

Evolution of carbon dioxide dynamics in alkaline volcanic lake Dziani Dzaha

J. Frère, A. Groleau, D. Jézéquel, B. Bénard, N. Assayag, G. Bardoux, G. Landais, R. Tchibinda, M. Ader

Introduction – Volcanic lakes

Lakes formed as a result of volcanic activity (caldera lakes, crater lakes, maar lakes...)

El Chichon

Nyos

Taal

Wide range of volcanic lakes ... from hot and superacidic to quiescent and alkaline

Source of hazards (phreatic, phreatomagmatic, limnic eruptions, lahars, *etc*.)

But also **usefool tools** for volcanic activity monitoring !

Introduction – Dziani Dzaha Lake

« Crater lake» in Shimaore

Tuff ring (Lacombe et al., 2024)

Intensively studied since 2010:

- Initially filled with seawater
- Up to twice as salty as seawater
- pH > 9 and alkalinity 100 x SW
- Magmatic CO₂ bubbling

Introduction – Dziani Dzaha Lake

2018 – 2020 : Fani Maore eruption Since 2019 : volcanic surveillance (REVOSIMA) + very active submarine CO₂ vents (Horseshoe)

Dziani Dzaha: Nov 2020 : bubbling intensification

Sept 2021 : physico-chemical changes (pH decrease, DIC increase)

2022 - 2025 : 8 field surveys

What changes happened?

What insights can we get on volcanic activity and monitoring ?

© Bonaimé

Introduction – Dziani Dzaha Lake

2018 – 2020 : Fani Maore eruption Since 2019 : volcanic surveillance (REVOSIMA) + very active submarine CO₂ vents (Horseshoe)

Dziani Dzaha: Nov 2020 : bubbling intensification

Sept 2021 : physico-chemical changes (pH decrease, DIC increase)

2022 - 2025 : 8 field surveys

What changes happened?

What insights can we get on volcanic activity and monitoring ?

Methods

Fieldwork \approx twice a year

In-situ measurements:

CO₂/CH₄ diffusive fluxes, probe profiles (pH, T, Salinity...)

Water sampling: DIC, alkalinity, ions (ICP-MS, acid titration, ICP-OES...)

@SURUNEILE

Methods

Measurement of CO_2/CH_4 diffusive fluxes at the water-air interface, with home-made floating accumulation chamber

Decrease in pH (9.2 to 8)

 $[CO_2]_{(aq)} + [HCO_3^-] + [CO_3^{2-}]$ DIC increase (0.17 to 0.21 M)

pCO₂ calculated with alkalinity and pH pCO₂ increase (2000 to $\approx 80\ 000\ \text{ppm}$)

Diffusive fluxes increase (0.2 to \approx 4 mol m⁻² d⁻¹)

Carbonate system : three species $[CO_2]_{(aq)}$ $[HCO_3^-]$ $[CO_3^{2-}]$ whose relative abundances depend on pH

Carbonate system : three species $[CO_2]_{(aq)}$ $[HCO_3^-]$ $[CO_3^{2-}]$ whose relative abundances depend on pH

CO₂ dissolution: HCO₃⁻ and CO_{2 (aq)} \checkmark CO₃²⁻ and pH

Carbonate system : three species $[CO_2]_{(aq)}$ $[HCO_3^-]$ $[CO_3^{2-}]$ whose relative abundances depend on pH

CO₂ dissolution: HCO₃⁻ and CO_{2 (aq)} \checkmark CO₃²⁻ and pH

As pH \bigcirc CO_{2 (aq)} and CO₂ diffusion LAKE \rightarrow ATM

Carbonate system : three species $[CO_2]_{(aq)}$ $[HCO_3^-]$ $[CO_3^{2-}]$ whose relative abundances depend on pH

CO₂ dissolution: HCO₃⁻ and CO_{2 (aq)} \checkmark CO₃²⁻ and pH

As pH \bigcirc CO_{2 (aq)} and CO₂ diffusion LAKE \rightarrow ATM

Carbonate system : three species $[CO_2]_{(aq)}$ $[HCO_3^-]$ $[CO_3^{2-}]$ whose relative abundances depend on pH

CO₂ dissolution: HCO₃⁻ and CO_{2 (aq)} \checkmark CO₃²⁻ and pH

As pH \bigcirc CO_{2 (aq)} and CO₂ diffusion LAKE \rightarrow ATM

Steady state is reached when input and output balance each other

Steady state is reached when the input equals the output

 Magmatic CO₂ dissolution ≈ 39 ± 15 tons day⁻¹

- Magmatic CO₂ dissolution ≈ 39 ± 15 tons day⁻¹
- Change in flux \rightarrow change in pH

- Magmatic CO₂ dissolution ≈ 39 ± 15 tons day⁻¹
- Change in flux \rightarrow change in pH

Modelisation

modelling the perturbation

- Magmatic CO₂ dissolution ≈ 39 ± 15 tons day⁻¹
- Change in flux \rightarrow change in pH
- The perturbation likely occured in two phases

Modelisation

- Magmatic CO₂ dissolution ≈ 39 ± 15 tons day⁻¹
- Change in flux \rightarrow change in pH
- The perturbation likely occured in two phases
- The lake is **highly reactive** to change in flux (≈ days)

Conclusions

- The changes in the lake can be attributed to **the increase of CO**₂ **magmatic degassing** \rightarrow **regional increase**?

- CO₂ dissolution (and diffusion) in the lake is \approx 40 tons d⁻¹

- The increase in degassing likely occured in **two phases** (1st between Nov 2020 and Sept 2021 and 2nd between Dec 2021 and June 2022)

- change in flux is very quickly reflected in pH → simple parameter to measure for the monitoring of the magmatic degassing in Dziani Dzaha (proved crucial in other volcanic systems e.g Taal or Kelud volcanoes)

Conclusions

- The changes in the lake can be attributed to **the increase of CO**₂ **magmatic degassing** \rightarrow **regional increase**?

- CO₂ dissolution (and diffusion) in the lake is \approx 40 tons d⁻¹

- The increase in degassing likely occured in **two phases** (1st between Nov 2020 and Sept 2021 and 2nd between Dec 2021 and June 2022)

- change in flux is very quickly reflected in pH → simple parameter to measure for the monitoring of the magmatic degassing in Dziani Dzaha (proved crucial in other volcanic systems e.g Taal or Kelud volcanoes)

Monitoring platform in Nov 2024... destroyed by Chido in December Reconstruction planned for 2026

