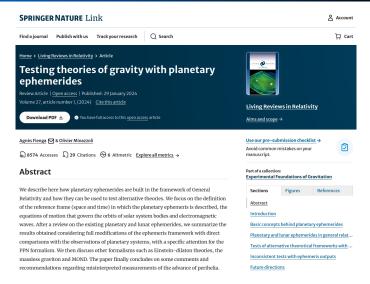


Testing theories of gravity with planetary ephemerides

Olivier Minazzoli & Agnès Fienga

ARTEMIS GéoAzur

Septembre 2025


OBSERVATOIRE DE LA CÔTE D'AZUR

ARTEMIS (OCA)

More in our review: Fienga and Minazzoli [2024]

Table of Contents

- 1. A typical literature example of what not to do
- 2 First issue: correlations

 Second issue: perihelion advances are not measured
 Third issue: it is more complicated than just the dynamics

Common issue in the literature Example with a Yukawa suppression of gravity

Modified Newtonian potential:

$$\begin{split} U &= \sum_{a} \frac{Gm_a}{|\mathbf{x} - \mathbf{x}_a|} \mathrm{e}^{-|\mathbf{x} - \mathbf{x}_a|/\lambda_\mathrm{g}} \\ &= \sum_{a} \frac{Gm_a}{|\mathbf{x} - \mathbf{x}_a|} + \frac{1}{2} \sum_{a} \frac{Gm_a}{\lambda_\mathrm{g}^2} |\mathbf{x} - \mathbf{x}_a| + O(Gmr^2/\lambda_\mathrm{g}^3), \end{split}$$

Modified equation of motion:

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{Gm\mathbf{n}}{r^2} \left(1 - \frac{1}{2} \frac{r^2}{\lambda_{\mathrm{g}}^2} \right),\,$$

Perihelion advance per orbit (assuming 2 bodies only):

$$\Delta \varpi = \pi \left(\frac{a}{\lambda_{\rm g}}\right)^2 (1 - e^2)^{-1/2},$$

Common issue in the literature Example with a Yukawa suppression of gravity

Perihelion advance per orbit (assuming 2 bodies only):

$$\Delta \varpi = \pi \left(\frac{a}{\lambda_{\rm g}}\right)^2 (1 - e^2)^{-1/2},$$

Deduction of λ_g from uncertainties:

Table 1. Bounds on λ_g .

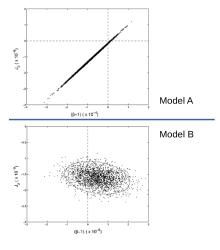
$\sigma(\dot{\varpi})$ (mas yr ⁻¹)	$\lambda_{\rm g}$ bound (10 ¹⁴ km)	
0.03	0.18	
0.016	0.28	
0.0019	0.88	
0.000 37	2.21	
0.28	0.11	
0.0047	0.98	
0.02	0.22	
0.026	0.42	
	0.03 0.016 0.0019 0.00037 0.28 0.0047	

Table of Contents

- 1. A typical literature example of what not to do
- 2. First issue: correlations

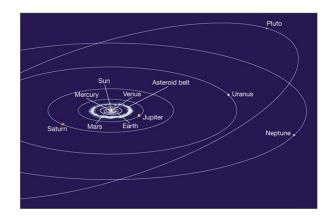
 Second issue: perihelior advances are not measured
 Third issue: it is more complicated than just the dynamics

Common issue in the literature Example with a Yukawa suppression of gravity


Correlations in INPOP17b:

	λ_g	a Mercury	$a~{ m Mars}$	a Saturn	a Venus	$a~{\rm EMB}$	GM_{\odot}
λ_g	1	0.50	0.49	0.04	0.39	0.05	0.66
a Mercure		1	0.21	0.001	0.97	0.82	0.96
a Mars			1	0.03	0.29	0.53	0.06
a Saturn				1	0.003	0.02	0.01
a Venus					1	0.86	0.94
a EMB						1	0.73
GM_{\odot}							1

Bernus et al. [2019] \sim 400 parameters to adjust!


Another example of correlation: between J_2 and β

Milani et al. [2002]

Correlations: why? All motions $\in \sim$ ecliptic plane & \sim small eccentricities

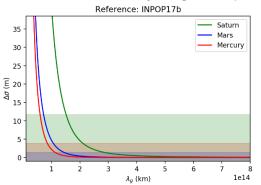
Correlations: why?

Spread in methods, data types and accuracies

Planet/type [unit]	s/c or method	Period	Averaged accuracy
Mercury			
Direct range [m]	Surface	1971.29: 1997.60	900
Radio science range [m]	Messenger	2011.23: 2014.26	5
Navigation range [m]	Mariner	1974.24: 1976.21	100
Mercury			
VLBI [mas]	Magellan, Venus Express	1990.70: 2013.14	2.0
Direct range [m]	Surface	1965.96: 1990.07	1400
Navigation range [m]	Venus Express	2006.32: 2011.45	7.0
Mars			
VLBI [mas]	MGS, MRO	1989.13: 2013.86	0.3
Navigation range [m]	Mars Express	2005.17: 2019.37	2.0
Radio Science range [m]	MGS	1999.31: 2006.70	2.0
Radio Science range [m]	MRO/MO	2002.14: 2014.00	1.2
Navigation range [m]	Viking	1976.55: 1982.87	20.0
Jupiter			
VLBI [mas]	Galileo	1996.54: 1997.94	11
	Juno	2016:2020	0.5
Optical RA/Dec [arcsec]	Transit+CCD	1924.34: 2008.49	0.3
Flyby RA/Dec [mas]	U,C, P, V	1974.92: 2001.00	8.0
Flyby range [m]	U,C, P, V	1974.92: 2001.00	2000
Radio science range [m]	Juno	2016.65: 2020.56	20
Saturn			
Optical RA/Dec [arcsec]	Transit+CCD	1924.22: 2008.34	0.3
VLBI RA/Dec [mas]	Cassini	2004.69: 2017.9	0.6
JPL H14 [m]	Cassini	2004.41: 2014.38	25.0
Navigation [m]	Cassini	2006.01: 2009.83	6.0
Radio science: Titan flybys [m]	Cassini	2006.01: 2016.61	15.0
Radio science: grand finale) [m]	Cassini	2017.35; 2017.55	1.0

Correlations: why?

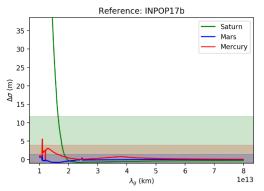
Temporal spread: accurate observations are rarely simultaneous


Planet/type [unit]	s/c or method	Period	Averaged accuracy
Mercury			
Direct range [m]	Surface	1971.29: 1997.60	900
Radio science range [m]	Messenger	2011.23: 2014.26	5
Navigation range [m]	Mariner	1974.24: 1976.21	100
Mercury			
VLBI [mas]	Magellan, Venus Express	1990.70: 2013.14	2.0
Direct range [m]	Surface	1965.96: 1990.07	1400
Navigation range [m]	Venus Express	2006.32: 2011.45	7.0
Mars			
VLBI [mas]	MGS, MRO	1989.13: 2013.86	0.3
Navigation range [m]	Mars Express	2005.17: 2019.37	2.0
Radio Science range [m]	MGS	1999.31: 2006.70	2.0
Radio Science range [m]	MRO/MO	2002.14: 2014.00	1.2
Navigation range [m]	Viking	1976.55: 1982.87	20.0
Jupiter			
VLBI [mas]	Galileo	1996.54: 1997.94	11
	Juno	2016:2020	0.5
Optical RA/Dec [arcsec]	Transit+CCD	1924.34: 2008.49	0.3
Flyby RA/Dec [mas]	U,C, P, V	1974.92: 2001.00	8.0
Flyby range [m]	U,C, P, V	1974.92: 2001.00	2000
Radio science range [m]	Juno	2016.65: 2020.56	20
Saturn			
Optical RA/Dec [arcsec]	Transit+CCD	1924.22: 2008.34	0.3
VLBI RA/Dec [mas]	Cassini	2004.69: 2017.9	0.6
JPL H14 [m]	Cassini	2004.41: 2014.38	25.0
Navigation [m]	Cassini	2006.01: 2009.83	6.0
Radio science: Titan flybys [m]	Cassini	2006.01: 2016.61	15.0
Radio science: grand finale) [m]	Cassini	2017.35; 2017.55	1.0

Effect of correlations

Example with a Yukawa suppression of gravity

Standard deviation without readjusting model parameters:


Bernus et al. [2019]

Effect of correlations

Example with a Yukawa suppression of gravity

Standard deviation after readjusting model parameters:

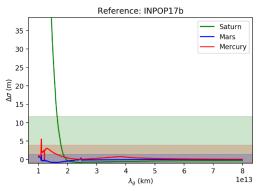
Bernus et al. [2019]

Effect of correlations

Example with a Yukawa suppression of gravity

Correlations in INPOP17b:

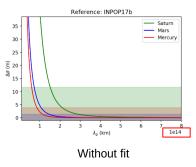
	λ_g	a Mercury	$a~{ m Mars}$	a Saturn	a Venus	$a~{\rm EMB}$	GM_{\odot}
λ_g	1	0.50	0.49	0.04	0.39	0.05	0.66
a Mercure		1	0.21	0.001	0.97	0.82	0.96
a Mars			1	0.03	0.29	0.53	0.06
a Saturn				1	0.003	0.02	0.01
a Venus					1	0.86	0.94
a EMB						1	0.73
GM_{\odot}							1

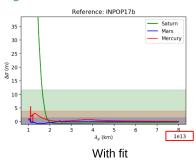

Bernus et al. [2019] \sim 400 parameters to adjust!

Effect of correlations

Example with a Yukawa suppression of gravity

Standard deviation after readjusting model parameters:

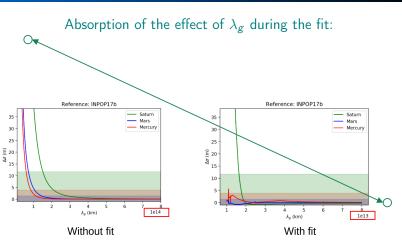

Bernus et al. [2019]



Effect of correlations

Example with a Yukawa suppression of gravity

Absorption of the effect of λ_g during the fit:



Bernus et al. [2019]

Effect of correlations

Example with a Yukawa suppression of gravity

Bernus et al. [2019]

Table of Contents

- 1. A typical literature example of what not to do
- First issue: correlations

3. Second issue: perihelion advances are not measured 4. Third issue: it is more complicated than just the dynamics

Perihelion advances are not measured

Table 1. Bounds on λ_g .

Planet	$\sigma(\dot{\varpi})$ (mas yr ⁻¹)	$\lambda_{\rm g}$ bound (10 ¹⁴ km)		
Data from table 4 of [16]				
Mercury	0.03	0.18		
Venus	0.016	0.28		
Earth	0.0019	0.88		
Mars	0.000 37	2.21		
Jupiter	0.28	0.11		
Saturn	0.0047	0.98		
Data from [17]				
Mercury	0.02	0.22		
Saturn	0.026	0.42		

Table of Contents

- 1. A typical literature example of what not to do
- 2. First issue: correlations

- 3. Second issue: perihelion advances are not measured
- 4. Third issue: it is more complicated than just the dynamics

The whole picture

The post-Newtonian framework is not only about the equations of motion!

- Dynamics of massive bodies
- Conserved quantities from Lagrangian or Hamiltonian of motion
- Shapiro effect on electromagnetic wave propagation
- Production of coordinate time for synchronisation between all clocks

Conclusion: The whole picture

Beware of correlations between parameters!

- Parameters <u>must</u> be adjusted in a novel theoretical framework
- Perihelion advances are deduced from the ephemerides (i.e., they are model-dependent).

The post-Newtonian framework is not only about the equations of motion!

- Dynamics of massive bodies
- Conserved quantities from Hamiltonian of motion
- Shapiro effect on electromagnetic wave propagation
- Production of coordinate time for synchronisation between all clocks

References I

- L. Bernus, O. Minazzoli, A. Fienga, M. Gastineau, J. Laskar, and P. Deram. Constraining the Mass of the Graviton with the Planetary Ephemeris INPOP. Phys. Rev. Lett., 123(16):161103, October 2019. doi: 10.1103/PhysRevLett.123.161103.
- Agnès Fienga and Olivier Minazzoli. Testing theories of gravity with planetary ephemerides. *Living Reviews in Relativity*, 27(1):1, January 2024. doi: 10.1007/s41114-023-00047-0.
- Andrea Milani, David Vokrouhlický, Daniela Villani, Claudio Bonanno, and Alessandro Rossi. Testing general relativity with the BepiColombo radio science experiment. Phys. Rev. D, 66(8):082001, October 2002. doi: 10.1103/PhysRevD.66.082001.

Accuracy of ephemerides

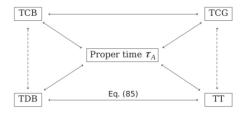
Verries	Gaillot (Gaillot and Le Verrier 1913)		DE102 (Standish 1983)		DE440/INPOP19a (Park et al. 2021; Fienga et al. 2019)		GR
	1800-1	913	1913–1983		1924–2021		
		Distance Earth- km	Angle	Distance Earth- km	Angle	Distance Earth- km	Δ ώ ".yr ^{−1}
Mercury	1	450	0.050	5	0.002	0.004	0.43
Venus	0.5	100	0.050	2	0.002	0.006	0.14
Mars	0.5	150	0.050	0.050	0.001	0.0015	0.065
Jupiter	0.5	1400	0.1	10	0.010	0.020	0.019
Saturn	0.5	3000	0.1	600	0.001	0.020	0.010
Uranus	1	12,700	0.2	2540	0.050	10	0.005
Neptune	1	22,000	0.2	4400	0.050	50	0.0033
Pluto	1	24,000	0.2	4800	0.050	2400	0.0027

The whole picture Dynamics: coordinate acceleration of massive bodies

$$\begin{aligned} \mathbf{a}_{T} &= -\sum_{A \neq T} \frac{\mu_{A}}{r_{AT}^{3}} \mathbf{r}_{AT} \\ &- \sum_{A \neq T} \frac{\mu_{A}}{r_{AT}^{3} c^{2}} \mathbf{r}_{AT} \left\{ \mathbf{v}_{T}^{2} + 2\mathbf{v}_{A}^{2} - 4\mathbf{v}_{A} \cdot \mathbf{v}_{T} - \frac{3}{2} \left(\frac{\mathbf{r}_{AT} \cdot \mathbf{v}_{A}}{r_{AT}} \right)^{2} \\ &- \frac{1}{2} \mathbf{r}_{AT} \cdot \mathbf{a}_{A} - 4 \sum_{B \neq T} \frac{\mu_{B}}{r_{TB}} - \sum_{B \neq A} \frac{\mu_{B}}{r_{AB}} \right\} \\ &+ \sum_{A \neq T} \frac{\mu_{A}}{c^{2} r_{AT}^{3}} \left[4\mathbf{r}_{AT} \cdot \mathbf{v}_{T} - 3\mathbf{r}_{AT} \cdot \mathbf{v}_{A} \right] (\mathbf{v}_{T} - \mathbf{v}_{A}) \\ &+ \frac{7}{2} \sum_{A \neq T} \frac{\mu_{A}}{c^{2} r_{AT}} \mathbf{a}_{A} , \end{aligned}$$

The whole picture Dynamics: Lagrangian, Hamiltonian and first integrals

$$\begin{split} L_{B} &= -m_{B}c^{2} + m_{B}\frac{v_{B}^{2}}{2} + \sum_{A \neq B} \frac{Gm_{A}m_{B}}{r_{AB}} + \frac{m_{B}v_{B}^{4}}{8c^{2}} \\ &+ \frac{1}{c^{2}} \sum_{A \neq B} \frac{Gm_{A}m_{B}}{r_{AB}} \left[-4\mathbf{v}_{A} \cdot \mathbf{v}_{B} + \frac{3}{2}v_{B}^{2} + 2v_{A}^{2} - \frac{(\mathbf{v}_{A} \cdot \mathbf{r}_{AB})^{2}}{2r_{AB}^{2}} - \frac{\mathbf{r}_{AB} \cdot \mathbf{a}_{A}}{2} \right] \\ &- \frac{1}{c^{2}} \sum_{A \neq B} \frac{Gm_{A}m_{B}}{r_{AB}} \left[\sum_{D \neq A} \frac{Gm_{D}}{r_{AD}} + \sum_{D \neq B} \frac{1}{2} \frac{Gm_{D}}{r_{DB}} \right] + \mathcal{O}(c^{-4}). \end{split}$$



The whole picture Dynamics: light rays and the Shapiro delay

$$c(t_r - t_e)_{GRT} = R + \sum_A 2 \frac{\mu_A}{c^2} \ln \frac{\mathbf{n} \cdot \mathbf{r}_{rA} + r_{rA} + \frac{4\mu_A}{c^2}}{\mathbf{n} \cdot \mathbf{r}_{eA} + r_{eA} + \frac{4\mu_A}{c^2}},$$

The whole picture Time

The whole picture

The difference between TT and TDB is produced by planetary ephemerides, by integrating the following equation together with the equations of motion (Klioner 2008; Fienga et al. 2009)

$$\frac{d(TT - TDB)}{d(TDB)} = \left(L_B + \frac{1}{c_2}a\right)(1 + L_B - L_G) - L_G + \frac{1}{c_4}b,\tag{85}$$

with L_B and L_G are defining constants for TDB relatively to TCB and TT relatively to TCG, respectively (see e.g. Klioner 2008, Petit and Luzum 2010 for the full definition) and where

$$a = -\frac{1}{2}v_{T}^{2} - \sum_{A \neq T} \frac{\mu_{A}}{r_{AT}}$$

$$b = -\frac{1}{8}v_{T}^{4} + \frac{1}{2} \left[\sum_{A \neq T} \frac{\mu_{A}}{r_{AT}} \right]^{2} + \sum_{A \neq T} \frac{\mu_{A}}{r_{AT}} \left\{ 4v_{T} \cdot v_{A} - \frac{3}{2}v_{T}^{2} - 2v_{A}^{2} + \frac{1}{2} a_{A} \cdot r_{AT} + \frac{1}{2} \left(\frac{v_{A} \cdot r_{AT}}{r_{AT}} \right)^{2} + \sum_{B \neq A} \frac{\mu_{B}}{r_{BA}} \right\},$$
(86)