Statistical analysis of geogenic CO₂ dispersion in lower atmospheric layers using an integrated approach

Marie-Margot ROBERT (LOMs) Frédéric GIRAULT (LOMs) Guillaume CARAZZO (GFD)

Congrès des Doctorants (23/05/2025)

mm-robert@ipgp.fr

CO2 emissions across the globe

Origin of CO₂

- Natural : volcanic and non-volcanic
- > Anthropogenic

Widely spread phenomenon across the globe, often

impacting highly populated places

CO2 emissions across the globe

Origin of CO₂

- Natural : volcanic and non-volcanic
- > Anthropogenic

Widely spread phenomenon across the globe, often

impacting highly populated places

Behavior

- Turbulent aerial dispersion
- Concentrated dense flows

CO2 emissions across the globe

Origin of CO₂

- Natural : volcanic and non-volcanic
- > Anthropogenic

Widely spread phenomenon across the globe, often impacting highly populated places

Behavior

- Turbulent aerial dispersion
- Concentrated dense flows

CO2 emissions across the globe

Origin of CO₂

- Natural : volcanic and non-volcanic
- > Anthropogenic

- Widely spread phenomenon across the globe, often impacting highly populated places
- impacting highly populated places

Behavior

- Turbulent aerial dispersion
- Concentrated dense flows

General risk

- Located at human height (denser than air)
- Poorly detected (odorless and colorless)

Toxic concentration levels (>0.5%, BG: 0.04%)

- Dense flow
- 4 main physical contributions:
 - Shear stress with the atmosphere
 - Terrain roughness effects
 - Atmospheric convection
 - Negative buoyancy
- Low-lying geometry

2

CO2 emissions across the globe

Origin of CO₂

- Natural : volcanic and non-volcanic
- > Anthropogenic

- Widely spread phenomenon across the globe, often impacting highly populated places

Behavior

- Turbulent aerial dispersion
- Concentrated dense flows

General risk

- Located at human height (denser than air)
- Poorly detected (odorless and colorless)

Toxic concentration levels (>0.5%, BG: 0.04%)

Many recorded cases around the world

e.g. : Lake Nyos lymnic eruption (Cameroun, 1986) <1700 fatalities

- Dense flow
- 4 main physical contributions:
 - Shear stress with the atmosphere
 - Terrain roughness effects
 - Atmospheric convection
 - Negative buoyancy
- Low-lying geometry

How to constrain and predict the dynamics of these flows to reduce risks for the population?

How to constrain and predict the dynamics of these flows to reduce risks for the population?

Current limitations

- Only one case has been studied (Azores)
- > A few experiments before 1980
- > Poorly constrained parameters of current numerical codes

How to constrain and predict the dynamics of these flows to reduce risks for the population?

Current limitations

- Only one case has been studied (Azores)
- > A few experiments before 1980
- > Poorly constrained parameters of current numerical codes

Integrated approach combining field data, experimental results to nurture numerical modelling

How to constrain and predict the dynamics of these flows to reduce risks for the population?

Current limitations

- Only one case has been studied (Azores)
- > A few experiments before 1980
- Poorly constrained parameters of current numerical codes

Integrated approach combining field data, experimental results to nurture numerical modelling

1 - Where and how to acquire more field data?2 - How to recreate CO₂ rivers in a laboratory?

3 - What model to choose and how to improve it?

1 – Field data acquisition

Regions of interest in different geodynamical contexts

Site	Ribeira Grande (Fogo volcano, Azores)	Upper Trisuli valley (central Nepal)
Origin of CO2 emissions	Magmatic and mantellic (triple junction)	Metamorphic (orogen, continental collision)
Scale	$10^2 - 10^3 \text{ m}$	$10^1 - 10^2 \text{ m}$

1 – Field data acquisition

Regions of interest in different geodynamical contexts

Site	Ribeira Grande (Fogo volcano, Azores)	Upper Trisuli valley (central Nepal)
Origin of CO2 emissions	Magmatic and mantellic (triple junction)	Metamorphic (orogen, continental collision)
Scale	$10^2 - 10^3 \text{ m}$	$10^1 - 10^2 \text{ m}$

Area identification by pervasive odor (H₂S), touch (warm degassing) and sight (dead animals, absence of vegetation, fumaroles)

1 – Field data acquisition

Regions of interest in different geodynamical contexts

Site	Ribeira Grande (Fogo volcano, Azores)	Upper Trisuli valley (central Nepal)
Origin of CO2 emissions	Magmatic and mantellic (triple junction)	Metamorphic (orogen, continental collision)
Scale	$10^2 - 10^3 \mathrm{m}$	$10^1 - 10^2 \text{ m}$

Area identification by pervasive odor (H₂S), touch (warm degassing) and sight (dead animals, absence of vegetation, fumaroles)

Variable	Measurement method
CO ₂ flux	Accumulation chamber
Airborne CO ₂ concentration	Infrared sensor
Wind (speed + direction)	Anemometer + permanent meteo station
Topography	Laser rangefinder, DEM by drone

2 - Analogue experiments

 \succ

 \geq

2 - Analogue experiments

1 m

 \succ

 \succ

Scaling

Reynolds

Froude

2 - Analogue experiments

1 m

3 – Numerical model: TWODEE

Approach

- Depth-averaged variables over the characteristic height *h* of the flow
- + Shallow-water equations
- + Additional physical contributions

3 - Numerical model: TWODEE

Approach

- Depth-averaged variables over the characteristic height *h* of the flow
- + Shallow-water equations
- + Additional physical contributions
- = 3 laws of conservation which depend on the entrainment velocity $u_{ent} \propto v$ (lateral spreading velocity)

3 - Numerical model: TWODEE

Approach

- Depth-averaged variables over the characteristic height *h* of the flow
- + Shallow-water equations
- + Additional physical contributions
- = 3 laws of conservation which depend on the entrainment velocity $u_{ent} \propto v$ (lateral spreading velocity)
- To increase computational efficiency, each physical phenomenon contributing to v is parameterized

3 - Numerical model: TWODEE

Approach

- Depth-averaged variables over the characteristic height *h* of the flow
- + Shallow-water equations
- + Additional physical contributions
- = 3 laws of conservation which depend on the entrainment velocity $u_{ent} \propto v$ (lateral spreading velocity)

To increase computational efficiency, each physical phenomenon contributing to v is parameterized

Simulations

- > Output: $[CO_2]$ at every given elevation
- Analysis: calculation of statistical validation metrics which compare observed and simulated [CO₂]

1 - New extensive datasets obtained in the field

height (cm)

Measurement

Region	Ribeira Grande (Azores)	Upper Trisuli Valley (Nepal)
Sites	1	4
Profiles	13	18
Measurement points	41 (164)	79 (316)
[CO ₂] > BG	in progress	92%

- Points with highest [CO2] are compatible with the location of the sources that were previously identified
- Short-lived fluctuations in the form of pulses
 Especially visible at high concentration levels

CO₂ concentration (vol%)

2 – Series of analogue experiments

34 experiments

Measurement of the lateral velocity v

Measurement of the front velocity \boldsymbol{u}

2 – Series of analogue experiments

34 experiments

Measurement of the lateral velocity v

3 – Modelling of airborne CO₂ at Syabru-Bensi (Nepal)

Areas with high levels of CO₂ concentration near the village, compatible with observations

➤ 5 cm : 2.8%

Results

▶ 150 cm : 0.6%

Methods Results 3 – Modelling of airborne CO₂ at Syabru-Bensi (Nepal)

3 – Modelling of airborne CO₂ at Syabru-Bensi (Nepal)

Areas with high levels of CO₂ concentration near the village, compatible with observations

➢ 5 cm : 2.8%

Results

➤ 150 cm : 0.6%

Risk of accumulation at the river surface Airborne CO2 concentrations over the river?

3 – Effects of the 2015 Gorkha earthquake

Change in degassing dynamics since the Gorkha earthquake (2015)

- Appearance of a new source, uphill
- Smaller covered area
- High level of [CO₂] are still observed

3 – Effects of the 2015 Gorkha earthquake

Change in degassing dynamics since the Gorkha earthquake (2015)

- Appearance of a new source, uphill
- Smaller covered area
- High level of [CO₂] are still observed

Persistent high probability of CO₂ accumulation at the river surface

3 – Effects of the 2015 Gorkha earthquake

Change in degassing dynamics since the Gorkha earthquake (2015)

- Appearance of a new source, uphill
- Smaller covered area
- High level of [CO₂] are still observed

Persistent high probability of CO₂ accumulation at the river surface

Longer simulations are required to account for the long-term effects of degassing!

NIOSH (2007)

Conclusions

Improved datasets

- > Additional field data acquired at 2 sites under different geodynamical contexts
- ▶ Reproduction of CO_2 rivers → More controlled data

Further analysis still needs to be done in order to properly reassess the model parameters

Conclusions

Improved datasets

- > Additional field data acquired at 2 sites under different geodynamical contexts
- ▶ Reproduction of CO_2 rivers → More controlled data

Further analysis still needs to be done in order to properly reassess the model parameters

Better understanding of degassing systems

- 1) Evolution of the dynamics of CO₂ degassing
- 2) Source properties

Application to wider areas will allow for the quantification of degassed CO₂ budget

Conclusions

Improved datasets

- > Additional field data acquired at 2 sites under different geodynamical contexts
- ▶ Reproduction of CO_2 rivers → More controlled data

Further analysis still needs to be done in order to properly reassess the model parameters

Better understanding of degassing systems

- 1) Evolution of the dynamics of CO₂ degassing
- 2) Source properties

Application to wider areas will allow for the quantification of degassed CO₂ budget

By combining improved data sets and numerical modelling, this integrated approach helps **better understand the degassing dynamics of dense flows**

This paves the way for the **development of an operational tool for crisis management**