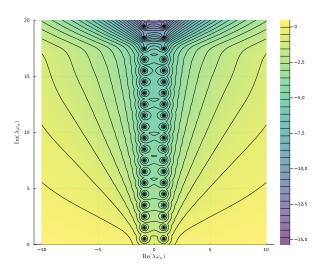


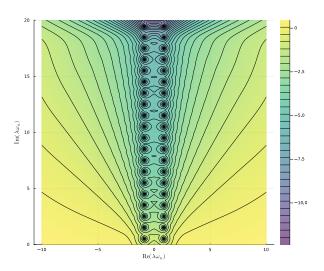


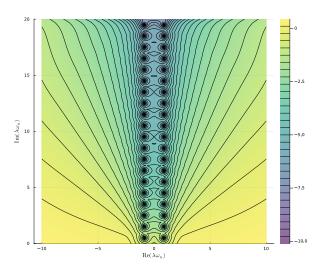


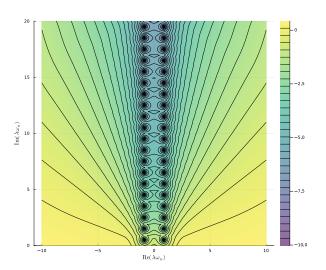


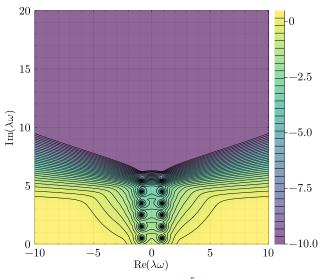
Evolution and spectrum in non-normal dynamics

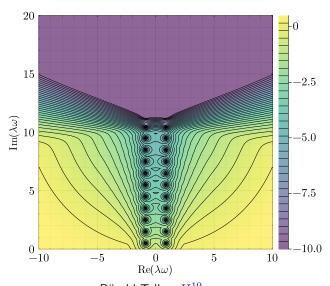




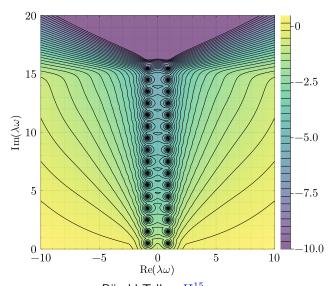


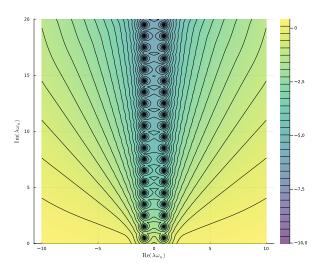


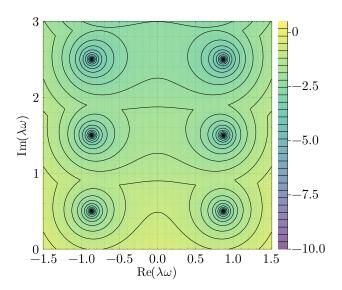


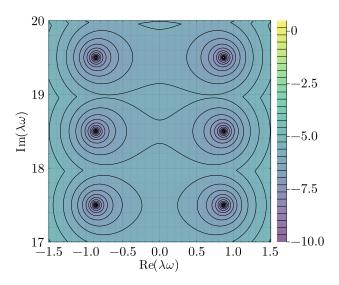


Evolution and spectrum in non-normal dynamics









Evolution and spectrum in non-normal dynamics

#### Plan

- - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)

24/32

### Keldysh QNM decomposition [Besson & JLJ 25]

#### Dual spectral problems: vectors and covectors (reminder)

$$Lv_n = \omega_n v_n$$
,  $L^t \alpha_n = \omega_n \alpha_n$ ,  $v_n \in \mathcal{H}, \alpha_n \in \mathcal{H}^*$ 

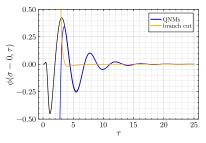
### If a scalar product available: spectral and adjoint spectral problem

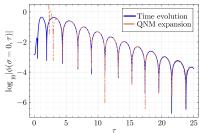
$$L\hat{v}_n = \omega_n \hat{v}_n$$
 ,  $L^{\dagger} \hat{w}_n = \overline{\omega}_n \hat{w}_n$  ,  $\hat{v}_n, \hat{w}_n \in \mathcal{H}$ 

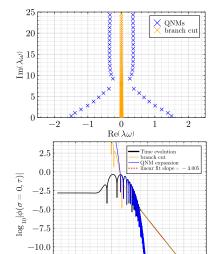
#### Keldysh expansion (reminder) [Besson & JLJ 25]

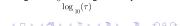
$$\begin{array}{ll} u(\tau,x) & = & \displaystyle\sum_{n=0}^{N_{\mathrm{QNM}}} e^{i\omega_n\tau} \langle \alpha_n,u_0\rangle v_n(x) + E_{N_{\mathrm{QNM}}}(\tau;u_0) \\ \\ & = & \displaystyle\sum_{n=0}^{N_{\mathrm{QNM}}} e^{i\omega_n\tau} \kappa_n \langle \hat{w}_n,u_0\rangle_{\scriptscriptstyle G} \hat{v}_n(x) + E_{N_{\mathrm{QNM}}}(\tau;u_0) \\ \\ \text{with} & & ||E_{N_{\mathrm{QNM}}}(\tau;u_0)|| \leq C(N_{\mathrm{QNM}},L) e^{-a_{N_{\mathrm{QNM}}}\tau} ||u_0|| \; , \end{array}$$

### Keldysh QNM decomposition [Besson & JLJ 25]





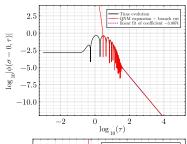


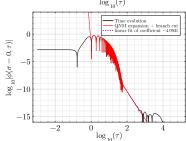


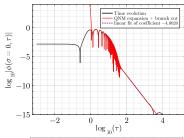
-12.5

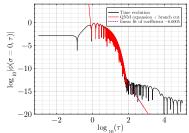
-2

### Keldysh QNM decomposition [Besson & JLJ 25]

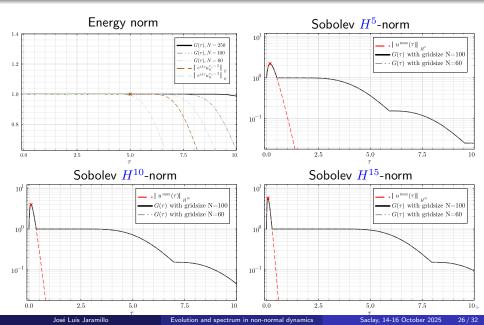




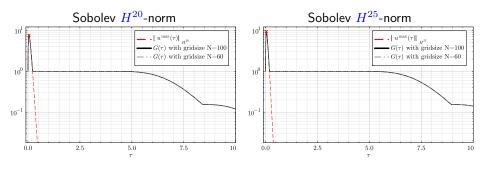




### Non-normal transient growths and distributions [Besson & JLJ 25]



### Non-normal transient growths and distributions [Besson & JLJ 25]



 $H^p$  growth transients: distributions at large p

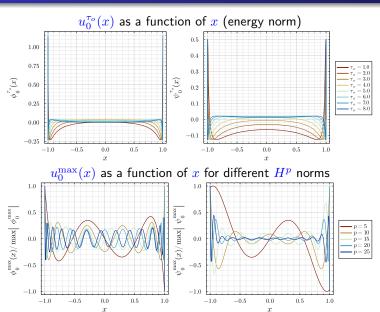
$$au_{
m max} \sim rac{1}{p} \qquad , \qquad G_{
m max} \sim p$$

In the limit  $p \to \infty$ :

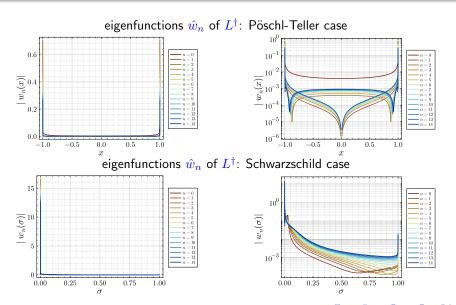
$$\lim_{p \to \infty} G(\tau) \sim \delta(\tau)$$

Distributional (in time) 'impulsive disturbance': key in "response function" in linear response theory.

### Optimal initial data



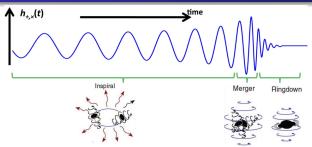
# Co-modes $\hat{w}_n$ of $L^{\dagger}$ : distributions peaked at the boundary

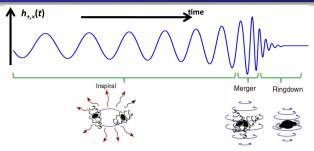


Saclay, 14-16 October 2025

### Plan

- - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)





#### Non-linear dispersive hydrodynamics effective picture: scattering on solitons

Effective separation of slow degrees of freedom u(t,x). In a "sketchy" manner:

$$\begin{cases} (-\Box + V_{\text{even,odd}}(t, x; u)) \Psi_{\text{even,odd}} = S_{\text{even,odd}}(t, x; u) \\ \partial_t u = F(t, x; u, u_x, u_{xx}, \ldots) \end{cases}$$

[note the affinity with De Amicis, Cannizzaro, Carullo & Sberna 25, cf. L. Sberna]

- Wave  $(\Psi)$ : non-normal linear wave dynamics (fast DoFs).
- Mean flow (u): "integrable" background dynamics (slow DoFs).

### Bottom-up asymptotic hierarchy to BBH merger dynamics: a "f-Airy tale"

| Asymptotic BBH Model  | Mathematical/Physical Framework   | Key Structures/Mechanisms              |
|-----------------------|-----------------------------------|----------------------------------------|
| Fold-caustic model    | Geometric Optics                  | Arnol'd-Thom's Theorem                 |
|                       | Catastrophe (singularity) Theory  | Classification of Stable Caustics      |
| Airy function model   | Fresnel's Diffraction             | Universal Diffraction Patterns         |
|                       | Semiclassical Theory              | in Caustics                            |
|                       | asymptotic ODE theory             | linear ODE turning points              |
| Painlevé-II model     | Painlevé Transcendents            | Painlevé property                      |
|                       | and Integrability                 |                                        |
|                       | Self-force calculations and EMRBs | Non-linear Turning Points              |
| KdV-like model        | Inverse Scattering Transform      | Painlevé test, <b>Lax pairs</b>        |
| (Wave-Mean Flow)      | and Integrability                 | Darboux transformations                |
|                       | Dispersive Non-linear PDEs        | Scatt. on Solitons, Soliton Resolution |
|                       | Critical Phenomena                | Universal Wave Patterns                |
|                       | in Dispersive PDEs                | Dubrovin's Conjecture                  |
| Propagation models on | Ward's Conjecture                 | (anti-)Self-Dual DoF                   |
| (anti)-Self-Dual      | and Integrability                 | Scattering on Instantons, Tunneling    |
| backgrounds           | Twistorial techniques             | Penrose Transform, 'Twistor' BBH data  |

### Bottom-up asymptotic hierarchy to BBH merger dynamics: a "f-Airy tale"

| Asymptotic BBH Model  | Mathematical/Physical Framework   | Key Structures/Mechanisms              |
|-----------------------|-----------------------------------|----------------------------------------|
| Fold-caustic model    | Geometric Optics                  | Arnol'd-Thom's Theorem                 |
|                       | Catastrophe (singularity) Theory  | Classification of Stable Caustics      |
| Airy function model   | Fresnel's Diffraction             | Universal Diffraction Patterns         |
|                       | Semiclassical Theory              | in Caustics                            |
|                       | asymptotic ODE theory             | linear ODE turning points              |
| Painlevé-II model     | Painlevé Transcendents            | Painlevé property                      |
|                       | and Integrability                 |                                        |
|                       | Self-force calculations and EMRBs | Non-linear Turning Points              |
| KdV-like model        | Inverse Scattering Transform      | Painlevé test, Lax pairs               |
| (Wave-Mean Flow)      | and Integrability                 | Darboux transformations                |
|                       | Dispersive Non-linear PDEs        | Scatt. on Solitons, Soliton Resolution |
|                       | Critical Phenomena                | Universal Wave Patterns                |
|                       | in Dispersive PDEs                | Dubrovin's Conjecture                  |
| Propagation models on | Ward's Conjecture                 | (anti-)Self-Dual DoF                   |
| (anti)-Self-Dual      | and Integrability                 | Scattering on Instantons, Tunneling    |
| backgrounds           | Twistorial techniques             | Penrose Transform, 'Twistor' BBH data  |

#### The hierarchical BBH program: "Wittgenstein's ladder" [JLJ, Krishnan & Sopuerta 23]

Resulting proposal:

"Wave-Mean Flow" approach with "fast" degrees of freedom "linearly" propagating/interacting on a "slow" degrees of freedom integrable background.

### Bottom-up asymptotic hierarchy to BBH merger dynamics: a "f-Airy tale"

| Asymptotic BBH Model  | Mathematical/Physical Framework   | Key Structures/Mechanisms              |
|-----------------------|-----------------------------------|----------------------------------------|
| Fold-caustic model    | Geometric Optics                  | Arnol'd-Thom's Theorem                 |
|                       | Catastrophe (singularity) Theory  | Classification of Stable Caustics      |
| Airy function model   | Fresnel's Diffraction             | Universal Diffraction Patterns         |
|                       | Semiclassical Theory              | in Caustics                            |
|                       | asymptotic ODE theory             | linear ODE turning points              |
| Painlevé-II model     | Painlevé Transcendents            | Painlevé property                      |
|                       | and Integrability                 |                                        |
|                       | Self-force calculations and EMRBs | Non-linear Turning Points              |
| KdV-like model        | Inverse Scattering Transform      | Painlevé test, <b>Lax pairs</b>        |
| (Wave-Mean Flow)      | and Integrability                 | Darboux transformations                |
|                       | Dispersive Non-linear PDEs        | Scatt. on Solitons, Soliton Resolution |
|                       | Critical Phenomena                | Universal Wave Patterns                |
|                       | in Dispersive PDEs                | Dubrovin's Conjecture                  |
| Propagation models on | Ward's Conjecture                 | (anti-)Self-Dual DoF                   |
| (anti)-Self-Dual      | and Integrability                 | Scattering on Instantons, Tunneling    |
| backgrounds           | Twistorial techniques             | Penrose Transform, 'Twistor' BBH data  |

#### Ablowitz and Segur (1981): on Integrability and Linearity

"Certain nonlinear problems have a surprisingly simple underlying structure, and can be solved by essentially linear methods".

### Application to Simplicity and Universality in BBH dynamics?

"Top-down" separation of (slow) background and (fast) dynamics?

### Full (Conformal) Einstein equations

[Friedrich...; Frauendiener...; Valiente-Kroon; here: Frauendiener, Stevens & Thwala 25]

Semi-linear system, with "Wave-Mean Flow" structure:

"Subsystem 1" + "Subsystem 2".

#### Subsystem 1, "Slow" degrees of freedom: transport equations

$$\begin{split} e_{a}(c_{b}^{b}) - e_{b}(c_{a}^{u}) &= \hat{\Gamma}_{ab}{}^{c}c_{c}^{c} - \hat{\Gamma}_{ba}{}^{c}c_{c}^{c}, \\ e_{a}(\hat{\Gamma}_{bc}{}^{d}) - e_{b}(\hat{\Gamma}_{ac}{}^{d}) &= (\hat{\Gamma}_{ab}{}^{e} - \hat{\Gamma}_{ba}{}^{e})\hat{\Gamma}_{ec}{}^{d} \\ &- \hat{\Gamma}_{bc}{}^{e}\hat{\Gamma}_{ae}{}^{d} + \hat{\Gamma}_{ac}{}^{e}\hat{\Gamma}_{be}{}^{d} \\ + \Theta K_{abc}{}^{d} - 2\eta_{c[a}\hat{P}_{b]}{}^{d} + 2\delta_{[a}{}^{d}\hat{P}_{b]c} - 2\hat{P}_{[ab]}\delta_{c}{}^{d}, \\ \hat{\nabla}_{a}\hat{P}_{bc} - \hat{\nabla}_{b}\hat{P}_{ac} &= b_{e}K_{abc}{}^{e}, \end{split}$$

### Subsystem 2, "Fast" degrees of freedom: symmetric hyperbolic system

$$\hat{\nabla}_e K_{abc}{}^e = b_e K_{abc}{}^e,$$

### Scheme

- 1 The general problem: linear "non-normal" wave equation
- Brief overview of non-normal operators and non-modal analysis
  - Spectral instability
  - Non-modal transient growths
  - Pseudo-resonances
  - Some elements of non-modal analysis
- 3 A gravitational case: hyperboloidal approach to scattering on black holes
  - BH QNM instability
  - "Free" evolutions on BHs and non-modal transient growths
  - "Driven" evolutions on BHs (and pseudo-resonances?)
- 4 Conclusions and Perspectives



### Perspectives

#### Conclusions

- Nonselfajoint (non-normal) early/intermediate dynamics are not captured by spectrum: rather "non-modal analysis".
   It requires to cast the problem in a proper Hilbert (Banach) space.
- Characteristic "non-normal effects": eigenvalue (QNM) instability, growth transients, pseudo-resonances.
- **Application in GR**: BH QNM instability, (RN superradiance [Carballo et al. 25], low-regularity) transients, pseudo-resonances (ECO bootstrap instability?)

#### Perspectives

- Non-normal dynamics/non-modal approach to BBH merger-ringdown: Transients? Pseudo-resonances? BH QNM instability?
- Non-normal dynamics tools in the (hyperboloidal) "wave" dynamics in the "wave-mean flow" approach to strong gravity (BBH) dynamics.
- Application to other gravity ("dissipative") scenarios: cosmological settings, transition to turbulence in gravity [Lehner], near-horizon geometries, fundamental dissipation [Pérez, Sudarsky], ...