IS CONVECTIVE TURBULENCE THE ONLY EXCITING MECHANISM OF GLOBAL P MODES IN THE SUN?

[Panetier et al., submitted to A&A, under review, 2025]

Eva Panetier

Laboratoire Dynamique des Étoiles, des (Exo)planètes et de leur Environnement (LDE3) UMR AIM – CEA Saclay DRF/IRFU/DAp Supervisors: R. A. García, S. N. Breton Collaborators: A. Jiménez, T. Foglizzo

 \rightarrow

Cea

LDE3

21/05/2025 Eva Panetier

CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?

Chromosphere Photosphere Convection zone Radiative zone Core

STRUCTURE FAILE AND STRUCTURE

Chromosphere Photosphere Convection zone Radiative zone Core

ESTRUCTURE OF AUGULAR AND AND AREAR

Seismology

g modes

p modes

Chromosphere Photosphere Convection zone Radiative zone Core

ESTRUCTURE OF AUGUSATINGS OF AREA KE

Seismology

 \rightarrow Detected in main sequence stars

 \rightarrow Not detected in main sequence stars

STRUCTURE OF AUGSLISATING SUPARE ARE

Chromosphere Photosphere Convection zone Radiative zone

Seismology

p modes

 \rightarrow Detected in main sequence stars

 \rightarrow Not detected in main sequence stars

Stochastic excitation by turbulent convection [Goldreich & Keeley, 1977; Kumar & Goldreich, 1988;

Balmforth, 1992; Belkacem et al. 2008]

CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?

21/05/2025 Eva Panetier

Magnetic field generated and maintained by **dynamo effect**

 \rightarrow

 \rightarrow Interaction between convection and rotation

Localized emission of electromagnetic radiation in the Sun's atmosphere

Coronal Mass Ejection (CME)

Ejection of plasma mass from the Sun's corona into the heliosphere

Solar minimum

Localized emission of electromagnetic radiation in the Sun's atmosphere

Coronal Mass Ejection (CME)

Ejection of plasma mass from the Sun's corona into the heliosphere

The number of sunspots as a proxy

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

 \rightarrow Schwabe cycle: 11 years, with a change in polarity at each cycle end

Solar minimum

21/05/2025

Solar maximum

Localized emission of electromagnetic radiation in the Sun's atmosphere

Coronal Mass Ejection (CME)

Ejection of plasma mass from the Sun's corona into the heliosphere

At solar maxima:

- + Energetic flares
- + Coronal Mass Ejections (CMEs)
- + Sun spots

Solar minimum

The number of sunspots as a proxy

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

 \rightarrow Schwabe cycle: 11 years, with a change in polarity at each cycle end

21/05/2025 Eva Panetier

AIM

77 E.

→ Simulations of p-modes assuming a stochastic excitation **do not reproduce p mode power excess**

[Chaplin et al. 1997, Chang & Gough, 1998]

 \rightarrow No dependence on mode frequency appearing

→ Simulations of p-modes assuming a stochastic excitation **do not reproduce p mode power excess**

[Chaplin et al. 1997, Chang & Gough, 1998]

[MDI SoHO, Kosovichev & Zharkova 1998]

7

 \rightarrow A local acoustic wave was excited by a flare

[MDI SoHO, Kosovichev & Zharkova 1998]

AIM

 \rightarrow A local acoustic wave was excited by a flare

> Is this also exciting global p modes?

[Foglizzo et al. 1998; Foglizzo, 1998]

 \rightarrow Equi-distribution of the

input energy between all

the modes

Flare

431

✓ small characteristic size → is able to excite 10^4 modes

× strength (Mean energy ~ 10³⁰ ergs) → too few energy per mode

✓ small characteristic size → is able to excite 10^4 modes

× strength (Mean energy ~ 10³⁰ ergs) → too few energy per mode CME

? larger characteristic size

- \rightarrow should be able to excite
- ≤100 low-degree modes √ strength (Mean energy ~ 8.5 10³⁰ ergs)

 \rightarrow enough energy per mode ?

[Foglizzo et al. 1998; Foglizzo, 1998]

 \rightarrow Equi-distribution of the input energy between all the modes \rightarrow Exact location of the

origin of the CMEs?

<u>cea</u> 🂽 🌾

✓ small characteristic size → is able to excite 10^4 modes

× strength (Mean energy ~ 10³⁰ ergs) → too few energy per mode CME

? larger characteristic size

→ should be able to excite ≤100 low-degree modes

✓ strength
 (Mean energy ~ 8.5 10³⁰ ergs)
 → enough energy per mode ?

[Foglizzo et al. 1998; Foglizzo, 1998]

→ Equi-distribution of the input energy between all the modes

 \rightarrow Exact location of the origin of the CMEs?

→ 310 days of GOLF data → Correlation between several low-degree modes

✓ small characteristic size → is able to excite 10^4 modes

× strength (Mean energy ~ 10³⁰ ergs) → too few energy per mode CME

? larger characteristic size

→ should be able to excite
 ≤100 low-degree modes
 ✓ strength
 (Mean energy ~ 8.5 10³⁰ ergs)
 → enough energy per mode ?

[Foglizzo et al. 1998; Foglizzo, 1998]

 \rightarrow Equi-distribution of the input energy between all the modes

 \rightarrow Exact location of the origin of the CMEs?

→ 310 days of GOLF data → Correlation between several low-degree modes

> → Now, more than 27 years of data available

Ę

The modes energy excess

The modes energy excess

The modes energy excess

Thank you for your attention

CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?


```
\rightarrow Inverse Fourier Transform
```

$$f_{v}(t) = \int_{-\frac{\Delta\omega}{2}}^{+\frac{\Delta\omega}{2}} \hat{v} (\omega_{0} + \omega) e^{i\omega t} d\omega$$

(E)

 $\label{eq:alpha} \begin{array}{l} \rightarrow \mbox{ Selected window of } \Delta \omega = 8 \ \mu Hz \\ \rightarrow \mbox{ Energy time-series for each mode n, } \ell \mbox{ retrieved with:} \\ E_{n,\ell} = 2 |f_{\nu}(t)|^2 \qquad \mbox{ [Foglizzo et al. 1998]} \end{array}$

Time resolution: $\delta t = rac{1}{\Delta \omega} = 1.45$ days

For all $\ell = 0,1,2$ and $14 \le n \le 25$ modes \rightarrow Results in **36 energy time-series**

21/05/2025 Eva Panetier CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?

Eva Panetier

CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?

Related to the modes (82 remaining peaks)

-072/1570

ŰĨ

21/05/2025

Related to the modes (82 remaining peaks)

-0421270

 \rightarrow should be observed by several instruments

Eva Panetier CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?

Ξ

Related to the modes (82 remaining peaks)

→ should be observed by several instruments
○ 14 high peaks also found in GOLF

Eva Panetier CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?

21/05/2025

Related to the modes (82 remaining peaks)

→ should be observed by several instruments
○ 14 high peaks also found in GOLF

→ correlations with flares or CMEs?

○ 22 high peaks correlated with a CME
○ 8 high peaks correlated with a flare

Ξ

Related to the modes (82 remaining peaks)

→ should be observed by several instruments
○ 14 high peaks also found in GOLF

→ correlations with flares or CMEs?
○ 22 high peaks correlated with a CME

○ 8 high peaks correlated with a flare

ightarrow location of the source of excitation _

• 20 high peaks from the lower frequencies
 • 23 high peaks from the medium frequencies
 • 28 high peaks from the higher frequencies

21/05/2025

Eva Panetier CDD STEP'UP - Is convective turbulence the only exciting mechanism of global p modes in the sun?