

Slip rates and deep lithospheric deformation along a fault ruptured during the 2012 Mw 8.6 Wharton basin earthquake

(Hunting for active faults in the deep ocean)

Saksham Rohilla

Supervisors: Dr. Satish Singh and Dr. Hélène Carton

Step'up doctoral congress 2025

Tectonic plate boundaries

Earthquake epicentres define tectonic plate boundaries

Tectonic plate boundaries

Earthquake epicentres define tectonic plate boundaries

Indian ocean diffused deformation zone

- N-S compression in the Central Indian basin.
- NW-SE compression in the Wharton basin.
- Reactivation of long fossil N-S striking fracture zones as left-lateral strike slip faults.

Wharton basin earthquake doublet

- Ruptured within the oceanic lithosphere,
 ~ 400 km SW the Sunda megathrust.
- Activated a complex system of faults (at least 4) at high angle to each other.
- 30 km centroid depth with slip extending to 50-60 km.

Wharton basin earthquake doublet

- Ruptured within the oceanic lithosphere,
 ~ 400 km SW the Sunda megathrust.
- Activated a complex system of faults (at least 4) at high angle to each other.
- 30 km centroid depth with slip extending to 50-60 km.

Fault RF3 (Hill et al. (2015))

Maximum slip = 20 m Mw = 8.1 Total rupture length = ~200 km

Objective

Marine geophysical data

90.0°E 91.0°E 92.0°E 93.0°E 94.0°E IODP U1480 -3.0°N 3.0°N-Mw 8.6 11/04/2012 Mw 7.2 10/01/2012 F8 Mw 6.3 2.0°N-2.0°N 15/04/2012 F6b 1.0°N--1.0°N F5b Mw 8.2 NW-ESE shear zones NW-SSE shear zones cture zones model (2012) and et al. model (2012) 0.0° -0.0° 100 km model (2015) Bathymetry (m) Aftershocks in April 2012 (Mw > 2.5)2600 3100 3600 4100 4600 93.0°E 90.0°E 94.0°E 91.0°E 92.0°E

Marine Investigation of the Rupture Anatomy of the 2012 Great Earthquakes (MIRAGE) experiment 2016 and 2017

Active source multi-channel seismic data designed to characterize structures deep into the oceanic crust and mantle

High resolution (~ 50 m) bathymetry (90,000 km²) and 3.5 kHz echo-sounder (11,400 km)

(a) Pull-apart basin 9

Seabed	—— 5.5 Ma	Top Basement
1.8 Ma	—— 7.1 Ma	
3.6 Ma	—— 9.5 Ма	

Onset of deformation ~ 4.5 Ma

Seabed	—— 5.5 Ma	Top Basement
1.8 Ma	—— 7.1 Ма	
—— 3.6 Ma	—— 9.5 Ма	

Results: Surface expression of RF3

Total length of RF3 = ~130 km

Slip rate along RF3 = 0.3-0.7 mm/yr

14

/ertical exaggeration = 3

- Clear vertical offsets in the sediments and the basement due to pervasive
- Dipping reflections in the crust and the

210

Discontinuous moho reflections

240

Е

Rupture of F6a: a nascent plate boundary?

Depth (m)

Conclusions

- Very slow long term slip rates (0.3-0.7 mm/yr) along a WNW-ESE fault involved in the 2012 Mw 8.6 Wharton basin earthquake.
- Direct evidence of deep lithospheric scale deformation in Wharton basin along **supposedly younger** WNW-ESE faults.
- Important role of RF3 in the rupture of the Mw 8.2 event.

Thank you

Throw vs age analysis

