

Building river networks in the lab Céleste Romon, François Métivier, **Eric Lajeunesse**

Université Paris Cité, Institut de Physique du Globe de Paris, Dep. of Geological Fluid Dynamics

CDD 2025

Groundwater driven networks Seepage erosion and growth

Petroff et al. (2011), Devauchelle et al. (2011)

Seepage erosion and growth

Seepage erosion and growth

Seepage erosion and growth

Vulliet, PhD 2023

Seepage erosion and growth

Vulliet, PhD 2023

Seepage erosion and growth

Vulliet, PhD 2023

Seepage erosion and growth

Vulliet , PhD 2023, Dunne (1980)

From natural landscapes to laboratory experiments

Petroff et al. (2011), Devauchelle et al. (2011), Abrams et al. (2009)

From natural landscapes to laboratory experiments

Panhandles, Florida

Very slow growth rates [mm/y]

Google Earth

Petroff et al. (2011), Devauchelle et al. (2011), Abrams et al. (2009)

From natural landscapes to laboratory experiments

Panhandles, Florida

Very slow growth rates [mm/y]

Google Earth

Petroff et al. (2011), Devauchelle et al. (2011), Abrams et al. (2009)

Difficult to observe in nature

Rajasthan, India

2 km

From natural landscapes to laboratory experiments

Sockness, B. G. and Gran, K. B (2022)

- Surface flows
- Saturated medium
- Channels :
 - Type 1 : surface erosion
 - Type 2 : seepage erosion

From natural landscapes to laboratory experiments

- Sub-surface flow
- Single channel

Initial aquifer :

Beginning of the erosion

Beginning of the erosion

Channels take form

Channels grow

Channels grow

Channels grow

Groundwater fed network

As the river network changes, so does the groundwater distribution

Source : Petroff et al. (2011)

Groundwater fed network

As the river network changes, so does the groundwater distribution

Source : Petroff et al. (2011)

Groundwater fed network

Using Darcy's Law and the Dupuits-Boussinesq approximation

All the groundwater flows towards the outlet

Streamlines bend towards the network

Streamlines bend towards the network

The shape of the water table changes around the channels

The shape of the water table changes around the channels

Data vs model

Piezometers :

Data vs model

Best fit is for K = 0.0047 m/s

Data vs model

Best fit is for K = 0.0047 m/s

We can create a network with seepage erosion

We can create a network with seepage erosion

For a constant recharge, the network reaches a steady state

We can create a network with seepage erosion

For a constant recharge, the network reaches a steady state

We can successfully model the shape of the water table around the network

We can create a network with seepage erosion

For a constant recharge, the network reaches a steady state

We can successfully model the shape of the water table around the network

The groundwater streamlines focus on the channel tips

Thank you for your attention !

Céleste Romon, at IPGP romon@ipgp.fr

pap.fr