Stability of circular orbits of compact binaries in general relativity A post-Newtonian analysis

> Étienne Ligout Laboratoire Astroparticule et Cosmologie (APC) Institut d'Astrophysique de Paris (IAP) etienne.ligout@apc.in2p3.fr

STEP'UP PhD Congress – 21<sup>st</sup> May 2025

## Compact binaries



Figure: Binary system of black holes orbiting around each other. (source: https://svs.gsfc.nasa.gov/13086)

## Stability in mechanics



#### Figure: Stable (a) and unstable (b) equilibria.

# Why look at the stability?



Figure: Accretion disk around a black hole. The disk stops at the *Innermost Stable Circular Orbit (ISCO)*. (source: https://svs.gsfc.nasa.gov/13326)

#### Set-up

Two compact objects (black holes or neutron stars) orbiting one another around a circular orbit.

## Question

Given the (conservative part of) the dynamics set by general relativity, what is the location of the ISCO?

#### Issue

The dynamics (*i.e.* Lagrangian or Hamiltonian) of the two-body problem has no exact realisation in general relativity: one must then resort to an approximation scheme.

#### Principle

(General Relativity) = (Newtonian theory) +  $\left(\frac{v}{c}\right)^2$  (1PN correction) +  $\left(\frac{v}{c}\right)^4$  (2PN correction) + ... +  $\left(\frac{v}{c}\right)^{2n}$  (*n*PN correction) + ...

<ロト <回ト < 注入 < 注入 = 正

#### Literature

The stability analysis has been pursued up to the 3PN order (Blanchet et Iyer 2003).

### Challenge

Extend this analysis to the 4PN order.

#### Gist

The evolution of the system at time t depends on the state of the system at all other times  $t' \neq t$ .

#### Physical origin

Due to the non-linear nature of the gravitational interaction, the gravitational waves emitted by a body can influence it back at later times.

## Results



Figure: ISCO orbital frequency  $\Omega_{\rm ISCO}$  in terms of the symmetric mass ratio  $\nu = m_1 m_2 / (m_1 + m_2)^2$ .

Étienne Ligout

# Thank You!

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで