Primordial black holes beyond spherical symmetry

Jibril Ben Achour Arnold Sommerfeld Center - Munich École Normale Supérieure - Lyon

TUG '25 Workshop 14th October 2025 IPhT - Sacaly

In collaboration with
A. Cisterna, M. Hassaine, V. Vennin
To appear

What are they ?

- Primordial black holes (PBH) are black hole formed in the early universe
- ullet Many different possible mechanisms for the formation o not standard stellar evolution

What are they?

- Primordial black holes (PBH) are black hole formed in the early universe
- Many different possible mechanisms for the formation → not standard stellar evolution

Why are they important?

- Because black evaporate through Hawking radiation, only a fraction might remains today
- Depending on their abundance, can affect the cosmological observables:
 - → CMB characteristic, non-gaussianities for instance
- ullet Source of gravitational waves: o affect the expected stochastic GW background
- Potential candidate for (part of) the dark matter
- ullet Potential seed for the high redshift structure observed by JWST ($z\sim14$)

What are they?

- Primordial black holes (PBH) are black hole formed in the early universe
- ullet Many different possible mechanisms for the formation o not standard stellar evolution

Why are they important?

- Because black evaporate through Hawking radiation, only a fraction might remains today
- Depending on their abundance, can affect the cosmological observables:
 - → CMB characteristic, non-gaussianities for instance
- ullet Source of gravitational waves: o affect the expected stochastic GW background
- Potential candidate for (part of) the dark matter
- Potential seed for the high redshift structure observed by JWST ($z \sim 14$)

Key challenge to describe PBH

- Asymptotically FLRW + non-vacuum geometries
- No Killing horizon nor time-like Killing vector
- Understanding gravitational radiation and evaporation require new tools
- Testing these tools require exact solutions for PBH
- Key targets: formation criteria, environmental effects, lifetime

What are they?

- Primordial black holes (PBH) are black hole formed in the early universe
- ullet Many different possible mechanisms for the formation o not standard stellar evolution

Why are they important?

- Because black evaporate through Hawking radiation, only a fraction might remains today
- Depending on their abundance, can affect the cosmological observables:
 - → CMB characteristic, non-gaussianities for instance
- Source of gravitational waves: → affect the expected stochastic GW background
- Potential candidate for (part of) the dark matter
- ullet Potential seed for the high redshift structure observed by JWST ($z\sim14$)

Key challenge to describe PBH

- Asymptotically FLRW + non-vacuum geometries
- No Killing horizon nor time-like Killing vector
- Understanding gravitational radiation and evaporation require new tools
- Testing these tools require exact solutions for PBH
- Key targets: formation criteria, environmental effects, lifetime

Mass loss from Hawking radiation Building exact solutions for PBH models

Kodama symmetry

Consider a spherically symmetric spacetime

$$\mathrm{d}s^{2} = g_{ab}\mathrm{d}x^{a}\mathrm{d}x^{b} + R^{2}\mathrm{d}\Omega^{2} = -f(t,r)\mathrm{d}t^{2} + \frac{\mathrm{d}r^{2}}{f(t,r)} + R^{2}(t,r)\mathrm{d}\Omega^{2} \tag{1}$$

Kodama symmetry

Consider a spherically symmetric spacetime

$$ds^{2} = g_{ab}dx^{a}dx^{b} + R^{2}d\Omega^{2} = -f(t, r)dt^{2} + \frac{dr^{2}}{f(t, r)} + R^{2}(t, r)d\Omega^{2}$$
(1)

• Any spherically symmetric spacetime exhibits a hidden Killing-Yano symmetry

$$\nabla_{(\mu} Y_{\nu)\alpha} = 0 \qquad Y_{\mu\nu} dx^{\mu} dx^{\nu} = R^{2}(t, r) \sin \theta d\theta \wedge d\varphi \tag{2}$$

Kodama symmetry

Consider a spherically symmetric spacetime

$$ds^{2} = g_{ab}dx^{a}dx^{b} + R^{2}d\Omega^{2} = -f(t, r)dt^{2} + \frac{dr^{2}}{f(t, r)} + R^{2}(t, r)d\Omega^{2}$$
(1)

• Any spherically symmetric spacetime exhibits a hidden Killing-Yano symmetry

$$\nabla_{(\mu} Y_{\nu)\alpha} = 0 \qquad Y_{\mu\nu} dx^{\mu} dx^{\nu} = R^{2}(t, r) \sin \theta d\theta \wedge d\varphi \tag{2}$$

One can introduce the so-called Kodama vector canonically defined as

$$k^{\mu}\partial_{\mu} = \varepsilon^{\mu\nu\alpha\beta}\nabla_{\nu}Y_{\alpha\beta}\ \partial_{\mu} = \left(R'\partial_{t} + \dot{R}\partial_{r}\right) \qquad \rightarrow \qquad \nabla_{\mu}k^{\mu} = 0 \tag{3}$$

[Kodama '80]

Three main properties

• Kodama norm directly related to expansions of light rays : allow to identify the horizon !

$$k_{\alpha}k^{\alpha} \propto \theta_{\ell}\theta_{n} \qquad \rightarrow \qquad \text{vanishes on the horizons}$$
 (4)

Kodama symmetry

Consider a spherically symmetric spacetime

$$ds^{2} = g_{ab}dx^{a}dx^{b} + R^{2}d\Omega^{2} = -f(t, r)dt^{2} + \frac{dr^{2}}{f(t, r)} + R^{2}(t, r)d\Omega^{2}$$
(1)

• Any spherically symmetric spacetime exhibits a hidden Killing-Yano symmetry

$$\nabla_{(\mu}Y_{\nu)\alpha} = 0 \qquad Y_{\mu\nu} dx^{\mu} dx^{\nu} = R^{2}(t, r) \sin\theta d\theta \wedge d\varphi \tag{2}$$

One can introduce the so-called Kodama vector canonically defined as

$$k^{\mu}\partial_{\mu} = \varepsilon^{\mu\nu\alpha\beta}\nabla_{\nu}Y_{\alpha\beta}\,\partial_{\mu} = \left(R'\partial_{t} + \dot{R}\partial_{r}\right) \qquad \rightarrow \qquad \nabla_{\mu}k^{\mu} = 0 \tag{3}$$

[Kodama '80]

Three main properties

• Kodama norm directly related to expansions of light rays: allow to identify the horizon!

$$k_{\alpha}k^{\alpha}\propto\theta_{\ell}\theta_{n}$$
 \rightarrow vanishes on the horizons (4)

• Provide a notion of energy/mass: the Misner-Sharp mass + compaction funnction

$$\mathcal{M} = \frac{R}{2} \left(1 - g^{\mu\nu} \nabla_{\mu} R \nabla_{\nu} R \right) = \frac{R}{2} \left(1 + |k^{\mu} k_{\mu}| \right) \qquad \mathcal{C} = \frac{\mathcal{M} - \mathcal{M}_{\mathsf{FLRW}}}{R} \tag{5}$$

Kodama symmetry

Consider a spherically symmetric spacetime

$$ds^{2} = g_{ab}dx^{a}dx^{b} + R^{2}d\Omega^{2} = -f(t, r)dt^{2} + \frac{dr^{2}}{f(t, r)} + R^{2}(t, r)d\Omega^{2}$$
(1)

Any spherically symmetric spacetime exhibits a hidden Killing-Yano symmetry

$$\nabla_{(\mu}Y_{\nu)\alpha} = 0 \qquad Y_{\mu\nu} dx^{\mu} dx^{\nu} = R^{2}(t, r) \sin\theta d\theta \wedge d\varphi$$

One can introduce the so-called Kodama vector canonically defined as

$$k^{\mu}\partial_{\mu} = \varepsilon^{\mu\nu\alpha\beta}\nabla_{\nu}Y_{\alpha\beta}\partial_{\mu} = (R'\partial_{t} + \dot{R}\partial_{r}) \rightarrow \nabla_{\mu}k^{\mu} = 0$$

[Kodama '80]

Three main properties

- Kodama norm directly related to expansions of light rays: allow to identify the horizon!
- $k_{\alpha}k^{\alpha} \propto \theta_{\ell}\theta_n \qquad \rightarrow \qquad \text{vanishes on the horizons}$
- Provide a notion of energy/mass: the Misner-Sharp mass + compaction funnction

$$\mathcal{M} = \frac{R}{2} \left(1 - g^{\mu\nu} \nabla_{\mu} R \nabla_{\nu} R \right) = \frac{R}{2} \left(1 + |k^{\mu} k_{\mu}| \right)$$
 $\mathcal{C} = \frac{\mathcal{M} - \mathcal{M}_{\mathsf{FLRW}}}{\mathcal{R}}$

- ullet Hayward-Kodama surface gravity κ_{HK} and temperature for spherically symmetric and
- dvnamical horizon

$$\frac{1}{2}k^{\mu}\nabla_{[\mu}k_{\alpha]} = \kappa_{\mathsf{HK}}K_{\alpha} \tag{6}$$

[Hayward '11]

(2)

(3)

(4)

(5)

Schwarzschild

• Consider the asymptotically flat and stationary Schwarzschild black hole

$$f(r) = 1 - \frac{2m}{r}$$
 $R(t, r) = r$ \rightarrow $T = \frac{\kappa}{2\pi} = \frac{1}{8M}$ (7)

with horizon at $r_h = 2M$.

Mass loss through evaporation assuming Stefan law:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -4\pi\sigma r_h^2 T^4 \qquad \rightarrow \qquad \frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\hbar c^4}{15360G^2} \frac{1}{M^2} \qquad \rightarrow \qquad M(t) \propto (\tau_0 - \tau)^{1/3} \tag{8}$$

Schwarzschild

• Consider the asymptotically flat and stationary Schwarzschild black hole

$$f(r) = 1 - \frac{2m}{r}$$
 $R(t, r) = r$ \rightarrow $T = \frac{\kappa}{2\pi} = \frac{1}{8M}$ (7)

with horizon at $r_h = 2M$.

Mass loss through evaporation assuming Stefan law:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -4\pi\sigma r_h^2 T^4 \qquad \rightarrow \qquad \frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\hbar c^4}{15360G^2} \frac{1}{M^2} \qquad \rightarrow \qquad M(t) \propto (\tau_0 - \tau)^{1/3} \tag{8}$$

ullet Give the standard result: BH with $M_0=10^{15}{
m g}$ have evaporated today

Schwarzschild

Consider the asymptotically flat and stationary Schwarzschild black hole

$$f(r) = 1 - \frac{2m}{r}$$
 $R(t, r) = r$ \rightarrow $T = \frac{\kappa}{2\pi} = \frac{1}{8M}$ (7)

with horizon at $r_h = 2M$.

Mass loss through evaporation assuming Stefan law:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -4\pi\sigma r_h^2 T^4 \qquad \rightarrow \qquad \frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\hbar c^4}{15360G^2} \frac{1}{M^2} \qquad \rightarrow \qquad M(t) \propto (\tau_0 - \tau)^{1/3} \tag{8}$$

- \bullet Give the standard result: BH with $M_0=10^{15}{
 m g}$ have evaporated today
- Result for a vacuum asymptotically flat black hole ... preferred notion of asymptotic time!
 what about dynamical geometry?

FLRW cosmology

Consider the case of a flat FLRW geometry

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$
(9)

with a cosmological horizon at $r_h(t) = H^{-1}(t)$

Schwarzschild

Consider the asymptotically flat and stationary Schwarzschild black hole

$$f(r) = 1 - \frac{2m}{r}$$
 $R(t, r) = r$ \rightarrow $T = \frac{\kappa}{2\pi} = \frac{1}{8M}$ (7)

with horizon at $r_h = 2M$.

Mass loss through evaporation assuming Stefan law:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -4\pi\sigma r_h^2 T^4 \qquad \rightarrow \qquad \frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\hbar c^4}{15360G^2} \frac{1}{M^2} \qquad \rightarrow \qquad M(t) \propto (\tau_0 - \tau)^{1/3} \tag{8}$$

- ullet Give the standard result: BH with $M_0=10^{15}{
 m g}$ have evaporated today
- Result for a vacuum asymptotically flat black hole ... preferred notion of asymptotic time!
 what about dynamical geometry?

FLRW cosmology

Consider the case of a flat FLRW geometry

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$
(9)

with a cosmological horizon at $r_h(t) = H^{-1}(t)$

• The surface gravity depends on the cosmic history and thus on the equation of state

$$T = \frac{\kappa_{\rm HK}}{2\pi} = \frac{\dot{\mathcal{H}} + 2\mathcal{H}^2}{4\pi\mathcal{H}} = 2\pi G r_h \rho \left(\omega - \frac{1}{3}\right) \tag{10}$$

and $T = \frac{H}{2\pi}$ for dS.

Schwarzschild

2m к

$$f(r) = 1 - \frac{2m}{r}$$
 $R(t, r) = r$ \rightarrow $T = \frac{\kappa}{2\pi} = \frac{1}{8M}$ (7)

with horizon at $r_h = 2M$.

Mass loss through evaporation assuming Stefan law:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -4\pi\sigma r_h^2 T^4 \qquad \rightarrow \qquad \frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\hbar c^4}{15360G^2} \frac{1}{M^2} \qquad \rightarrow \qquad M(t) \propto (\tau_0 - \tau)^{1/3} \tag{8}$$

ullet Give the standard result: BH with $M_0=10^{15} {
m g}$ have evaporated today

Consider the asymptotically flat and stationary Schwarzschild black hole

Result for a vacuum asymptotically flat black hole ... preferred notion of asymptotic time!
 what about dynamical geometry?

FLRW cosmology

• Consider the case of a flat FLRW geometry $\mathrm{d} s^2 = -\mathrm{d} t^2 +$

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$
(9)

with a cosmological horizon at $r_h(t) = H^{-1}(t)$

• The surface gravity depends on the cosmic history and thus on the equation of state

$$T = \frac{\kappa_{\rm HK}}{2\pi} = \frac{\dot{\mathcal{H}} + 2\mathcal{H}^2}{4\pi\mathcal{H}} = 2\pi G r_h \rho \left(\omega - \frac{1}{3}\right) \tag{10}$$

and $T = \frac{H}{2\pi}$ for dS.

• What about black hole embedded in cosmology?

Schwarzschild

2m к

$$f(r) = 1 - \frac{2m}{r}$$
 $R(t, r) = r$ \rightarrow $T = \frac{\kappa}{2\pi} = \frac{1}{8M}$ (7)

with horizon at $r_h = 2M$.

Mass loss through evaporation assuming Stefan law:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -4\pi\sigma r_h^2 T^4 \qquad \rightarrow \qquad \frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{\hbar c^4}{15360G^2} \frac{1}{M^2} \qquad \rightarrow \qquad M(t) \propto (\tau_0 - \tau)^{1/3} \tag{8}$$

ullet Give the standard result: BH with $M_0=10^{15} {
m g}$ have evaporated today

Consider the asymptotically flat and stationary Schwarzschild black hole

Result for a vacuum asymptotically flat black hole ... preferred notion of asymptotic time!
 what about dynamical geometry?

FLRW cosmology

• Consider the case of a flat FLRW geometry $\mathrm{d} s^2 = -\mathrm{d} t^2 +$

$$ds^2 = -dt^2 + a^2(t)\delta_{ij}dx^i dx^j$$
(9)

with a cosmological horizon at $r_h(t) = H^{-1}(t)$

• The surface gravity depends on the cosmic history and thus on the equation of state

$$T = \frac{\kappa_{\rm HK}}{2\pi} = \frac{\dot{\mathcal{H}} + 2\mathcal{H}^2}{4\pi\mathcal{H}} = 2\pi G r_h \rho \left(\omega - \frac{1}{3}\right) \tag{10}$$

and $T = \frac{H}{2\pi}$ for dS.

• What about black hole embedded in cosmology?

Vaidya-de Sitter black hole

• Consider the simplest model of dynamical black hole embedded in a de Sitter universe

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

Vaidya-de Sitter black hole

• Consider the simplest model of dynamical black hole embedded in a de Sitter universe

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

• Temperature given by

$$T(u) \propto \left[\frac{1 - \Lambda r_h^2(u)}{4\pi r_h(u)} \right] \tag{13}$$

Vaidya-de Sitter black hole

• Consider the simplest model of dynamical black hole embedded in a de Sitter universe

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

Temperature given by

$$T(u) \propto \left[\frac{1 - \Lambda r_h^2(u)}{4\pi r_h(u)} \right] \tag{13}$$

• Pick-up the coordinates associated to a observer co-moving with the cosmological expansion: $(u, r, \theta, \phi) \rightarrow (\tau, \tilde{r}, \theta, \phi)$

Vaidya-de Sitter black hole

• Consider the simplest model of dynamical black hole embedded in a de Sitter universe

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

Temperature given by

$$T(u) \propto \left[\frac{1 - \Lambda r_h^2(u)}{4\pi r_h(u)} \right] \tag{13}$$

- Pick-up the coordinates associated to a observer co-moving with the cosmological expansion: $(u, r, \theta, \phi) \rightarrow (\tau, \tilde{r}, \theta, \phi)$
- How different observers measure the lifetime of an evaporating black hole embedded in cosmology?

Vaidya-de Sitter black hole

• Consider the simplest model of dynamical black hole embedded in a de Sitter universe

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

Temperature given by

$$T(u) \propto \left[\frac{1 - \Lambda r_h^2(u)}{4\pi r_h(u)} \right] \tag{13}$$

- Pick-up the coordinates associated to a observer co-moving with the cosmological expansion: $(u, r, \theta, \phi) \rightarrow (\tau, \tilde{r}, \theta, \phi)$
- How different observers measure the lifetime of an evaporating black hole embedded in cosmology?

Lessons for interpreting the evaporation constraints for PBH

 \bullet For an observer close to the BH atmosphere, expanding background has no effect : $M(u)\sim M(\tau)$

Vaidya-de Sitter black hole

• Consider the simplest model of dynamical black hole embedded in a de Sitter universe

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

Temperature given by

$$T(u) \propto \left[\frac{1 - \Lambda r_h^2(u)}{4\pi r_h(u)} \right] \tag{13}$$

- Pick-up the coordinates associated to a observer co-moving with the cosmological expansion: $(u, r, \theta, \phi) \rightarrow (\tau, \tilde{r}, \theta, \phi)$
- How different observers measure the lifetime of an evaporating black hole embedded in cosmology?

Lessons for interpreting the evaporation constraints for PBH

- ullet For an observer close to the BH atmosphere, expanding background has no effect : $M(u) \sim M(au)$
- For a far away observer, the inferred lifetime can be dramatically different depending on the cosmic dynamics : $M(\tau) \neq M(u)$
 - ightarrow some BH can never evaporate totally for such observer

Vaidya-de Sitter black hole Consider the simplest model of dynamical black hole embedded in a de Sitter universe

[2CA(...) A-2]

$$ds^{2} = -\left[1 - \frac{2GM(u)}{c^{2}r} - \frac{\Lambda r^{2}}{3}\right]c^{2}du^{2} - cdudr + r^{2}d\Omega^{2}$$
(11)

with energy momentum tensor describing null dust following a radial trajectory

$$T_{\mu\nu} = \pm \frac{c^2}{4\pi r^2} \frac{\mathrm{d}M(u)}{\mathrm{d}u} \partial_{\mu} u \partial_{\nu} u \tag{12}$$

• Temperature given by

$$T(u) \propto \left[\frac{1 - \Lambda r_h^2(u)}{4\pi r_h(u)}\right] \tag{13}$$
• Pick-up the coordinates associated to a observer co-moving with the cosmological expansion:

- $(u, r, \theta, \phi) \rightarrow (\tau, \tilde{r}, \theta, \phi)$ A How different observers measure the lifetime of an evaporating black hole embedded in
- How different observers measure the lifetime of an evaporating black hole embedded in cosmology?

Lessons for interpreting the evaporation constraints for PBH

$$ullet$$
 For an observer close to the BH atmosphere, expanding background has no effect : $M(u) \sim M(au)$

ullet For a far away observer, the inferred lifetime can be dramatically different depending on the cosmic dynamics : M(au)
eq M(u)

- → some BH can never evaporate totally for such observer
- Constraints of PBH abundance today should be understood with much more care !

Take away message

• The evaporation time of a cosmological BH should be considered w.r.t to a given observer

Take away message

- The evaporation time of a cosmological BH should be considered w.r.t to a given observer
- Not a surprise: time-to-horizon crossing / energy of a black hole depends on the distance at which we look at it

Take away message

- The evaporation time of a cosmological BH should be considered w.r.t to a given observer
- Not a surprise: time-to-horizon crossing / energy of a black hole depends on the distance at which we look at it

Next target

• What about non-spherically symmetric asymptotically FLRW black hole?

Going beyond spherical symmetry: The problematic

• Can we exhibit a generalized Kodama vector beyond spherical symmetry ?

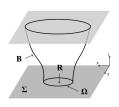
Going beyond spherical symmetry: The problematic

- Can we exhibit a generalized Kodama vector beyond spherical symmetry ?
- Can we identify a generalized notion of temperature and compaction function ?

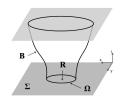
Going beyond spherical symmetry: The problematic

- Can we exhibit a generalized Kodama vector beyond spherical symmetry ?
- Can we identify a generalized notion of temperature and compaction function ?
- Can we identify exact solutions of General Relativity describing axi-symmetric PBH models to test the above definitions?

• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$

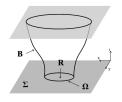


• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$



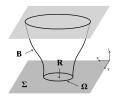
• Unit normal vector $n_{\mu}\mathrm{d}x^{\mu}$ to Σ , i.e. $n^{\mu}n_{\mu}=-1$, to Σ

• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$



- Unit normal vector $n_{\mu} dx^{\mu}$ to Σ , i.e. $n^{\mu} n_{\mu} = -1$, to Σ
- Unit normal vector $s_\mu \mathrm{d} x^\mu$ to \mathcal{B} , i.e. $s^\mu s_\mu = +1$ such that $g_{\mu\nu} n^\mu s^\nu = 0$.

• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$

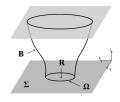


- Unit normal vector $n_{\mu} dx^{\mu}$ to Σ , i.e. $n^{\mu} n_{\mu} = -1$, to Σ
- Unit normal vector $s_{\mu} dx^{\mu}$ to \mathcal{B} , i.e. $s^{\mu} s_{\mu} = +1$ such that $g_{\mu\nu} n^{\mu} s^{\nu} = 0$.
- ullet Metric on Ω

$$q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu} - s_{\mu}s_{\nu} \tag{14}$$

such that $q_{\mu\nu} n^\mu = q_{\mu\nu} s^\mu = 0$

• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$



- Unit normal vector $n_{\mu} dx^{\mu}$ to Σ , i.e. $n^{\mu} n_{\mu} = -1$, to Σ
- Unit normal vector $s_{\mu} dx^{\mu}$ to \mathcal{B} , i.e. $s^{\mu} s_{\mu} = +1$ such that $g_{\mu\nu} n^{\mu} s^{\nu} = 0$.
- \bullet Metric on Ω

$$q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu} - s_{\mu}s_{\nu} \tag{14}$$

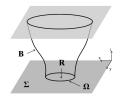
such that $q_{\mu\nu}n^{\mu}=q_{\mu\nu}s^{\mu}=0$

ullet Bending of Ω within the hypersurface Σ or within the hypersurface ${\cal B}$ which are respectively defined by

$$K_{\mu\nu}(n) = D_{\mu}n_{\nu} \qquad K_{\mu\nu}(s) = D_{\mu}s_{\nu}$$
 (15)

where $D_{\mu} = q_{\mu}{}^{\nu} \nabla_{\nu}$ is the covariant derivative on Ω .

• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$



- Unit normal vector $n_{\mu} dx^{\mu}$ to Σ , i.e. $n^{\mu} n_{\mu} = -1$, to Σ
- Unit normal vector $s_{\mu} dx^{\mu}$ to \mathcal{B} , i.e. $s^{\mu} s_{\mu} = +1$ such that $g_{\mu\nu} n^{\mu} s^{\nu} = 0$.
- \bullet Metric on Ω

$$q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu} - s_{\mu}s_{\nu} \tag{14}$$

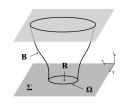
such that $q_{\mu\nu}n^{\mu}=q_{\mu\nu}s^{\mu}=0$

ullet Bending of Ω within the hypersurface Σ or within the hypersurface ${\cal B}$ which are respectively defined by

$$K_{\mu\nu}(n) = D_{\mu}n_{\nu} \qquad K_{\mu\nu}(s) = D_{\mu}s_{\nu}$$
 (15)

where $D_{\mu} = q_{\mu}{}^{\nu} \nabla_{\nu}$ is the covariant derivative on Ω .

• Consider a region of spacetime \mathcal{V} with boundary $\partial \mathcal{V} = \Sigma_i \cup \mathcal{B} \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal{B}$



- Unit normal vector $n_{\mu} dx^{\mu}$ to Σ , i.e. $n^{\mu} n_{\mu} = -1$, to Σ
- Unit normal vector $s_{\mu} dx^{\mu}$ to \mathcal{B} , i.e. $s^{\mu} s_{\mu} = +1$ such that $g_{\mu\nu} n^{\mu} s^{\nu} = 0$.
- Metric on Ω

$$q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu} - s_{\mu}s_{\nu} \tag{14}$$

such that $q_{\mu\nu}n^{\mu}=q_{\mu\nu}s^{\mu}=0$ • Bending of Ω within the hypersurface Σ or within the hypersurface \mathcal{B} which are respectively defined by

$$K_{\mu\nu}(n) = D_{\mu}n_{\nu} \qquad K_{\mu\nu}(s) = D_{\mu}s_{\nu}$$
 (15)

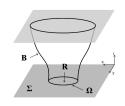
where $D_{\mu} = q_{\mu}{}^{\nu} \nabla_{\nu}$ is the covariant derivative on Ω . • Introduce the mean curvature vector H and its dual H_{\perp} given by

$$H^{\mu}\partial_{\mu} = K(s)s^{\mu}\partial_{\mu} - K(n)n^{\mu}\partial_{\mu} \tag{16}$$

$$H^{\mu}_{\perp}\partial_{\mu} = K(s)n^{\mu}\partial_{\mu} - K(n)s^{\mu}\partial_{\mu} \tag{17}$$

(17)

• Consider a region of spacetime $\mathcal V$ with boundary $\partial \mathcal V = \Sigma_i \cup \mathcal B \cup \Sigma_f$ and 2-sphere $\Omega = \Sigma \cup \mathcal B$



- Unit normal vector $n_{\mu} dx^{\mu}$ to Σ , i.e. $n^{\mu} n_{\mu} = -1$, to Σ
- Unit normal vector $s_{\mu} dx^{\mu}$ to \mathcal{B} , i.e. $s^{\mu} s_{\mu} = +1$ such that $g_{\mu\nu} n^{\mu} s^{\nu} = 0$.

Metric on Ω

$$q_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu} - s_{\mu}s_{\nu}$$
 (14) such that $q_{\mu\nu}n^{\mu} = q_{\mu\nu}s^{\mu} = 0$

• Bending of Ω within the hypersurface Σ or within the hypersurface \mathcal{B} which are respectively defined by

$$K_{\mu\nu}(n) = D_{\mu}n_{\nu}$$
 $K_{\mu\nu}(s) = D_{\mu}s_{\nu}$

where $D_{\mu} = q_{\mu}{}^{\nu} \nabla_{\nu}$ is the covariant derivative on Ω . • Introduce the mean curvature vector H and its dual H_{\perp} given by

$$H^{\mu}\partial_{\mu} = K(s)s^{\mu}\partial_{\mu} - K(n)n^{\mu}\partial_{\mu}$$

$$H^{\mu}\partial_{\mu} = K(s)s^{\mu}\partial_{\mu} - K(n)n^{\mu}\partial_{\mu}$$

$$H^{\mu}\partial_{\mu} = K(s)n^{\mu}\partial_{\mu} - K(n)s^{\mu}\partial_{\mu}$$

$$(17)$$

ullet The vector $H^\mu_+\partial_\mu$ is the generalization of the Kodama vector beyond spherical symmetry

(15)

Localize the horizon

• Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n \tag{18}$$

Localize the horizon

• Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n \tag{18}$$

Provide a well adapted notion of energy for dynamical gravitational system

Localize the horizon

Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n \tag{18}$$

Provide a well adapted notion of energy for dynamical gravitational system

Notion of mean curvature energy:

$$\epsilon = n_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad E_{\text{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ \epsilon = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ K(s) \tag{19}$$

Localize the horizon

Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n \tag{18}$$

Provide a well adapted notion of energy for dynamical gravitational system

• Notion of mean curvature energy:

$$\epsilon = n_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad E_{\text{MC}} = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \; \epsilon = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \; K(s) \tag{19}$$

Notion of mean curvature momenta:

$$p = s_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad P_{\text{MC}} = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \ p = \frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \ K(n) \tag{20}$$

Localize the horizon

Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n \tag{18}$$

Provide a well adapted notion of energy for dynamical gravitational system

Notion of mean curvature energy:

$$\epsilon = n_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad E_{\text{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ \epsilon = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ K(s) \tag{19}$$

Notion of mean curvature momenta:

$$p = s_{\mu} H_{\perp}^{\mu}$$
 \rightarrow $P_{MC} = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \ p = \frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \ K(n)$ (20)

 The interesting outcome of these definitions is that the norm of the mean curvature vector combined both quantities such that

$$|H_{\perp}| = \sqrt{K^2(s) - K^2(n)} = \sqrt{\epsilon^2 - p^2}$$
 (21)

Localize the horizon

Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n \tag{18}$$

Provide a well adapted notion of energy for dynamical gravitational system

Notion of mean curvature energy:

$$\epsilon = n_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad E_{\text{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ \epsilon = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ K(s) \tag{19}$$

Notion of mean curvature momenta:

$$p = s_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad P_{\text{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ p = \frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ K(n) \tag{20}$$

 The interesting outcome of these definitions is that the norm of the mean curvature vector combined both quantities such that

$$|H_{\perp}| = \sqrt{K^2(s) - K^2(n)} = \sqrt{\epsilon^2 - p^2}$$
(21)

ullet Natural notion of mean curvature quasi-local energy $\mathcal{E}_{\mathsf{MCE}}$ by integrating the norm $|H_{\perp}|$ on the closed 2-surface $\mathcal S$ such that

$$\mathcal{E}_{\mathsf{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} \mathrm{d}^2 x \sqrt{q} |H_{\perp}| = -\frac{1}{8\pi} \oint_{\mathcal{S}} \mathrm{d}^2 x \sqrt{q} \sqrt{K^2(s) - K^2(n)}$$
 (22)

Localize the horizon

• Norm of the GKV vanishes on the apparent horizons [Anco '05]

$$H_{\perp}^2 = -H^2 \propto \theta_{\ell} \theta_n$$

Provide a well adapted notion of energy for dynamical gravitational system

Notion of mean curvature energy:

$$\epsilon = n_{\mu} H_{\perp}^{\mu} \qquad \rightarrow \qquad E_{\text{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \; \epsilon = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \; \mathsf{K}(s) \tag{19}$$

Notion of mean curvature momenta:

$$p = s_{\mu} H^{\mu}_{\perp} \qquad \rightarrow \qquad P_{\text{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ p = \frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \ K(n) \tag{20}$$

• The interesting outcome of these definitions is that the norm of the mean curvature vector combined both quantities such that

$$|H_{\perp}| = \sqrt{K^2(s) - K^2(n)} = \sqrt{\epsilon^2 - p^2}$$
 (21)

• Natural notion of mean curvature quasi-local energy $\mathcal{E}_{\mathsf{MCE}}$ by integrating the norm $|H_\perp|$ on the closed 2-surface $\mathcal S$ such that

$$\mathcal{E}_{MC} = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} |H_{\perp}| = -\frac{1}{8\pi} \oint_{\mathcal{S}} d^2 x \sqrt{q} \sqrt{K^2(s) - K^2(n)}$$
 (22)

• The second term is the quasi-local energy of the homogeneous FRW cosmological patch

$$\mathcal{E}^{\mathsf{FRW}} = \mathcal{E}_{\mathsf{MC}} - \mathcal{E}_{\mathsf{MC}}^{\mathsf{Ref}} = a(t)r \left(1 - \sqrt{1 - a^2(t)r^2\mathcal{H}^2(t)}\right) \tag{23}$$

Crucial to compute the energy of dynamical spacetime! [Ashfar '17]

(18)

Generalized notion of compaction function beyond spherical symmetry

ullet Natural notion of mean curvature quasi-local energy $\mathcal{E}_{\mathsf{MCE}}$ by integrating the norm $|H_{\perp}|$ on the closed 2-surface $\mathcal S$ such that

$$\mathcal{E}_{MC} = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} |H_{\perp}| = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \sqrt{K^{2}(s) - K^{2}(n)}$$
 (24)

Generalized notion of compaction function beyond spherical symmetry

ullet Natural notion of mean curvature quasi-local energy $\mathcal{E}_{\mathsf{MCE}}$ by integrating the norm $|H_{\perp}|$ on the closed 2-surface $\mathcal S$ such that

$$\mathcal{E}_{MC} = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} |H_{\perp}| = -\frac{1}{8\pi} \oint_{S} d^{2}x \sqrt{q} \sqrt{K^{2}(s) - K^{2}(n)}$$
 (24)

• The second term is the quasi-local energy of the homogeneous FRW cosmological patch

$$\mathcal{E}^{\mathsf{FRW}} = \mathcal{E}_{\mathsf{MC}} - \mathcal{E}_{\mathsf{MC}}^{\mathsf{Ref}} = a(t)r \left(1 - \sqrt{1 - a^2(t)r^2\mathcal{H}^2(t)}\right) \tag{25}$$

ullet We define the excess of quasi-local mass (or energy) in the region enclosed in Ω by

$$\mathcal{C}_{\mathsf{MC}} = \mathcal{E}_{\mathsf{MC}} - \mathcal{E}_{\mathsf{MC}}^{\mathsf{FRW}} \tag{26}$$

[BA, Vennin '25]

Generalized notion of compaction function beyond spherical symmetry

ullet Natural notion of mean curvature quasi-local energy $\mathcal{E}_{\mathsf{MCE}}$ by integrating the norm $|H_{\perp}|$ on the closed 2-surface $\mathcal S$ such that

$$\mathcal{E}_{\mathsf{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} \mathrm{d}^2 x \sqrt{q} |H_{\perp}| = -\frac{1}{8\pi} \oint_{\mathcal{S}} \mathrm{d}^2 x \sqrt{q} \sqrt{K^2(s) - K^2(n)}$$
 (24)

• The second term is the quasi-local energy of the homogeneous FRW cosmological patch

$$\mathcal{E}^{\mathsf{FRW}} = \mathcal{E}_{\mathsf{MC}} - \mathcal{E}_{\mathsf{MC}}^{\mathsf{Ref}} = a(t)r \left(1 - \sqrt{1 - a^2(t)r^2\mathcal{H}^2(t)}\right) \tag{25}$$

ullet We define the excess of quasi-local mass (or energy) in the region enclosed in Ω by

$$\mathcal{C}_{\mathsf{MC}} = \mathcal{E}_{\mathsf{MC}} - \mathcal{E}_{\mathsf{MC}}^{\mathsf{FRW}} \tag{26}$$

[BA, Vennin '25]

Generalized notion of temperature

Extend the proposal of Hayward to this generalized Kodama vector

$$\frac{1}{2}H^{\mu}_{\perp}\nabla_{[\mu}H^{\perp}_{\alpha]} = \kappa H^{\perp}_{\alpha} \tag{27}$$

[BA '25]

Generalized notion of compaction function beyond spherical symmetry Natural notion of mean curvature quasi-local energy \mathcal{E}_{MCF} by integrating the norm $|H_{\perp}|$ on

the closed 2-surface ${\cal S}$ such that

$$\mathcal{E}_{\mathsf{MC}} = -\frac{1}{8\pi} \oint_{\mathcal{S}} \mathrm{d}^2 x \sqrt{q} |H_{\perp}| = -\frac{1}{8\pi} \oint_{\mathcal{S}} \mathrm{d}^2 x \sqrt{q} \sqrt{K^2(s) - K^2(n)} \tag{24}$$

• The second term is the quasi-local energy of the homogeneous FRW cosmological patch

$$\mathcal{E}^{\mathsf{FRW}} = \mathcal{E}_{\mathsf{MC}} - \mathcal{E}_{\mathsf{MC}}^{\mathsf{Ref}} = a(t)r \left(1 - \sqrt{1 - a^2(t)r^2\mathcal{H}^2(t)}\right) \tag{25}$$

• We define the excess of quasi-local mass (or energy) in the region enclosed in Ω by

$$C_{\text{MC}} = \mathcal{E}_{\text{MC}} - \mathcal{E}_{\text{MC}}^{\text{FRW}}$$
 (26)

[BA, Vennin '25]

Generalized notion of temperature

Extend the proposal of Hayward to this generalized Kodama vector

$$\frac{1}{2}H_{\perp}^{\mu}\nabla_{[\mu}H_{\alpha]}^{\perp} = \kappa H_{\alpha}^{\perp} \tag{27}$$

[BA '25]

Concrete example beyond spherical symmetry?

Application to an axi-symmetric dynamical black hole

Kerr-Vaidya black hole

 Consider the Kerr-Vaidya model which provides the simplest rotating evaporating black hole model

$$ds^{2} = -\left(1 - \frac{2M(u)r}{\rho^{2}}\right)du^{2} + 2dudr + \rho^{2}d\theta^{2} - \frac{4aM(u)r\sin^{2}\theta}{\rho^{2}}d\phi du$$
$$-2a\sin^{2}\theta d\phi dr + \frac{(r^{2} + a^{2})^{2} - a^{2}\Delta\sin^{2}\theta}{\rho^{2}}\sin^{2}\theta d\phi^{2}$$
(28)

where $\rho^2 = r^2 + a^2 \cos^2 \theta$ and $\Delta(u, r) = r^2 - 2rM(u) + a^2$

Generalized surface gravity gives:

$$\kappa = \frac{(r_{+} - M) \left[4r_{+}^{2} \rho_{+}^{2} + a^{2} (a^{2} + 3r_{+}^{2}) \sin^{2} \theta \right] + a^{4} r_{+}^{2} \sin^{4} \theta \ddot{M}_{+}}{4r_{+} (a^{2} + r_{+}^{2})^{3/2} \rho_{+}^{2}}$$
(29)

• The evaporation will depend on the mass function and on the angle

Application to an axi-symmetric dynamical black hole

Kerr-Vaidya black hole

 Consider the Kerr-Vaidya model which provides the simplest rotating evaporating black hole model

$$ds^{2} = -\left(1 - \frac{2M(u)r}{\rho^{2}}\right)du^{2} + 2dudr + \rho^{2}d\theta^{2} - \frac{4aM(u)r\sin^{2}\theta}{\rho^{2}}d\phi du$$
$$-2a\sin^{2}\theta d\phi dr + \frac{(r^{2} + a^{2})^{2} - a^{2}\Delta\sin^{2}\theta}{\rho^{2}}\sin^{2}\theta d\phi^{2}$$
(28)

where
$$\rho^2 = r^2 + a^2 \cos^2 \theta$$
 and $\Delta(u, r) = r^2 - 2rM(u) + a^2$

Generalized surface gravity gives:

$$\kappa = \frac{(r_{+} - M) \left[4r_{+}^{2} \rho_{+}^{2} + a^{2} (a^{2} + 3r_{+}^{2}) \sin^{2} \theta \right] + a^{4} r_{+}^{2} \sin^{4} \theta \ddot{M}_{+}}{4r_{+} (a^{2} + r_{+}^{2})^{3/2} \rho_{+}^{2}}$$
(29)

• The evaporation will depend on the mass function and on the angle

What about asymptotically flat axi-symmetric compact objects?

What are the asymptotically FLRW axi-symmetric black hole known solutions in GR ?

What are the asymptotically FLRW axi-symmetric black hole known solutions in GR ?

• Kerr-de Sitter

What are the asymptotically FLRW axi-symmetric black hole known solutions in GR ?

- Kerr-de Sitter
- Rotating Takhurta solution (conformal Kerr geometry filled with pathological perfect fluid)

What are the asymptotically FLRW axi-symmetric black hole known solutions in GR?

- Kerr-de Sitter
- Rotating Takhurta solution (conformal Kerr geometry filled with pathological perfect fluid)

Focus on GR coupled to a scalar field or perfect fluid

- Known solution-generating method for spherically symmetric black hole:
 - → Buchdal and Fonarev methods
- Can we extend these solution-generating method to axi-symmetry ?

Extended Fonarev method for axi-symmetric PBH

• Consider the static and axisymmetric vacuum solution \bar{q} of the massless Einstein-Scalar system

$$d\bar{s}^2 = \bar{g}_{aa}(dx^a)^2 + \bar{h}_{ij}dx^i dx^j, \tag{30}$$

Key assumption: no a—dependence.

$$\partial_a \bar{g}_{\mu\nu} = 0 = \bar{g}_{ia},\tag{31}$$

• Then, one can construct an a-dependent extension $(\tilde{g}, \tilde{\phi})$ that solves the self-interacting Einstein-Scalar system with potential $V(\tilde{\phi}) = V_0 e^{\xi_3 \tilde{\phi}}$, and which takes the form

$$d\tilde{s}^2 = e^{2\mu(a)} [(\bar{g}_{aa})^{\beta} (dx_a)^2 + (\bar{g}_{aa})^{1-\beta} \bar{h}_{ij} dx^i dx^j],$$

$$\mu(a) = \xi_2 \ln(Ca + B).$$

with conformal factor

• The parameter space defined by V_0 , ξ_1 , ξ_2 , and ξ_3 is constrained to follow

 $\tilde{\phi} = \xi_0 \ln(\bar{g}_{aa}) + \frac{\xi_1}{\mu}(a),$

$$\xi_1$$
, ξ_2 , and ξ_3 is constrained to follow

$$\xi_1 = -\xi_2 = \frac{\beta}{2}$$

$$\xi_1 = -\xi_3 = \frac{\beta}{\xi_0}$$

$$(2\xi_0^2\kappa - \beta^2)^2V_0 = \mp 2\xi_0^2C^2(\beta^2 - 6\xi_0^2\kappa),$$

 $(\beta^2 - 2\xi_0^2 \kappa)\xi_2 = 2\xi_0^2 \kappa$

(32)

(33)

(34)

(35)

(36)

(37)

A first exact solution of axi-symmetric PBH

Axi-symmetric seed solution: The Zippoy-Voorees naked singularity

• Exact vacuum axi-symmetric solution of GR : quadrupolar deformation of Schwarzschild

$$ds_{\text{ZV}}^2 = -f^{\delta} dt^2 + f^{-\delta} \left[\left(\frac{f}{g} \right)^{\delta^2} g \left(\frac{dr^2}{f} + r^2 d\theta^2 \right) + fr^2 \sin^2 \theta d\varphi^2 \right], \tag{38}$$

where the metric functions (f, g) are given by

$$f = \left(1 - \frac{2M}{r}\right), \quad g = \left(1 - \frac{2M}{r} + \frac{M^2 \sin^2 \theta}{r^2}\right).$$
 (39)

ullet Reduces to Schwarzschild for $\delta=1$

A first exact solution of axi-symmetric PBH

Axi-symmetric seed solution: The Zippoy-Voorees naked singularity

• Exact vacuum axi-symmetric solution of GR : quadrupolar deformation of Schwarzschild

$$ds_{\text{ZV}}^2 = -f^{\delta} dt^2 + f^{-\delta} \left[\left(\frac{f}{g} \right)^{\delta^2} g \left(\frac{dr^2}{f} + r^2 d\theta^2 \right) + f r^2 \sin^2 \theta d\varphi^2 \right], \tag{38}$$

where the metric functions (f, g) are given by

$$f = \left(1 - \frac{2M}{r}\right), \quad g = \left(1 - \frac{2M}{r} + \frac{M^2 \sin^2 \theta}{r^2}\right). \tag{39}$$

• Reduces to Schwarzschild for $\delta = 1$

First exact asymptotically FLRW and axi-symmetric black hole solution in GR

• Exact vacuum axi-symmetric solution of GR: quadrupolar deformation of Schwarzschild

$$d\tilde{s}^{2} = a^{2}(t) \left\{ -f^{\delta\beta} dt^{2} + f^{-\delta\beta} \left[\left(\frac{f}{g} \right)^{\delta^{2}} g \left(\frac{dr^{2}}{f} + r^{2} d\theta^{2} \right) + f r^{2} \sin^{2}\theta d\varphi^{2} \right] \right\}, \tag{40}$$

$$\tilde{\phi} = \delta \xi_{0} \ln \left(1 - \frac{2M}{r} \right) + \frac{\xi_{1} \xi_{2}}{r} \ln(Ct + D), \tag{41}$$

where the conformal factor reads

$$a(t) = (Ct + B)^{\xi_2}. \tag{42}$$

[BA, Cisterna, Hassaine, Vennin '25]

• Provide a whole new family of exact solutions to study axi-symmetric PBH

Take away messages

- PBH dynamical trapped regions in a non-vacuum and asymptotically FLRW
- \bullet Not harmless to use results from stationary and asymptotically flat black holes in GR \to lifetime estimate and PBH abundance today
- Studying their phenomenology requires new geometrical tools

Take away messages

- PBH dynamical trapped regions in a non-vacuum and asymptotically FLRW
- \bullet Not harmless to use results from stationary and asymptotically flat black holes in GR \to lifetime estimate and PBH abundance today
- Studying their phenomenology requires new geometrical tools

First result: Generalized Kodama vector beyond spherical symmetry

- Localize the horizons in an invariant manner
- Provide a notion of quasi-local energy and compaction function beyond spherical symmetry relying on a preferred flow
- Provide a proposal for the dynamical surface gravity beyond spherical symmetry

Take away messages

- PBH dynamical trapped regions in a non-vacuum and asymptotically FLRW
- \bullet Not harmless to use results from stationary and asymptotically flat black holes in GR \to lifetime estimate and PBH abundance today
- Studying their phenomenology requires new geometrical tools

First result: Generalized Kodama vector beyond spherical symmetry

- Localize the horizons in an invariant manner
- Provide a notion of quasi-local energy and compaction function beyond spherical symmetry relying on a preferred flow
- Provide a proposal for the dynamical surface gravity beyond spherical symmetry

Second result: New solution-generating technique

- Explore a whole new family of asymptotically FLRW and axi-symmetric compact objects in GR
- First exact asymptotically FLRW and axi-symmetric black hole solution in GR: time-dependent Zipoy-Vorhees BH
- ullet Relaxing stationarity : naked singularity o covered by dynamical horizon

Take away messages

- PBH dynamical trapped regions in a non-vacuum and asymptotically FLRW
- Not harmless to use results from stationary and asymptotically flat black holes in GR
 → lifetime estimate and PBH abundance today
- Studying their phenomenology requires new geometrical tools

First result: Generalized Kodama vector beyond spherical symmetry

- Localize the horizons in an invariant manner
- Provide a notion of quasi-local energy and compaction function beyond spherical symmetry relying on a preferred flow
- Provide a proposal for the dynamical surface gravity beyond spherical symmetry

Second result: New solution-generating technique

- Explore a whole new family of asymptotically FLRW and axi-symmetric compact objects in GR
- First exact asymptotically FLRW and axi-symmetric black hole solution in GR: time-dependent Zipoy-Vorhees BH
- ullet Relaxing stationarity : naked singularity o covered by dynamical horizon

Work in progress

- Extending the method to rotating black holes
- New solution as testbed for perturbative approaches: gravitational radiation / Hawking radiation
- Confronting the new compacting function to numerical simulations of collapse

Thank you