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Network dynamics
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Network dynamics
From natural landscapes to laboratory experiments

Sockness, B. G. and Gran, K. B (2022)

Surface flows

Saturated medium

Channels : 
• Type 1 : surface erosion

• Type 2 : seepage erosion

10 cm



Network dynamics
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Groundwater fed network 

As the river network changes, 
so does the groundwater 
distribution

248 A. P. Petroff and others
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Figure 2. The water table and associated groundwater flux in the Florida network. (a) The
magnitude of the Poisson flux (colour intensity on boundary) is the size of the area draining
into a section of the network per unit length. It is found by solving (2.1) around the channels
as approximated with an elevation contour. Flow lines are in black. The water discharge was
measured at blue circles. The Poisson elevation and Poisson flux are proportional to the water
table height and groundwater flux, respectively. (b) Comparison of the predicted discharge to
measurements at 30 points in network taken in January 2009 (blue points) and 52 points in
April 2009 (red points). The black line indicates equality. This comparison is direct and requires
no adjustable parameters. (c) We observe a hyperbolic relationship between the curvature of
the valley walls and the predicted flux (red curve). In regions of high curvature (i.e. valley
heads) the flux is proportional to curvature (dashed line).

Source : Petroff et al. (2011)
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into a section of the network per unit length. It is found by solving (2.1) around the channels
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table height and groundwater flux, respectively. (b) Comparison of the predicted discharge to
measurements at 30 points in network taken in January 2009 (blue points) and 52 points in
April 2009 (red points). The black line indicates equality. This comparison is direct and requires
no adjustable parameters. (c) We observe a hyperbolic relationship between the curvature of
the valley walls and the predicted flux (red curve). In regions of high curvature (i.e. valley
heads) the flux is proportional to curvature (dashed line).

Source : Petroff et al. (2011)
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Groundwater fed network

Using Darcy’s Law and the 
Dupuits-Boussinesq 
approximation

∇2h2 = 2R
K

Poisson elevation / 
Water table height [m] Recharge [m/s]

Hydraulic 
conductivity [m/s]

Borders :  
∂nh = 0

River area and 
outlet h = 0

Aquifer surface :  
∂nh = 2R/K



Network and Water table 
All the groundwater flows 
towards the outlet 
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Data vs model 

Piezometers :

Water table height



Data vs model Best fit is for K = 0.0047 m/s
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Take-home messages

We can create a network 
with seepage erosion

The groundwater streamlines 
focus on the channel tips

For a constant recharge, the 
network reaches a steady state

We can successfully model the shape of 
the water table around the network
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attention !

Céleste Romon, at IPGP romon@ipgp.fr
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